Client 10 stack layering cleanup

Nikita Danilov <nikita@clusterfs.com>

Started: 2007.05.21

1 Introduction

This document describes changes to the lustre client ik stade, that are supposed
to reduce number of bugs in the data-paths. Basic idea behewt changes is to
introduce more systematic layering on the client. This Hlé3atibes only core func-

tionality of the new layering. Companion documents will ciéise specific parts of the

design with more details.

Understanding of current client layering is assumed.

2 Requirements

Main goals of new layering are:

e clear layering, with well-defined functionality at eachéay

e as little of state sharing between layers as practicallgiptes €.g., avoid current
situation when Linux VMstruct page is visible at both llite and osc layers).

o simplified layer interface;

e real stackingj.e,, one where it is possible to insert or remove layers where it
makes sense. Specifically, local mount and lov-less corstgur have to be
supported;

e support for SNS (within raidframe framework [0]);
e support for read-only peer-to-peer client caching;
e support for lock-less IO and ost intents;

e reuse of server layering from cmd3 (see/DLD/md-api-dld.1lyx).

Other desirable properties include: portability, not ajiag meta-data code this time,
patch-less client. Implementation of full-fledged SNSkibess 10, and peer-to-peer
caching is not a part of current effort: new layering is desigjto accommodate for
these features, but not to actually implement them.

3 FUNCTIONAL SPECIFICATION

3 Functional specification

3.1 Definitions

First important principle of proposed design is that ovesalicture of client layers
and their respective functionality remains unchangeds layers api that is modified
(see Alternatives (section 7 on page 9) for more ambitiodesign plans). For sake of
clarity, client layers will be named by their current names:

lite top-level layer, responsible for interaction with VFS, eerting incoming re-
quests (read, writestc.) into api implemented by lower layers. It also imple-
ments POSIX operation semantiexy, short reads, flock), and read-ahead.

lov layer that implements raid/SNS striping. This layer impésts various raid pat-
terns on top of underlying layers. It is supposed that replémentation will be
based on raidframe library [0].

osc layer that interacts with VM, Inet and dim, and implementtgadzaching,

Main structuring concept behind new layering is introdoetof new ‘layered’ data-
types similar to ones implemented for cmd3 mds stack. Lalyebgect has private data
for each layer in the stack. One general advantage is thatbyd explicit list of
layers (referred to assfices) certain operations can be reduced to iteration over kyer
(as opposed to recursion), thus decreasing stack space. Usatpwing layered types
are considered:

cl_object Client object. This represents afile and an object (thatripe. c1_object
is based onu_object, which automatically gives us fids, hashing, ketc. Ob-
ject caches pages (see below), and keeps track of dim lockgecOcan be
composed of other objects.

cl_page Client page. Represents fixed-size chunk of file data, astsativith a buffer
in memory. Page size is the same for all pages on the clieng, Nt the same
page can be part of multiplel _object’s — e.g., page might belong to some
file, and to some stripe of this file. This property is cruc@ ihterlinking files
and stripes. Withirel_object, page is uniquely identified by its logical offset
from the beginning of file (index).

cl_lock Clientlock. Represents aregion (measured in page indi@sparticular file,
covered by cluster locke1_lock is ultimately backed up by a dim lock (except
for the case of completely local lustre setup).

cl_io Client IO batch. A handle used to accumulate pages for 1@, I€da wait for its
completion and inspect IO outcome. It is not entirely clgah# point that 1O
handle needs layer private data, and simpler implementedgimains an option.

