Subtree Locks

Alexander Zarochentsev , Vladimir Saveliev

(Started: 2008.02.01)

Contents
1 Introduction
2 Requirements

3 Functional specification
3.1 General e

3.2 LDLM . . .

3.3 Metadataprotection Lo

3.4 Filedataprotection
341 Note......

3.5 Nestedsubtreelocks
3.6 Policy e

3.6.2 Serverpolicy
3.6.3 ReactiononaBAST
3.7 ClusteredMetaData(CMD)
3.8 Lockrevalidation
3.81 Summary e
3.8.2 Scenario where acquired lock is to be revalidated

3.8.3 Revalidation procedureoutline

(&)

o O g o o1 9 0 u»

CONTENTS

CONTENTS

4 Use cases

4.1
4.2

4.3

4.4
45

4.6

4.7
4.8

Acquire subtree lock
Object access under subtree lock
421 Note..............

Concurrent lookup

Accessto®.”
CMD

4.6.1 Client policy
4.6.2 Server policy
Callback to ordinary lock
Callback to subtree lock

48.1 Note..............

5 Logic specification

51
5.2
53
54

5.5
5.6

LDLMchange.

Client cache organization

5.4.2 Server policy
Lockconflicts

Revalidation details

6 State management

6.1
6.2
6.3
6.4
6.5

State invariants

Scalability & performance

Recovery changes

Locking changes

Disk format changes

3 FUNCTIONAL SPECIFICATION

6.6 Wireformatchanges 18
6.7 Protocolchanges 18
6.8 APIchanges. 18
6.9 RPCsorderchanges. 18
7 Alternatives 18
7.1 Revalidatoncanbeavoided 18
7.2 Lockrevalidationandgetewdo 91
8 Focus for inspections 19

1 Introduction

Subtree lock is a lock on a directory which protects an eminmespace (or its part)
rooted at that directory. Subtree lock is supposed to bengptior workloads where
clients work in isolated directories and to not make thingsse in highly contended
workloads by resorting to current client-server lockingtprol.

2 Requirements

Performance reduce lock RPC traffic for STL-locked objects.
Scalability reduce load of DLM server and memory consumption on servatslgéents
Correctness provide a correct interaction between STLs and ordinary Dabks.

Usability usability to other components (WBC, disconnected opema)io

3 Functional specification

3.1 General

When a directory namespace is accessed by one client masty (orks in home
directory, for example) it may be useful to grant the cliefttva single lock for whole
subtree.

Advantages:

e reduced DLM load

3.2 LDLM 3 FUNCTIONAL SPECIFICATION

e reduced server and client memory consumption

o fewer lock RPCs
Disadvantages:

e a MD server does not remember which objects are cached by 8ifleh so it
has to send BAST to STL holder whenever it acts on behave ef attents

e other clients are to care about being inside of outsiderlssST

3.1.1 Note

File data are protected with IBIT lock, which is independehsubtree lock but is
discribed in this document.

3.2 LDLM

Subtree lock is a new type of lock.

3.3 Metadata protection

STL protects all metadata objects in the namespace below&Jtlexcept for

e objects explicitly locked by ordinary locks
e mount points

e metadata of hard linked files
When STL holder caches an object under its STL from MD server:

¢ if the object is not protected, ordinary lock mode is applied

¢ if the object is protected, MD server just sends the obje&Th holder

3.4 File data protection

e When, in the absence of concurrent users, a file is opened MD&) its first
user is granted special IBIT lock, permitting an exclusigeess to all file sub-
objects on OSTs.

e When conflicting access occurs, this lock is revoked, andsuseitch to the
usual extent based locking.

3.5 Nested subtree locks 3 FUNCTIONAL SPECIFICATION

3.4.1 Note

IBIT lock applies to files which have more than one link as well

3.5 Nested subtree locks

Subtree locks can be nested. A client can not acquire a btk on an object if that

object is under subtree lock owned by another client. Orglitack is acquired in this

case. For example, if client 1 holds subtree lock on /a/liventclient 2 can acquire
subtree lock on /a, but can not acquire subtree lock on /dfle/cThis results in that
objects cached under inner subtree lock are never cached antkr one. In the above
example, client 2 can cache under its subtree lock all abjada but /a/b/c and objects
below it.

3.5.1 Note

An object can be cached only under the nearest subtree lduir# are several subtree
locks above.

3.6 Policy
3.6.1 Client policy

On lookup a client always requests a subtree lock for an dbbgEng lookuped.

There are three exceptions. A subtree lock is not requested w

e the parent directory is already protected by subtree lotk inethe client
¢ the parent directory is protected by subtree lock of anathient.

