Porting Lustre to Operating Systems
other than Linux

Ken Hornstein
US Naval Research Laboratory
April 16, 2010




Motivation

O We do a lot of data visualization on Lustre data, and would
like to do that on the Macintosh platform.

O General strategy of providing uniform access across our
entire system.

O Having Lustre available for more client systems increases
Lustre use and visibility.

O Porting Lustre to one vnode-based operating system would
help it be ported to another.




History

O Initial Lustre port done in 2005.

O Targeted toward MacOS 10.3 (Panther).

O Some of the design decisions made for that port made
long-term support difficult.

O Port reached some level of functionality, but has been
bit-rotting for a number of years.




Fast-Forward to the Present

O Current tree does not contain all of the port.

O libcfs has been split off to OS-specific directories and has a
set of Darwin (MacOS X) functions and header files.

O A fair number of modules (obdclass, Inet, ksockind) had
kernel module metadata files (Info.plist).

O Some of the include files under lustre/include have been
segmented off with OS-specific versions.

O Build system has knowledge of MacOS X.




But ...

O Lustre has been moving forward for five years.

O No effort had been made on maintaining cross-platform
portability.

O The port uses many old MacOS X kernel interfaces.

O Missing bits of port contain some of the more important
pieces (the page caching code and the vnhode interface).




Challenges

O Lack of documentation of Lustre internals.
o Understanding Lustre Filesystems Internals helps.

O Lack of documentation of Linux internals.

O Lack of documentation on MacOS X internals.




Design Decisions

O Try to concentrate MacOS X changes to libcfs and
OS-specific files.

O Minimize #ifdefs in generic Lustre code.

O No changes at all to MacOS X.

O Target kernel modules instead of FUSE.

O Base code on master branch.




Initial Work (2-4 weeks)

O Work through bitrotted code in libcfs.

O Many Linux interfaces prefixed with "cfs" - rename or
iImplement functionality.

O Some code actually simplified (kernel thread argument
handling & timers)

O Switched many interfaces (mostly locking) to newer
interfaces.

o Spinlocks - |0SimpleLock
o Mutexes - IOLock

O Semaphores - T[ORecursiveLock



Initial Work (continued)

O libcfs networking code cleaned up (much simpler!).

O Lustre tracefile implementation problematic (CPU
numbering).

O Lots of challenges with ioctl interface (32 bits versus 64 bits).

O Kernel-userspace communication switched to using
socketpair().

O Ported ptlctl to test basic networking functionality.




Next Steps (6-7 weeks)

obdclass took the largest amount of effort.

O All modules call through it (register callback interfaces that
are used by all other modules).

O Contains the cache handling code (cl), llog,
encryption/checksum interface, part of VFS interface, syscitl

handling, inode attribute management, capability
management.

O Significant parts of obdclass are OS-specific!




Next Steps, continued

O Fair amount of changes were required to simply switch to
cfs prefix for functions/datatypes (struct page -> cfs_page_t).

O Switching away from static lock initializers to explicit lock
allocation/free in module startup and shutdown.

O Segregate Linux-specific functions into files in "linux"
directory.

O Write MacOS X versions of Linux functions (crypto interface)
and bring over missing functionality from Linux (radix tree).




Next Steps, continued

O Once obdclass was ported, ptirpc was next.

O ptlrpc work exposed a number of bugs in the MacOS X
versions of the Linux synchronization functions (mostly

completion and waitq).

O After ptlrpc was done, the rest of the modules went relatively
smoothly.

O Remaining module work consisted of switching away from
Linux include files and #ifdef'ing out procfs support.




Crossing the Finish Line (3 weeks)

O llite is the module that interfaces with the Linux VFS
system. By necessity it is very Linux-specific.

O A direct port of llite would have resulted in a gigantic number
of #ifdef’s and massive restructuring, and the result would

unlikely ever be accepted back into Lustre.

O Decided to create a new module to handle the MacOS X
vhode interface (lvnode).




An Aside about Vnodes

O Interface developed by Sun as part of development of NFS.

O Vnodes are virtual versions of inodes; one vnhode per
filesystem object (files and directories). In MacOS X the

vhode is an anonymous structure (cannot access contents).
O Filesystems create vnodes as necessary (when files are
looked up by the operating systsem) and fill in
filesystem-specific information in the vnode private area.
O A filesystem provides methods at vnode creation time to
perform operations on the vnode (such as create, read,
write, unlink).




Lvhode Implementation Details

O Lvnode indexes Lustre files via the fid (unique identifier per
filesystem).

O Vnode contains pointer to Inode structure, which contains
fid, mount point (our version of superblock), which in turn

contains pointer to our metadata and data exports.

O The operating system manages the caching between names
and vnodes (and due to vnode containing Inode, the

mapping between names and Lustre fid).




More Implementation Details

O The data flow in llite due to Lustre caching is ... confusing.
Also, not sure how to interface it with the MacOS X buffer

cache.

O For the first effort, decided to skip caching completely.

O Since there were problems in my first attempt to use intent
locks, attribute caching is not implemented at this time as

well.

O Readdir performance is sub-optimal; also, no
statahead/readahead.




Challenges During Implementation

O Misuse of intent locking caused LBUG() on MDS!

O Low level differences beween Linux and MacOS X manifest
at a high level (bit ordering difference caused failure reading

config log).

O Memory management of Lustre API not documented
anywhere.

O Lack of communication between client and server results in
client eviction; solution is to use the pinger, but that seems

wrong.




The Ugly Detalils

O Currently open/close are not actually registered on the MDS.

O readdir() calls md_readpage() for each call.

O 1/O is done via obd_brw() (one or more per each read/write()
call), and is done synchronously.

O setattr currently not supported (although looks relatively
straightforward).




Unanswered Questions

O For caching, should we use Lustre’s caching (which seems
to be designed to interface with the Linux VM system), or

use the operating system’s buffer cache?

o MacOS X does not have anything like the Linux shrinker, so there is no
way to know if VM pressure is an issue.

O What work is necessary to cooperate with the MacOS X
Finder?




Future Work

O Clean up resource leaking (lock leaks are terrible, due to
lack of lock cleanup needed on Linux).

O Implement data caching!

O Implement intent locking to cache attribute and file data.

O Implement Kerberos support.

O Implement Infiniband support (o2ibind).




Things That Would Aid Portability

O Greater discipline on using "cfs" prefix in generic Lustre
code.

O Break up OS-specific obdclass parts into different directory,
or even a different module.

O Purge use of struct inode and struct super_block in obdclass
(using cfs_inode_t and cfs_super_block would be fine).

O Work on creating a more generic cache system to interface
with buffer caches used by other operating systems.




Long Term Plans

O We get funding for doing new things; developing MacOS X
port is something new, but long-term support for a MacOS X

client is NOT new work.

O Would like to eventually host the source code on the Oracle
git server.

O In a perfect world, MacOS X port would be supported by
Oracle (pipe dream!) or by the community, and would be

considered a supported client platform.




Any Questions?