3.2 Striping and stacking 3 FUNCTIONAL SPECIFICATION

3.2 Striping and stacking

Existence of lov and striping is a major difference betwekent and server stacks.
While detailed description of implementation of stripirggieyond HLD scope (refer
to DLD for details), few notes are in order:

¢ in contrast with the current code that frequently maps fifsadfto stripe num-
ber and offset within stripe and other way around, new codled@isuch map-
ping only once, when constructing new objects (pages arig)oét that point,
object and its sub-objects are linked through pointersdahathased afterward.
Perceived advantage of this is that it becomes possible#dize a state required
for mapping.

o file (c1_object)fans outinto stripes at lov level. That is, lov-private fham of
cl_object contains an array af1_object’s, each representing a stripe within
file. Each of these is a first-clagd _object with its own pages and locks,
except that set of layers is different: instead of llite amg btripe object contains
lov_stub and osc layers, where lov_stub is a special layed ts link stripe
object back to its host file. Note that top-leval_object for file ends at lov
layer: it doesn’t have osc part.

e similarly c1_lock fans out into stripe sub-locks.

e cl_page, on the other hand, does not split in any way, because sirgle in a
file corresponds to the single page in the stripe.

3.3 Life-time rules

In a typical scenario, new objects are created by the tog-layer in the stack (or,
in the “sub-stack”, corresponding to the single stripe inifiile, see DLD for details).
Bottom layer triggers changes in the object statg (change of lock state on reception
of AST from DLM, and change of page state on 10 completiongl, altimately decides
when object is to be destroyed. For file objects, destrudsianitiated by the top layer.

When new object is created, layers in order are asked fonfjssion”. This is the
place where osc implements grants and cache limits, dimlfackize limits,etc., and
where lov creates sub-objects for files (stripes) and loskipé locks). When existing
object is destroyed, layers are notified, and release per-te&sources. When object
state changes, again, call-backs are called on every laytrat point lov splits parent
lock (for cancellation AST event), reads parity pages (fagg@write-back event), llite
updates KMS (lock cancellation evendjc. See use cases for details.

3.4 Threading

Animportant and useful feature of server-side layeringiguitousstruct lu_context,
which is used as a cheap memory allocator (supplying a prediernel stack), and an

5 USE CASES

additional mechanism for argument passing. Implememaifdlu_context is tied
to the server threading model, where limited threads frorod pf fixed size execute
incoming requests. Number of threads on a client is notdichiand more importantly,
invocations of lustre code are short lived. To efficientlg ug_context under these
circumstances, creation and destruction of context hae extremely fast and cheap,
andlu_context implementation will be optimized accordingly (see DLD).

4 Logic specification

General diagram of relations between data-types:

Following table shows what state is maintained in privatelgger parts of layered

objects:
| | cl_object cl_page | cl_lock |
| generic| radix tree ofc1_page's index within file | start offset, end offset, lock mode |
1llite | struct inode read-ahead state tree of locks, keyed by end offset
lov array of stripecl_object’s linkage into stripe array of stripecl_lock’s
row
osc struct address_space, struct page struct 1dlm_lock
io page queues

Few comments:

e ordered tree of locks is maintained by llite to simplify KM&ridling: when llite
is notified about destruction of last lock in the tree, it stepck to the previous
lock and reduces KMS. This allows to completely encapstiatelling of KMS
inside of llite.

e struct page refers back to thel_page through->private pointer.

e there is no explicit linkage between locks and pages. Pagesed by lock can
be efficiently found by doing gang lookups é1_object page tree. Compare
this with bug 10718 (dow lock cancellation due to excessive page walking”),
where similar solution was rejected because llite does@'tsdripe boundaries.

5 Use cases

Authoritative list of use cases is provided at [1]. In thisBibnly few typical use cases

are examined, the rest is covered in companion HLDs and DLDs.

5.1 read and read-ahead 5 USE CASES

5.1 read and read-ahead

o llite starts processingead (file, buf, count) request.

e DLM lock on file region being read is obtained (together witlual precautions
about reading into mmapped buffer). New_lock object is created, and ini-
tialization call-backs are executed int bottom-to-topesrd

— lov: depending on striping parameters, calls lock creatiorction again
(recursively) in a loop, to create a sub-lock for each stripéis again,
results in call-back execution:

x 0sc: tries to match a lock locally, if that fails, enqueuesklavith
Idim. Once lock is obtained, it is linked back td _lock through
->1_ast_data pointer.

x lov_stub: does nothing. This layer exists only to link peipg locks
into host lock.

