
Client IO stack layering cleanup

Nikita Danilov <nikita@clusterfs.com>

Started: 2007.05.21

1 Introduction

This document describes changes to the lustre client io stack code, that are supposed
to reduce number of bugs in the data-paths. Basic idea behindthese changes is to
introduce more systematic layering on the client. This HLD describes only core func-
tionality of the new layering. Companion documents will describe specific parts of the
design with more details.

Understanding of current client layering is assumed.

2 Requirements

Main goals of new layering are:

• clear layering, with well-defined functionality at each layer;

• as little of state sharing between layers as practically possible (e.g., avoid current
situation when Linux VMstruct page is visible at both llite and osc layers).

• simplified layer interface;

• real stacking,i.e., one where it is possible to insert or remove layers where it
makes sense. Specifically, local mount and lov-less configuration have to be
supported;

• support for SNS (within raidframe framework [0]);

• support for read-only peer-to-peer client caching;

• support for lock-less IO and ost intents;

• reuse of server layering from cmd3 (see../DLD/md-api-dld.lyx).

Other desirable properties include: portability, not changing meta-data code this time,
patch-less client. Implementation of full-fledged SNS, lock-less IO, and peer-to-peer
caching is not a part of current effort: new layering is designed to accommodate for
these features, but not to actually implement them.

1



3 FUNCTIONAL SPECIFICATION

3 Functional specification

3.1 Definitions

First important principle of proposed design is that overall structure of client layers
and their respective functionality remains unchanged: it is layers api that is modified
(see Alternatives (section 7 on page 9) for more ambitious redesign plans). For sake of
clarity, client layers will be named by their current names:

llite top-level layer, responsible for interaction with VFS, converting incoming re-
quests (read, write,etc.) into api implemented by lower layers. It also imple-
ments POSIX operation semantics (e.g., short reads, flock), and read-ahead.

lov layer that implements raid/SNS striping. This layer implements various raid pat-
terns on top of underlying layers. It is supposed that real implementation will be
based on raidframe library [0].

osc layer that interacts with VM, lnet and dlm, and implements data caching,

Main structuring concept behind new layering is introduction of new “layered” data-
types similar to ones implemented for cmd3 mds stack. Layered object has private data
for each layer in the stack. One general advantage is that by having explicit list of
layers (referred to as “slices”) certain operations can be reduced to iteration over layers
(as opposed to recursion), thus decreasing stack space usage. Following layered types
are considered:

cl_object Client object. This represents a file and an object (that is, stripe).cl_object
is based onlu_object, which automatically gives us fids, hashing, lru,etc. Ob-
ject caches pages (see below), and keeps track of dlm locks. Object can be
composed of other objects.

cl_page Client page. Represents fixed-size chunk of file data, associated with a buffer
in memory. Page size is the same for all pages on the client. Note, that the same
page can be part of multiplecl_object’s — e.g., page might belong to some
file, and to some stripe of this file. This property is crucial for interlinking files
and stripes. Withincl_object, page is uniquely identified by its logical offset
from the beginning of file (index).

cl_lock Client lock. Represents a region (measured in page indices)of a particular file,
covered by cluster lock.cl_lock is ultimately backed up by a dlm lock (except
for the case of completely local lustre setup).

cl_io Client IO batch. A handle used to accumulate pages for IO, start IO, wait for its
completion and inspect IO outcome. It is not entirely clear at this point that IO
handle needs layer private data, and simpler implementation remains an option.

2



3.2 Striping and stacking 3 FUNCTIONAL SPECIFICATION

3.2 Striping and stacking

Existence of lov and striping is a major difference between client and server stacks.
While detailed description of implementation of striping is beyond HLD scope (refer
to DLD for details), few notes are in order:

• in contrast with the current code that frequently maps file offset to stripe num-
ber and offset within stripe and other way around, new code will do such map-
ping only once, when constructing new objects (pages and locks). At that point,
object and its sub-objects are linked through pointers thatare chased afterward.
Perceived advantage of this is that it becomes possible to localize a state required
for mapping.