¢ it might make no sense to acquire subtree locks on objeatbied into rename.

More details are in Use cases section (4.6.1) and in LogiciSpation section (5.4.1).

3.6.2 Server policy

If a client requests for subtree lock on an object, MD servants it if there were no
recent accesses to the object from other clients.

More details are in Use cases section (4.6.2) and in Logicifigetion section (5.4.2).

3.7 Clustered Meta Data (CMD) 3 FUNCTIONAL SPECIFICATION

3.6.3 Reaction on a BAST

STL holder may react differently on a BAST. Possible actiares

e If an objectin conflict is not cached by STL holder - nothingd$e done

if the object in conflict is not modified, drop it from the STLatee

STL cancel

STL splitinto STLs of subdirectories

if the object in conflict is modified, flush it together with dement updates and
drop the object from the STL cache

MD server may explicitly request STL holder to perform certaction, lock cancel,
for example. A BAST may contain auxiliary information, FIDabject in conflict, for
example.

3.7 Clustered Meta Data (CMD)

Subtree locks should apply transparently to CMD case. Beliasues are:

1. FID of an object allows to determine MD server where theobis stored.

2. When client lookups for an object in a directory, it inahsdnto the request an
information about existence of any subtree locks above éinerp directory.

3. Asubtree lock is created on MD server where inode of seldtrek root is stored.

4. Instances of a subtree lock on other MD servers storingeiées of directory
protected by the subtree lock are not needed.

3.8 Lock revalidation
3.8.1 Summary

When a client acquires a lock on an object without downwao#lp (the most comon
case is accessing “.” and “..” via FIDs), the client has to ealire that the object has
not been recently cached under STL by other client . Thislprolis solved by lock

revalidation mechanism.

3.8 Lock revalidation 3 FUNCTIONAL SPECIFICATION

3.8.2 Scenario where acquired lock is to be revalidated

e A client C1 holds ordinary lock on an object O1 (it did chdif/c/d/e), O1 is
inode of /a/b/c/d/e) and is idle for some time.

e Another client C2 does something with O1 (Is -l /a/b/c/dMD server sends a
BAST to C1 and C1 cancels the lock of O1.

e C2is notinterested anymore in O1, so it drops the lock.

e Yet another client C3 acquires subtree lock on /a/b and caahd possibly
changes (if under WBC) objects under /a/b including /adtdéc(the object O1).

e C1 continues with stat(“.”). It sees that the lock on O1 isaed, so it goes to
MD server with FID of O1 and acquires the lock on O1.

As long as C3 has changed O1 and MDS is not aware of that, the §fBx8ed C1
with lock on O1 incorrectly. The lock on O1 had to be revalaht The procedure of
revalidation is explained briefly in 3.8.3 and the pseudcedsdn 5.6.

3.8.3 Revalidation procedure outline

A client gets a lock (L1) on an object (O1) and has to revaddiat The revalidation
procedure goes up getting FIDs of “.."s from correspondiirgadory entries taking
ordinary locks on MDS on inodes of parent directories. Eveugh that way up is not
necesasry uptodate, it will end up with a STL root or with thesfistem root.

o if the way up reached the filesystem root directory - checKdbok L1. If it is
not revoked, it is valid. Otherwise, the revalidation regea

e if STL is found - make sure that STL holder does not cache thewi®1. For
simplicity, the STL can be revoked completely. If STL holdieres not cache
01, there is no need for revocation.

— Lock L1 has some specificity: it is not revoked when subtreg loolder
flushes its changes to O1, but it is revoked when some cliesttesathe
object.

e Reread the object and check the lock L1. If L1 is not revokieid,valid. Other-
wise, the revalidation repeats.

4 USE CASES

4 Use cases

4.1 Acquire subtree lock

A client lookups for name in a directofy. The client does not hold subtree lock on any
current working directory component. Server may granegifubtree lock or ordinary
lock.

Client:

e determine which MDS to send lookup request to based on FID of

e send lookup request to the MDS
data included into the request:

— FID of D
— name to look for
— flag indicating that subtree lock is desired

The code path for that: I|_lookup_it->md_intent_lock ->enénqueue.
MD server:

e getlookup lock orD

e lookup for name irD, if name is not found - return ENOENT

e obtain FID of object being lookuped

e decide which lock (subtree lock or ordinary lock) the clieah be granted with
e get either subtree lock or ordinary lock on the object forahent

e put lookup lock orD

e return to the client

— attributes of the found object
— lock to the object

Client:

e create the lock instance on the client and link inode of fooipjgct to that lock

4.2 Object access under subtree lock 4 USE CASES

4.2 Object access under subtree lock

A client holds subtree lock on a directoBy and lookups for name in a directo8
Both the parent director$ and an object being lookuped are both protected by the
subtree lock.

