
Interoperability - Client Recovery

Amit Sharma

22-Nov-2007

1 Introduction

The interoperability between the new 1.6.x clients and 1.8 server is an important task
which will enable upgrading the existing 1.6.x clients to beable to talk to the 1.8 server
which supports FID, and it requires that the 1.6.x client be made aware of the protocol
that the 1.8 server follows. One of the areas where changes will be needed to support
such interoperability is the client recovery.

This document will outline at a higher level design of what changes will be needed to
the 1.6.x client to enable it to recover after any fault when it is running in the interop-
erability mode.

2 Requirements

• The recovery of the 1.6.x client (interoperable client) when talking to a 1.8 server
should work seamlessly.

• The interoperable client should be developed on the 1.6 client.

• Interoperable client should be made to understand the protocol that 1.8 server
understands, and also be able to communicate with a 1.6 server.

3 Client Recovery Process

We will review how the client recovery takes place, and also cite the differences in the
process if any in 1.8 as compared to 1.6.

1. In 1.8 server the recovery task is handled by the recovery thread target_recovery_thread,
which is started off by target_recovery_init(). This is different from 1.6 in which
the recovery process is started as part of the target_handle_connect.

1



4 FUNCTIONAL SPECIFICATION

2. At the server end when the recovery process starts, a recovery_timer is started
and the first transno to be replayed is found. And the recovery_timer is stopped
after the time out period. If some client fails to connect within this time, it is
evicted.

3. In the next stage, the clients replay their requests. If some client fails to replay
its requests in the time out period it is evicted.

4. The next stage id for the clients to replay their locks. Butif any client is unable
to replay the locks in the time out period, the recovery is aborted and all clients
are evicted. And the recovery process has to start again.

5. After this the server drops the recovering flag, and startsforwarding all the re-
quests from now on to the regular mds_handle().

6. Then in the final stage, the server sends out final reply.

Most of the above is similar to 1.6, except that there are justtwo stages in 1.6 Replay
and Final Reply. This will have some minor affect in the recovery process for the client
in 1.6.x. And has to be taken care of by enabling the 1.6.x client to communicate with
the 1.8 server in a way that the 1.8 client would behave in a similar situation.

4 Functional specification

From the point of view of the client, in case of recovery, mostof the things would be
the same except for the changes in the number and the format ofthe requests and replay
messages that it sends to the server in the case of recovery asdiscussed above, and also
due to the use of FIDs, we discuss some detail below. Althoughthere have been many
changes at the server end which affect the recovery process,mostly because of the new
layered stack at the server end and some minor changes in the recovery algorithm. But
the basic recovery algorithm from the point of view of the client doesnt change much
and so most of those changes are transparent to the client andhave very minor impact
on the client’s operation at the time of the recovery process.

To meet the above requirements, we need to make sure that the following differences
in between the 1.6 and 1.8 are handled.

4.1 Use of FIDs

The use of FIDs brings about changes both at the client and theserver end. These
changes both at the server and client end will be taken care ofas part of different
tasks (info will be available in the hld of interop_server_fidea, interop_server_igif and
client_interop_fid)

2



4.2 Request Flag and Connection Flag changes. 5 USE CASES

4.2 Request Flag and Connection Flag changes.

There have been few changes to the request formats from 1.6 to1.8. New flags
MSG_REQ_REPLAY_DONE and MSG_LOCK_REPLAY_DONE have been added
and the flag MSG_AT_SUPPORT has been removed.

The Connection Flag also have changed. The flags OBD_CONNECT_CROW and
OBD_CONNECT_TRANSNO are no longer used in 1.8. Although we are not quite
sure these flags will be done away with or kept for the future.

New request flag MSG_CONNECT_TRANSNO has been added.

These changes need to be taken into account and the client needs to be made aware of
these changes, so that it can talk to the 1.8 server in the interoperability mode.

As part of this task we would only be interested in the communication that happens in
case of the client recovery, all other request/reply messages between the client and the
server will be taken care of as part of the mixed_layout_req task. For more extensive
detail on the request format changes the hld for client_interop_fids and client_interop_reqs
can be referred.

4.3 SOM related changes

In case of client recovery, the client is evicted by the MDS and in case this client was
the last writer for a file, then the MDS gets the replay information from the OST, and re-
plays those steps in case there has been a attribute update. And then sends cancellation
requests to the OSTs.

This recovery is transparent of other clients in the cluster, the MDS indicates them it
does not have attribute caching enabled on such inodes and the clients obtain them from
OSTs.

SOM related changes on client recovery are discussed in moredetails in the [som_recovery.lyx
hld]

4.4 Algorithm changes from 1.6 to 1.8

As discussed in section 3, there have been some changes in thealgorithm in the 1.8 as
compared to 1.6, and this would mean the new 1.6.x client needs to respond differently
to what it would have done when talking to the 1.6 server.