• file (cl_object) fans out into stripes at lov level. That is, lov-private portion ofcl_object contains an array ofcl_object’s, each representing a stripe within
file. Each of these is a first-classcl_object with its own pages and locks,
except that set of layers is different: instead of llite and lov, stripe object contains
lov_stub and osc layers, where lov_stub is a special layer used to link stripe
object back to its host file. Note that top-levelcl_object for file ends at lov
layer: it doesn’t have osc part.

• similarly cl_lock fans out into stripe sub-locks.

• cl_page, on the other hand, does not split in any way, because single page in a
file corresponds to the single page in the stripe.

3.3 Life-time rules

In a typical scenario, new objects are created by the top-level layer in the stack (or,
in the “sub-stack”, corresponding to the single stripe within file, see DLD for details).
Bottom layer triggers changes in the object state (e.g., change of lock state on reception
of AST from DLM, and change of page state on IO completion), and ultimately decides
when object is to be destroyed. For file objects, destructionis initiated by the top layer.

When new object is created, layers in order are asked for “permission”. This is the
place where osc implements grants and cache limits, dlm locklru size limits,etc., and
where lov creates sub-objects for files (stripes) and locks (stripe locks). When existing
object is destroyed, layers are notified, and release per-layer resources. When object
state changes, again, call-backs are called on every layer.At that point lov splits parent
lock (for cancellation AST event), reads parity pages (for page write-back event), llite
updates KMS (lock cancellation event),etc. See use cases for details.

3.4 Threading

An important and useful feature of server-side layering is ubiquitousstruct lu_context,
which is used as a cheap memory allocator (supplying a precious kernel stack), and an

3



5 USE CASES

additional mechanism for argument passing. Implementation of lu_context is tied
to the server threading model, where limited threads from a pool of fixed size execute
incoming requests. Number of threads on a client is not limited, and more importantly,
invocations of lustre code are short lived. To efficiently use lu_context under these
circumstances, creation and destruction of context has to be extremely fast and cheap,
andlu_context implementation will be optimized accordingly (see DLD).

4 Logic specification

General diagram of relations between data-types:

Following table shows what state is maintained in private per-layer parts of layered
objects: cl_object cl_page cl_lock

generic radix tree ofcl_page’s index within file start offset, end offset, lock modellite struct inode read-ahead state tree of locks, keyed by end offsetlov array of stripecl_object’s linkage into stripe
row

array of stripecl_lock’sosc struct address_space,
io page queues

struct page struct ldlm_lock
Few comments:

• ordered tree of locks is maintained by llite to simplify KMS handling: when llite
is notified about destruction of last lock in the tree, it steps back to the previous
lock and reduces KMS. This allows to completely encapsulatehandling of KMS
inside of llite.

• struct page refers back to thecl_page through->private pointer.

• there is no explicit linkage between locks and pages. Pages covered by lock can
be efficiently found by doing gang lookups incl_object page tree. Compare
this with bug 10718 (“slow lock cancellation due to excessive page walking”),
where similar solution was rejected because llite doesn’t see stripe boundaries.

5 Use cases

Authoritative list of use cases is provided at [1]. In this HLD only few typical use cases
are examined, the rest is covered in companion HLDs and DLDs.

4



5.1 read and read-ahead 5 USE CASES

5.1 read and read-ahead

• llite starts processingread(file, buf, count) request.

• DLM lock on file region being read is obtained (together with usual precautions
about reading into mmapped buffer). Newcl_lock object is created, and ini-
tialization call-backs are executed int bottom-to-top order:

– lov: depending on striping parameters, calls lock creationfunction again
(recursively) in a loop, to create a sub-lock for each stripe. This again,
results in call-back execution:

∗ osc: tries to match a lock locally, if that fails, enqueues lock with
ldlm. Once lock is obtained, it is linked back tocl_lock through->l_ast_data pointer.

∗ lov_stub: does nothing. This layer exists only to link per-stripe locks
into host lock.

Once stripe sub-lock is created, lov puts a pointer to it intoarray in its
private part ofcl_lock, and links the sub-lock back into the host lock
(through the pointer in lov_stub-private part of the sub-lock).

