
I/O API HLDYuriy Umanets5th October 20051 RequirementsThis work requires to design an I/O API that is usable on the server and theclient, and across the net possibly. It should not be an OBD API but an en-capsulation of it. So API itself should unify the use of the following subsystemson client llite/lov/osc and ost/obd�lter/lvfs on server respectively, into one newAPI. It should not be OS dependent to allow porting with minimal changesor without changes at all. This means for instance, that all lustre componentsexcept of llite should not operate on OS speci�c structures or functions.2 Functional speci�cation2.1 I/O typesIn order to meet requirements, all involved lustre subsystems should be ableto perform all kinds of IO operations used in lustre by only using this uni�edI/O API. It should be balanced enough to have minimal set of understandablefunctions.The following I/O cases should be taken into account:
• synchronous I/O on client.
• asynchronous I/O on client.
• getting metadata from MDS server from client.
• handling client I/O requests on server side.
• llog related I/O operations.
• lvfs related I/O operations.There will be a lot of changes to API itself. Some changes to protocol areforeseen also, however attempt to minimize them will be taken.1



2.2 Related structures 3 USE CASES2.2 Related structuresThere will the set of structures, used for abstracting OS speci�c structures fromlustre ones. One of them is lustre page representation. It has reference to nextlayer page structure, set of page �ags, registered completion handler, etc. It isneed to have own page representation on each layer.3 Use casesThere are few types of I/O which should be worked out (see below). Howeverit does not mean that for all of them special API should exist. They all maybe handled by the same byte oriented API (see below), which has read() andwrite() methods with bunch of params (to meet all requirements) and all theplaying with OS pages, etc. is hidden inside.3.1 Synchronous I/O on clientSynchronous I/O implies, that the following actions should be allowed to per-form in the same code path:
• wrap OS-speci�c page into lustre structure
• send it for IO to lower layer
• wait for IO completion3.2 Asynchronous I/O on clientThis kind of I/O should allow the following actions being taken:
• wrap OS-speci�c page into lustre structure
• send it for IO to lower layer
• after I/O is completed, registered I/O completion handler should be calledasynchronously, notifying that I/O is �nished. This handler may be usedalso for accounting, etc.3.3 Getting metadata from MDSClient needs metadata from MDS server(s) when reading directory content. APIshould allow this kind of I/O as well. This may be using synchronous API.3.4 Handling IO on server sideOn server the same set of functions should be used for handling clients IOrequests as on client for sending them. This makes API set minimized and wellsuited for all cases, and thus, easy to maintain and improve.2



3.5 Working with llog 5 STATE MANAGEMENT3.5 Working with llogThere are needs to write llog related data sometimes. It has own speci�c, asI/O should not be page oriented and rather bytes oriented one. So API shouldhave functions like read() and write() which accept number of bytes to read andpointer to a bu�er read data should be stored in.3.6 Working with lvfs bitsServers need to store di�erent bits of data into EA or to special �les like onesused for storing last object id, etc. This is done currently over lvfs interface andshould be using the same bytes oriented API as llog.4 Logic speci�cationThe following components of API make it up and should see detailed design:
• all involved structures, for instance lustre page which is wrapper for OSspeci�c pages.
• functions providing live circle for lustre pages. That is those needed forinitializing/�nalizing struct lustre_page and others.
• completion handler and its registration.
• all functions for all types of API (that is synchronous, asynchronous, etc).Interaction and examples of using lustre IO related structures.5 State management5.1 State sharing between objects. Helper objectsThere possibly will be helper objects (asynchronous pages, etc.) which needmanaging. That is API should have methods for preparing that objects forusing with API and also those for �nalizing them. That is especially the caseabout memory allocations. All the cases when user of API is out of controlabout helper objects, API itself should take care of them.Also, helper objects change their status while doing IO. For instance, asyn-chronous page is sent for IO. This is initial state. Then when IO completes pageis moved to next state and so on.5.2 State sharing between operations. Composite opera-tionsIt is possible that some IO operations consist of few parts. For instance, pre-pare_write() and commit_write(). Both they operate on some helper object orset of �ags and there is implication that both should be performed. In such acase, possible breaking of such a pare of operations should also be worked out.3



5.3 Recovery 6 FOCUS IN INSPECTION5.3 RecoveryAs for recovery as a lustre process, I/O API should not break it. It may changeit (should not do that if only possible). That is almost the only one thing aboutAPI related to recovery.6 Focus in inspectionThere is one of important ideas of this HLD which is to design minimal andsuitable for all IO cases API as only possible. Such a minimization attemptmay cause kind of lack of functionality to API.For instance, if we try to use read() and write() API for page oriented IO,it may be not optimal, or API will be complicated or another kind of su�eringis possible.This should be taken into account when doing review.

4