Once stripe sub-lock is created, lov puts a pointer to it Bma@y in its
private part ofc1_lock, and links the sub-lock back into the host lock
(through the pointer in lov_stub-private part of the subklo

— llite: inserts lock into llite-private per-file tree (or t)s indexed by end
offset of the lock. This index is used to maintain KMS.

e short read detection is done completely within llite layKiMS is maintained
within llite-private portion ofc1_object by tracking cancellation of locks (see
tree of locks, keyed by end offset mentioned in the table apthat is used as an
optimization for KMS calculation).

e llite calls intogeneric_file_read().
e VM creates nevétruct page, and calls->readpage () method {1_readpage()).

e 11_readpage () obtainscl_object frominode and callsl_page_get (), that
either returns existing page (found in radix tree), or @satnew one.

e To create new page, methods on each level (in the bottomesgy)aare called:

— lov: lov page creation method calts _page_get () recursively, to create
new page in the1_object corresponding to the stripe object this page
belongs to. This call, again, results in invocation of pagaton methods
in bottom-up order:

* 0SC: 0SC page creation method linksruct page with c1_page, and
addscl_page into osc io queues. It might also implement cache size
restrictions, by triggering page write-back and freeingg avaiting
until cache size drops below desirable limit.

x lov_stub: does nothing.

5.2 write 5 USE CASES

Once nestedl_page_get () call returned, lov links newly created page
with top-levelcl_page. Also, page is added into stripe roeic., as nec-
essary. In case of mirroringl_page_get () is called multiple times, cre-
ating severatl_pages, all referring to the sametruct page. Itis the
responsibility of osc layer to detect this situation anddordinate further
operations with shareskruct page.

— llite: does nothing.

e new page is added intl _io handle (attached to the file descriptor in the man-
ner similar tostruct 11_ra_read), and read-ahead is started, then next page
is processedetc. When a page is added intd _io, call-backs are executed
top-to-bottom. At that point lov performs read balancing.

e Once enough pages are accumulatetllinio, read is initiated:

— osc forms rpc, and ships it to Inet.
— io completion handler for each page, executes callbackstinim-up order:
x 0sC: modifiestruct page flags
x lov_stub: executes callbacks in the “parent” page:
- lov: modifies stripe state.
- llite: does nothing.

e once all pages are processed, control returns to llite, émdatk is released.
This is (as it looks at this stage) generic operation, réggino per-layer pro-
cessing.

As page and lock creation was described above in detaihduse cases will just
mention in briefly. Moreover, examples below will not repeadious description of
propagation of method invocation from host object (pagek,dile) to its dependent
stripe sub-object(s) and back, and will instead simply mssthat methods are executed
through all layers.

5.2 write

Write path is quite similar to the read one with obvious chemng

e generic_file_write() calls->prepare_write() andthen>commit_write()
(note: latest 2.6 kernels have different methods).
e ->prepare_urite() creates page and reads portion of it if necessary.

e ->commit_write() executes call-backs to notify layers that_page is now
dirty. Call-backs are executed top-to-bottom:

— llite: nothing.

5.3 lock LRU overflow 5 USE CASES

— lov: sub-pages in all mirrors are dirtied. It also might ge@synchronous
read of parity page (immediately, or by a timer).

— osc: waits for grant space.

5.3 lock LRU overflow

Once creation of new lock or changes in desirable LRU pararagsee bug 2262
"LRU size should be controlled by the server”) cause LRU list overflow, osc takes least
recently used lock and starts its cancellation:

e note, that lock being cancelled is a stripe sub-lock, atddb some stripe sub-
object. Lock contains its start and end offsets within strip

e 0sc iterates over all1_pages in the region of stripe1_object radix tree cov-
ered by lock (by using gang lookup). For each found dirty pagge-out call-
backs are executed bottom-to-top:

— osc: modifiesstruct page flags to notify VM that page is about to be
written up.

— lov: reads in parity page if necessary. Note, that ascenthirggugh page
layers, we are now at thel _page attached to the hostl_object, rep-
resenting file, and call-back is called on e page, associated with file
(rather than with stripe).