– llite: inserts lock into llite-private per-file tree (or list), indexed by end
offset of the lock. This index is used to maintain KMS.

• short read detection is done completely within llite layer:KMS is maintained
within llite-private portion ofcl_object by tracking cancellation of locks (see
tree of locks, keyed by end offset mentioned in the table above, that is used as an
optimization for KMS calculation).

• llite calls intogeneric_file_read().

• VM creates newstruct page, and calls->readpage()method (ll_readpage()).

• ll_readpage()obtainscl_object from inode and callscl_page_get(), that
either returns existing page (found in radix tree), or creates a new one.

• To create new page, methods on each level (in the bottom-up order) are called:

– lov: lov page creation method callscl_page_get() recursively, to create
new page in thecl_object corresponding to the stripe object this page
belongs to. This call, again, results in invocation of page creation methods
in bottom-up order:

∗ osc: osc page creation method linksstruct page with cl_page, and
addscl_page into osc io queues. It might also implement cache size
restrictions, by triggering page write-back and freeing, and waiting
until cache size drops below desirable limit.

∗ lov_stub: does nothing.

5



5.2 write 5 USE CASES

Once nestedcl_page_get() call returned, lov links newly created page
with top-levelcl_page. Also, page is added into stripe row,etc., as nec-
essary. In case of mirroring,cl_page_get() is called multiple times, cre-
ating severalcl_pages, all referring to the samestruct page. It is the
responsibility of osc layer to detect this situation and to coordinate further
operations with sharedstruct page.

– llite: does nothing.

• new page is added intocl_io handle (attached to the file descriptor in the man-
ner similar tostruct ll_ra_read), and read-ahead is started, then next page
is processed,etc. When a page is added intocl_io, call-backs are executed
top-to-bottom. At that point lov performs read balancing.

• Once enough pages are accumulated incl_io, read is initiated:

– osc forms rpc, and ships it to lnet.

– io completion handler for each page, executes callbacks in bottom-up order:

∗ osc: modifiesstruct page flags
∗ lov_stub: executes callbacks in the “parent” page:

· lov: modifies stripe state.
· llite: does nothing.

• once all pages are processed, control returns to llite, and dlm lock is released.
This is (as it looks at this stage) generic operation, requiring no per-layer pro-
cessing.

As page and lock creation was described above in detail, further use cases will just
mention in briefly. Moreover, examples below will not repeattedious description of
propagation of method invocation from host object (page, lock, file) to its dependent
stripe sub-object(s) and back, and will instead simply assume that methods are executed
through all layers.

5.2 write

Write path is quite similar to the read one with obvious changes:

• generic_file_write()calls->prepare_write()and then->commit_write()
(note: latest 2.6 kernels have different methods).

• ->prepare_write() creates page and reads portion of it if necessary.

• ->commit_write() executes call-backs to notify layers thatcl_page is now
dirty. Call-backs are executed top-to-bottom:

– llite: nothing.

6



5.3 lock LRU overflow 5 USE CASES

– lov: sub-pages in all mirrors are dirtied. It also might queue asynchronous
read of parity page (immediately, or by a timer).

– osc: waits for grant space.

5.3 lock LRU overflow

Once creation of new lock or changes in desirable LRU parameters (see bug 2262
”LRU size should be controlled by the server”) cause LRU list overflow, osc takes least
recently used lock and starts its cancellation:

• note, that lock being cancelled is a stripe sub-lock, attached to some stripe sub-
object. Lock contains its start and end offsets within stripe.

• osc iterates over allcl_pages in the region of stripecl_object radix tree cov-
ered by lock (by using gang lookup). For each found dirty page, page-out call-
backs are executed bottom-to-top:

– osc: modifiesstruct page flags to notify VM that page is about to be
written up.

– lov: reads in parity page if necessary. Note, that ascendingthrough page
layers, we are now at thecl_page attached to the hostcl_object, rep-
resenting file, and call-back is called on thecl_page, associated with file
(rather than with stripe).