Client:

e determine which MDS to send lookup request to based on FI® of

e send lookup request to the MDS
data included into the request:

— FIDof S
— name to look for
— flag that the lookup is performed under subtree lock

MD server:

e look for name inS, if name is not found - return ENOENT
e obtain FID of the object being lookuped
e get object attributes

e return to the client

— attributes of the found object
Client:

¢ link inode of found object to the subtree lock under which ltekup was per-
formed

4.2.1 Note

Should the subtree lock refcount be incremented on thetdbefore sending request
to MDS? If yes, that would allow to not care about race withteelock cancelation.

4.3 Concurrent lookup

This is the same as 4.7 Callback to ordinary lock.

4.4 Accessto”“.” 4 USE CASES

4.4 Accessto”..

A client goes up in current working directory using dentrgloa.

e getinode of parent directory using d_parent of dentry whégresents current
working directory

o if lock on the inode is not canceled yet - there is no problem

e if lock is canceled - lock revalidation is needed. See 3.8lfdnils.

45 CMD
4.5.1 Lookup in subtree lock

A client holds subtree lock on a directoBy and lookups in a subdirectoly of the
subtree locked directorg is not locked.

e increment refcount on the subtree lock

e determine, which MDS to send lookup request to using FIEB.ofhat MDS
does not have to be the MDS where subtree lock is set.

e include to request a notion that the lookup goes under thieesitock and send
the request

e as long asSis not locked by other clients, it is protected by subtre&lddDS
looks for the name and returns FID of object being lookuped

e attributes of object are obtained without additional lock(if it is not locked by
other clients)

e on lookup completion decrement refcount of the subtree lock

4.5.2 Lookup under outsider’s subtree lock

A client lookups in a directory which is under outsider’s ek lock. The client knows
which client is owner of the subtree lock.

e determine, which MDS to send lookup request to using FID efdinectory

e include to request a notion that the lookup goes under thedmrts subtree lock
and information about subtree lock holder

e MDS sends a BAST to the subtree lock holder. Itis possiblpénify the object
of interest

e subtree lock holder reacts on the BAST. It may take apprtéation listed in
3.6.3

e MDS grants ordinary lock to the object

10

4.6 Policy 4 USE CASES

4.6 Policy
4.6.1 Client policy

A client is about to lookup for an object in a directory. Thent has to decide which
lock to request from a MD server.

The decision is made based on locking state of inode of tleeidiry. The inode of the
parent directory can be in one of the following locking state

1. protected by subtree lock held by the client
The client requests for access to lookuped object underesiltck

2. protected by ordinary lock because MD server grantecharglilock
The client requests subtree lock for lookuped object

3. protected by ordinary lock and is marked as “under outsidebtree lock”
The client requests ordinary lock for lookuped object
On success the client has to mark the object as “under outsgidtree lock”

4.6.2 Server policy

A server receives a request to grant a subtree lock on antobjee server has to decide
whether subtree lock should be granted.
¢ there are objects to which subtree locks do not apply

e subtree lock granting decision is made based on statidtaxcesses to the object

More details are in 5.4.2.

4.7 Callback to ordinary lock

A client holds subtree lock on a directory and lookups downawa the protected di-
rectory, either parent directory or object being lookupes @rotected with ordinary
lock.

for example, subtree lock is on /a/b/c, lookup in direct@fp/c/d for “e”, “d” or “e”
are locked by ordinary lock

Client:

1. Based on FID of parent directory the client determinesctvi¥iDS to send
lookup request to.

11

4.7 Callback to ordinary lock 4 USE CASES

2. The client sends lookup request to the MDS.
Data included into the request:

e FID of parent directory: FID of /a/b/c/d
e name to look for: “e”
o flag that the lookup is performed under subtree lock

MD server:

o if parent directory is locked by other client

— acquire ordinary lock on the parent directory
— set a flag saying that lookup has to continue with ordinariitog

look for name in the parent directory, if name is not foundtune ENOENT

obtain FID of the object being lookuped

if ordinary lock is to be used or the object is locked by otHemt

— acquire ordinary lock on the object

if ordinary lock was acquired on the parent directory lock

MDS returns to the client

— if ordinary lock was acquired on the parent directory

x attributes of the parent directry
x lock to the parent directory

— attributes of the found object
— lock to the object if it was acquired
— NB: if ordinary lock was used in the lookup - force the clientcontinue

lookups with ordinary locks

Client:

e adjust client policy to use ordinary locking for lookups de!