5 Use cases

5.1 The Client crashes/reboots

When the client comes up after a crash/reboot it will try to connect to the server. The
server will find out if an export existed for this particular client and then start a recovery

3



5.2 The server crashes/reboots 5 USE CASES

process, as per the recovery algorithm.

5.2 The server crashes/reboots

In case the server crashes/reboots for some reason. When it comes up it would wait
for a period of time allow clients to replay requests and locks. If a client is unable to
replay its requests/locks during that time it will be evicted from the cluster.

5.3 Network failure

Network failure has to be handled in a similar way as the case when client crash/reboots.
When the client requests time out, the recovery procedure will be kicked off and then
the process follows as per the recovery algorithm

We can take a look at how a “open-write-close” scenario wouldwork in case there is a
network failure.

The network failure can happen at the following stages:

• Before the client does a “open”: There could be two cases in open. One is the
case of a pure open, and the other is the case of open/creat.

– In case of pure open, the task is simple as a new trasaction is not created
in this case, and the trans no is just bumped up. In case of failure such a
transaction can be taken care of at the server end by a simple replay of the
open operation.

– In the open/create case there will be a transaction and so it will have to
be handled. In the trasaction stop callback the transactionnumber, request
id, last operation result and intent disposposition is stored in the last_rcvd
record. At the time of replay this record will come in handy and since
the file had already been created, it would just be opened as part of the
recovery.

• After the “open” but before “write”: There could again be twocases here, one
is the simple case where in the clients request for open has been executed by the
server so after the reconnect nothing needs to be done at the server end. The
other case would be when the server did not receive the open request from the
client. So, based on the status of the request on the client, it would start to replay
requests, the server would compare the requests and see if that request has been
executed at the server. And decide on whether to replay the transaction or not.

• Network failure after the “write” but before “close” and failure after “close”
: The file open request (along with the fid for the newly createdfile) will be
kept in the client replay list until the file is closed. There is an open file handle
(struct mdt_file_data *mfd) on MDS for every open file, linkedtogether into

4



5.4 Server upgrade 6 LOGIC SPECIFICATION

this client’s export. When client crash/reboot/reconnectto MDS, all open handle
will be destroyed. When server crash/reboot/recover, client will replay its open
request, and continue on the write operation.

5.4 Server upgrade

The server upgrade will be treated as a case of recovery from the point of view of the
client. While upgrading the server to 1.8, it will be failed and for the clients it will be
a normal recovery procedure. Just that in this case, they would be talking to a server or
higher version after the recovery.

6 Logic specification

Below we see a brief of how the issues pointed out in the Functional Spec will be taken
care of. More code level details will form a part of the DLD.

6.1 Use of FIDs

Most of the changes that are needed at the client side, from point of view of the use
of FIDs will be taken care of as part of the interop_client_fid. But there will be some
more changes that might be needed at the client side which might be very specific to
the recovery task. Those will be taken care of as part of this task.

6.2 Request Format and Connection Flag changes

The interoperable client will be enabled to use the new request and connections flags
when it is communicating with the 1.8 server, and to use the usual 1.6 communication
protocol when communicating with the 1.6 server.

The recovery mechanism in 1.8 also works differently from the 1.6, this case can
also be taken care by the client side changes by enabling it tocommunicate in a
way which the 1.8 server understands. These changes will be worked out as part
of the mixed_layout_req work. But there will be some client recovery specific mes-
sages/replies which will have to be taken care of as part of this task.

6.3 SOM Recovery

Most of the SOM recovery related work will be taken care as part of other task (som-
recovery). It needs to be ascertained if any work will have tobe done apart from that
and will it fall in the scope of work for this task.

5



6.4 Algorithm changes 9 FOCUS FOR INSPECTIONS

6.4 Algorithm changes

As mentioned above, there have been some changes from 1.6 to 1.8 from the point of
view of the recovery algorithm, this can be handled at the client side by enabling the
client to understand the changes in the algorithm and act accordingly.

7 Recovery changes

The whole task focuses on the recovery of the client in the interoperability mode.

8 Protocol changes

There will be changes needed to enable the 1.6.x talk to the 1.8 server in terms of the
request format, although most of the communication will be taken care of as part of
other task (client_interop_reqs), but some changes specific to recovery will have to be
done as part of this task.

9 Focus for inspections

• Any other major difference in the 1.6 and 1.8 flags (connection, recovery etc.)
that might have been missed and may have an impact on recoveryparticular and
interoperability in general.

• Major protocol changes if any that have been missed in the new1.8 server which
may have an impact on the recovery of client.

6