— llite: nothing

e io completion handler executes call-backs (see read case gbubsection 5.1
on page 5)).

e once all pages were flushed to the server, lock itself is dkaceCall-backs are
invoked bottom-to-top:

— osc: cancels dim lock.

— lov_stub, lov: jumps from stripe sub-lock to file lock. If ‘mbst” (e.g.,
first or last) sub-lock of host lock is cancelled, start or effdet of host
lock is adjusted. Otherwise (when sub-lock in the middle adtHock is
cancelled), a hole is punched inside of host lock, and therla split into
two locks:

* new lock is created, and
x start or end offset of existing host lock is adjusted.

This mechanism allows upper layers (llite) to maintain ed&nowledge
of existing locks, which, in turn, allows handling of KMS @iprobably
other lock related data) to be encapsulated.

This use case also covers reception of cancellation AST &enver, and invocation of
->writepage () by VM.

5.4 Write RPC formation 6 STATE MANAGEMENT

5.4 Write RPC formation
When osc decides it has enough dirty pages to form an effiREq, it collects pages

to be sent and calls the same call-backs as in casewfitepage () (covered in
section 5.3 on the preceding page).

6 State management

Detailed changes to the state are described in DLD. It isnasduthat objects, locks,
and pages are reference counted, and their caching is tedtiiorough VM memory
pressure call-backs.

6.1 State invariants
Consistency invariants are described in DLD. Basic refegetonsistency is assumed:
e.g., if page is in a radix tree of a certain object, it corggininter to that object, and

stripe sub-lock of a file lock, is owned by stripe sub-objdatarresponding file, etc.
Invariants are maintained under per-object locks.

6.2 Scalability & performance
Lists of c1_page's andcl_lock’s are protected by a spin-lock within corresponding

cl_object. Per-layer state is protected by per-level locks. If sdlitsiproves to be
inadequate for multiprocessor clients, critical datactrces will be switched to RCU.

6.3 Recovery changes

N/A

6.4 Locking changes

Detailed description of locking rules is in the scope of DLD.

6.5 Disk format changes

N/A

6.6 Wire format changes

N/A

6.7 Protocol changes 7 ALTERNATIVES

6.7 Protocol changes

N/A

6.8 API changes

This document is all about API changes.

6.9 RPCs order changes

N/A

7 Alternatives

7.1 lov as afile system (Alex’s proposal)

In this model, lov owns pages, performs caching and stridmgprovides file-system-

like interface with read/write methods. osc acts as a blaskag: it accepts canned
batches of pages (similar #azruct bio in Linux block device layer), and implements
elevator/io-scheduler functionality. Llite directly map'FS calls onto lov interface.

Advantage of this approach is that pages (and DLM locks) areed by a single layer

(lov), which allows to get rid of layered data-types, ddsed above. It also better
matches structure of a standard Linux file system. Possibddantage is that lov
layer effectively assumes functionality of current lliteda(larger part of) osc, and,
also, requires more fundamental and pervasive changes ti¢imt code base.

7.2 osc as afile system (Nikita’s original proposal)

In this model, osc completely owns pages, and provides ydtem-like interface: it
accepts read/write/truncate callgeneric_file_x() functions are called within osc.
Perceived advantage of that approach is that interactitim VM and DLM can be
completely encapsulated within osc and, in particularm{tick cancellation requires
no llite help.

Unfortunately, this design was found to contain a major fleow:is hard to implement
on top of file-system-like layer, because it requires dédicaanipulation of page state
and depends on page sharing (for efficient mirroring). Rgtscabove lov is not
going to help either, as such osc would not see stripe boigsdand, hence, would
inevitably fail to form efficient RPCs.

9 FOCUS FOR INSPECTIONS

8 References

[0] RAIDframe: http://www.pdl.cmu.edu/RAIDframe/

[1]arch.wiki page with Quality Attribute Scenarios foratitio cleanuphttp://arch.lustre.org/index.php?tit:

9 Focus for inspections

Check that all use cases are covered.

Check that goals stated in Requirements section are fblfilaith selected design.

10