12

4.8 Callback to subtree lock 4 USE CASES

4.8 Callback to subtree lock

A client lookups downward, there are subtree locks below.l&\the client requests
subtree locks, MDS grants ordinary locks only.

for example, the client lookups foD/ there is other client which holds subtree lock
onD

Client:
1. Based on FID of parent directory.{J the client determines which MDS to send
lookup request to.

2. The client sends lookup request to the MDS.
Data included into the request:

e FID of parent directory: FID of “.”
e name to look for: “D”
o flag indicating that subtree lock is desired

MD server:

locks the parent directory

looks for name D

gets FID of D

if D is root of subtree lock of other client

— send BAST to subtree lock holder and wait for response
— getordinary lock on D

e MDS returns to the client

— attributes of object D
— lock on object D
— if subtree lock was not canceled
x set a flag saying that lookup has to continue with ordinariitog

4.8.1 Note

When on downward lookup from the filesystem root a client en¢ers a subtree lock
held by another client, first client has to lookup through SSd_namespace with or-
dinary locking assuming that STL holder cached all objektthe first client worked
under its own STL it has to switch to ordinary locking on tnesieg outsider’'s STL.

13

5 LOGIC SPECIFICATION

5 Logic specification

5.1 LDLM change

As long as inodebits lock is used solely for locking metadatd as long as subtree
lock serves metadata locking as well, it might make sensettoduce subtree lock as
an extension to inodebit lock. New bit is added. Then in otdeset a subtree lock on
an inode locks on all bits are to be acquired.

5.2 Client cache organization

Each object cached under subtree lock on a client has a ptirttee subtree lock.

There has to be a way to iterate over all objects of any sulbkeémv root of subtree
lock.

5.3 File system operations
e mkdir, symlink, open(O_CREAT), mknod

— these all start of lookup in which subtree lock for direct@yequested if
possible according to client policy and it can be grantedating to server

policy.
e Open

— if afile has to be opened on MDS, open RPC is sent to MDS
— MDS checks whether the file is open already

« if file is not open yet, the client is granted with IBIT lock, thithat
lock the client may avoid extent locking

« if file is open by one client only, IBIT lock has to be canceledia
futher accesses use extent locking

« if file is open by more that one client, the client gets opendild has
to access the file via extent locking

e rename

On rename ordinary locks are acquired on objects which afeetmodified.
Renaming under subtree lock raises the issue of updatingadobjects cached
under subtree locks.

— Rename within one subtree lock
* Client C1 holds a subtree lock on /a/b/c

14

5.4 Policy 5 LOGIC SPECIFICATION

x client C1 does rename(“/a/b/c/d1/el”, “la/b/cld2/e/f");
Subtree lock cache is updated to match the namespace clibsige-
tree lock cache has tree structure similar to dcache pacentep of
“el”is to be set to “f".

— Rename between 2 subtree locks

*+ Client C1 holds two subtree locks on /a/b/c/ and on /d/e/f

x client C1 does rename(“/a/b/c/d”, “/elflg”);
Two subtree lock caches are modified: “d” and all object bedwer
moved under subtree lock on /e/flg

— Move out of subtree lock

* Client C1 holds a subtree lock on /a/b/c

x client C1 does rename(“/a/b/c/d”, “le/f");
New subtree lock is acquired on /e/f/d. “d” and all objectkieare
moved under that subtree lock.

5.4 Policy
5.4.1 Client policy

When a client receives MDS's reply for lookup request - thentlsets locking state in
the inode of lookuped object.

Possible states are:

e inode is protected by subtree lock held on the client
e inode is under subtree lock held on other client, and is lddkeordinary lock

e inode is locked by ordinary lock

On further lookups the locking state of parent directory sediin order to decide,
which kind of lock to request for the lookuped object. SeeM{6ér more details.

On rename ordinary locks are requested for involved objgicteere are no subtree
locks already).

5.4.2 Server policy

Subtree lock can not be set for:

e not directories

e root directory

15

5.5 Lock conflicts 5 LOGIC SPECIFICATION

e open directories

For other objects the decision about granting subtree akade based upon a statis-
tics collected for each inode on MD server.