– llite: nothing

• io completion handler executes call-backs (see read case above (subsection 5.1
on page 5)).

• once all pages were flushed to the server, lock itself is cancelled. Call-backs are
invoked bottom-to-top:

– osc: cancels dlm lock.

– lov_stub, lov: jumps from stripe sub-lock to file lock. If “utmost” (e.g.,
first or last) sub-lock of host lock is cancelled, start or endoffset of host
lock is adjusted. Otherwise (when sub-lock in the middle of host lock is
cancelled), a hole is punched inside of host lock, and the latter is split into
two locks:

∗ new lock is created, and
∗ start or end offset of existing host lock is adjusted.

This mechanism allows upper layers (llite) to maintain precise knowledge
of existing locks, which, in turn, allows handling of KMS (and probably
other lock related data) to be encapsulated.

This use case also covers reception of cancellation AST fromserver, and invocation of->writepage() by VM.

7



5.4 Write RPC formation 6 STATE MANAGEMENT

5.4 Write RPC formation

When osc decides it has enough dirty pages to form an efficientRPC, it collects pages
to be sent and calls the same call-backs as in case of->writepage() (covered in
section 5.3 on the preceding page).

6 State management

Detailed changes to the state are described in DLD. It is assumed that objects, locks,
and pages are reference counted, and their caching is controlled through VM memory
pressure call-backs.

6.1 State invariants

Consistency invariants are described in DLD. Basic reference-consistency is assumed:
e.g., if page is in a radix tree of a certain object, it contains pointer to that object, and
stripe sub-lock of a file lock, is owned by stripe sub-object of corresponding file, etc.
Invariants are maintained under per-object locks.

6.2 Scalability & performance

Lists of cl_page’s andcl_lock’s are protected by a spin-lock within correspondingcl_object. Per-layer state is protected by per-level locks. If scalability proves to be
inadequate for multiprocessor clients, critical data structures will be switched to RCU.

6.3 Recovery changes

N/A

6.4 Locking changes

Detailed description of locking rules is in the scope of DLD.

6.5 Disk format changes

N/A

6.6 Wire format changes

N/A

8



6.7 Protocol changes 7 ALTERNATIVES

6.7 Protocol changes

N/A

6.8 API changes

This document is all about API changes.

6.9 RPCs order changes

N/A

7 Alternatives

7.1 lov as a file system (Alex’s proposal)

In this model, lov owns pages, performs caching and striping. lov provides file-system-
like interface with read/write methods. osc acts as a block device: it accepts canned
batches of pages (similar tostruct bio in Linux block device layer), and implements
elevator/io-scheduler functionality. Llite directly maps VFS calls onto lov interface.
Advantage of this approach is that pages (and DLM locks) are owned by a single layer
(lov), which allows to get rid of layered data-types, described above. It also better
matches structure of a standard Linux file system. Possible disadvantage is that lov
layer effectively assumes functionality of current llite and (larger part of) osc, and,
also, requires more fundamental and pervasive changes to the client code base.

7.2 osc as a file system (Nikita’s original proposal)

In this model, osc completely owns pages, and provides file-system-like interface: it
accepts read/write/truncate calls.generic_file_*() functions are called within osc.
Perceived advantage of that approach is that interaction with VM and DLM can be
completely encapsulated within osc and, in particular extent lock cancellation requires
no llite help.

Unfortunately, this design was found to contain a major flaw:lov is hard to implement
on top of file-system-like layer, because it requires delicate manipulation of page state
and depends on page sharing (for efficient mirroring). Putting oscabove lov is not
going to help either, as such osc would not see stripe boundaries and, hence, would
inevitably fail to form efficient RPCs.

9



9 FOCUS FOR INSPECTIONS

8 References

[0] RAIDframe: http://www.pdl.cmu.edu/RAIDframe/
[1] arch.wiki page with Quality Attribute Scenarios for client io cleanup:http://arch.lustre.org/index.php?title=QAS_Client_Cleanup
9 Focus for inspections

Check that all use cases are covered.

Check that goals stated in Requirements section are fulfillable with selected design.

10