The following statistics are collected for each inode on NIDS

For each object we have:

/* identifier of client, which accessed the object last */
unsigned long long last_access_origin;

For each subtree lock root:

/* number of accesses to objects within subtree performed by subtree
lock holder */

unsigned long long stl_holder_access_nr;

/* number of accesses to objects within subtree performed by all clients
but subtree lock holder */

unsigned long long stl_others_access_nr;

Having these statistics would allow us to figure out when mgblock is set not very
well and when it may make sense to grant subtree lock:

e when a client accesses root of subtree lock owned by andtieat,che MDS
comparestl_holder_access_nr and stl_alien_access_nroOfthe object.
If ratio of these counters reached some threshold - it migitkensense to cansel
the subtree lock

¢ when a clientrequests a subtree lock for an object MDS chieciis access_origin.
The subtree lock is granted if this client accessed the bkastor when there
were no accesses to the object.

That is supposed to assist to set subtree locks such thatahastesses to objects
within subtree locks will be from subtree lock holders.

5.5 Lock conflicts

Lock conflicts get resolved using blocking ASTs. MD servavajs knows which
client to sent a BAST to. In case of sending the BAST to sublwek holder, it is

possible to specify directly which object s in conflict. Tmaould allow a subtree lock
holder to choose appropriate reaction. List of possibaiis in 3.6.3.

16

5.6 Revalidation details 5 LOGIC SPECIFICATION

5.6 Revalidation details

A client C1 holds ordinary lock on an object O1 (chdir(/a/ti/e), O1 is inode of
/a/b/c/d/e). C1 is idle for some time and other clients dichething with O1 (Is -I
/a/b/c/d/e, for example) and C1 loses the lock on O1. Now @lidds to continue and
calls stat(*.”). Even though C1 lost the lock on O1, it stitdimeans to identify the
object O1 on MD server.

1. C1 determines MD server holding the object O1 and sendsriquest to the
MDS.

2. MDS looks for the object O1.

e Ifitis locked by client C2
— MDS sends a BAST to C2
— C2 cancels the lock
e MDS is about to grant the O1 lock to C1.
— if Ol is root of STL
x send BAST to STL holder and wait for its response
x grant C1 with a lock on O1, return value is “STL has been re-
voked”
— if Ol is root of the filesystem
x grant C1 with a lock on O1, return value is “FS root has been
reached”
— grant C1 with alock on O1, return value is “continue upwaagérse”

3. C1 has alock on object O1.

o if MDS returned “STL has been revoked”
— check the lock on object in question, if it is revoked, reffeamn the
beginning
— reread the object in question from its MDS
— revalidation is done, return SUCCESS
o if MDS returned “FS root has been reached”
— check the lock on object in question, if it is revoked, reffean the
beginning
— revalidation is done, return SUCCESS
o if MDS returned “continue upward traverse”
— find “..” entry of object O1
— O1 =parentof O1
— gotostep 1

e Note: The above revalidation algorithm assumes CMD casé¢héocase of sin-
gle MDS the revalidation can be performed on the MDS withbetéxchange
by RPCs with a client

17

7 ALTERNATIVES

6 State management

6.1 State invariants

6.2 Scalability & performance

Subtree locks are supposed to improve performance ancbgitglan usage pattern
where each client work in its isolated namespace and to nkémparformance worse
in all other usage patterns.

6.3 Recovery changes

None.

6.4 Locking changes

Substantial. See above.

6.5 Disk format changes

None.

6.6 Wire format changes
6.7 Protocol changes
6.8 API changes

6.9 RPCs order changes
7 Alternatives

7.1 Revalidation can be avoided
The revalidation would not be required if for all objects thiah clients may have
direct access to ordinary locking schema were always used.

So, if on lock cancelling for whatever reason (BAST or volargtdrop) we can deter-
mine whether the protected object can be accessed direstyhave to request ordi-
nary locking for that object. An object can be directly asmekfrom several clients (a

18

7.2 Lock revalidation and getcwd 8 FOCUS FOR INSPECTIONS

directory can be CWD for several clients), so MDS has to na@ind special counter
on the lock.

Using NULL lock type of DLM locks seems suitable for this poge.
Directly accessible objects are objects composing cuwerking directories.

Unfortunately, it looks too complex to maintain set of ditg@ccessible objects in

case of cross directory renames. For example, if one cli@s QWD /a/b/c/d/e/f, and

another client does rename(“/a/b/c”, /1/2/3/4/5/6") rtledements on path /1/2/3/4/5/6
become directly accessible objects and elements of /aphgting directly accessible
objects.

7.2 Lock revalidation and getcwd

Peter Braam noticed that the problem linux getcwd syscalviigh network filesys-
tems (lustre, NFS) is similar to lock revalidation problenade proposed to introduce
additional dentry operations which might be used by botbvgéiand lock revalidation.

8 Focus for inspections

19

