LLOG CTXT REFERENCE COUNT
HLD(BUG 10800)

Author WangDi
2007/3/14

1 Introduction

In current implementation, when llog is cleanup, the ctxt is just freed instead
of checking whether other users using it. So there might be the race between
llog cleanup and other llog user threads. Llog ctxt refcount will be introduced
to protect ctxt from being freed improperly during llog cleanup .

2 Requirement

e Handle the race (llog cleanup vs other llog user thread) properly after llog
ctxt refcount is introduced.

e Any user must increase the refcount of the llog ctxt before using the llog,
and decrease the refcount after using it.

e Any log API interface should not be modified.

3 Definition

3.1 Synchronous LLog user

Synchronize llog user means those llog users who will use llog ctxt in req handler
or setup,/cleanup process(process config log) synchronously.

3.2 Asynchronous Llog user

Asynchronous llog user means those llog users who will use llog ctxt in a separate
thread, other than request handler or setup/cleanup process.

4 Functional specification

4.1 Data structure

1. Llog ctxt refcount will be added to indicate how many users are using this
llog.

\begin{lstlisting}
struct llog_ctxt {

atomic_t loc_ refcount;
};
\end{lstlisting}

1. The llog cleanup waitq will be added to the obd _device in case the cleanup
process waits for other llog users decrease the refcount of the ctxt and
finally releasing(freeing) it.

\begin{lstlisting}
struct obd _device {

wait _queue head t obd llog waitq;

b
\end{lstlisting}

4.2 Function specification

1. llog_get context(struct obd device *obd, int index)

Obd is the obd device the llog ctxt locating, index is the ctxt index.
Whenever beginning to operate the llog indicated by the obd and index,
the user calls this API to increase the refcount of the llog ctxt.

2. llog_put_context(struct llog ctxt *ctxt)

When finishing using the llog, the user calls llog_ctxt _put to decrease the
refcount of the ctxt and release(free) it if the ref count of the llog reaches
to 0.

5 Use cases

After llog_get/put_context is introduced, the llog user should call llog get context
to increase the ctxt refcount before accessing it, llog _put_context will be called
to decrease the ctxt refcount after using it. For example, for mds log op_unlink
\begin{lstlisting}
int mds_log_op_unlink()

struct llog_ ctxt *ctxt;

ctxt = llog_get context(obd, LLOG_MDS_ OST_ ORIG_CTXT);
rc = llog add(ctxt, &lur->lur _hdr, Ism, logcookies,

cookies _size / sizeof(struct llog cookie));

llog put_context(ctxt);

\end{lstlisting}

Currently, there are following llog users. Note: In these llog users,
only those asynchronous llog users will be indicated, which might be
race with llog cleanup which will be discussed in State Management
section.

5.1

5.2

LLOG SERVE

llog origin _handle create: it will call llog get/put _context to get the
llog ctxt and handle llog object create req.

llog_origin _handle destroy: it will call llog _get/put_context to get the
llog ctxt and handle llog object destroy req.

llog_origin_handle next block: it will call llog_get/put_ context to get
the llog ctxt and handle llog read next block req.

llog origin _handle prev_block: it will call llog get/put_ context to get
the llog ctxt and handle llog read previous block req.

llog origin _handle read header: it will call llog get/put context to
get the llog ctxt and handle llog read header req.

llog_origin_handle cancel: it will call llog get/put_context to get the
llog ctxt and handle llog cancel req.

llog _catinfo_ deletions: it will call llog_get/put_ context to handle show-
ing unlink log req.

MDS

mds_precleanup: it will call llog get context to get the correspondent
ctxt and cleanup it. Note: this get context will be balanced by
llog put context inside llog cleanup, so llog cleanup will have
two put, one is for balance this context get, the other one is for
put the refcount owned by this obd (the refcount to be initialized
to be 1 to indicate the ctxt being used by this obd), which is
similar for all the cleanup process.

mds_postrecov, mds_ notify: it will call call llog_ get/put_ context to get
the ctxt and make sure the ctxt is not NULL.

5.3

5.4

__mds_lov_synchronize: it will call llog get context to get the llog
ctxt to connect the OST for unlink log recovering. Note: it is an asyn-
chronous llog user.

mds_io_control: it will call llog_get/put_context to get the ctxt to han-
dle those llog ioctl in mds.

mds_llog origin add, mds_llog origin connect, mds llog repl cancel:
they will call call llog get/put context to get the llog ctxt to handle these
mds llog APIL.

mds _log op unlink, mds log op setattr: they will callllog get/put context
to get the llog ctxt to add the unlink/setattr log.

mds_llog_finish: it will call llog_get/put_context to get the llog ctxt
and cleanup them, similar as mds_ precleanup.

mds_join_file: it will call llog_get/put_context to get the llog ctxt and
handle join request.

MGS

mgs_precleanup: mgs will call llog_get context to get the correspondent
ctxt and cleanup it and similar as mds_precleanup.

mgs_iocontrol: mgs will call llog get context to get the correspondent
ctxt and handle these llog ioctl.

mgs_get fsdb_from llog, mgs modify, record _start log, mgs log is empty
and mgs erase log: mgs will call llog_get/put_context to get the llog
ctxt to handle various llog operation.

OSC

osc_setinfo_mds_conn_interpret: it will call llog get/put_context to
get the correspondent(unlink) llog ctxt and init the import for sending
recovery unlink log to OST.

osc_llog finish: it will call llog get context to get the correspondent
llog and cleanup it.

osc_ disconnect: it will call llog get/put_context to get the llog ctxt and
sync the unflushed unlink log to OST.

osc_mds_ost_orig logops: MDS use these llog ops to add/cancel unlink
log for each OST. MDS will call these log operations from LOV layer, and
LOV layer will call llog_get/put_ context to protect the ctxt in this layer.

5.5

5.6

5.7

OBDFILTER

filter cancel cookies cb: it will call llog get/put_context to get the
llog context to send cancel the llog cookie to MDS and running in an
separate thread in OST. Note: It is an asynchronize llog user.

lled send: it is a separate thread and to send the cancel llog cookie to
MDS. It will use llog ctxt(loc imp) when sending the cookie. Note: It
is an asynchronism llog user.

llog_recovery generic: it will call llog get/put_context to get the llog
context and retrieve the cancel log from MDS and unlink orphans. It is
running an separate thread in OST. Note: It is an asynchronism llog
user.

filter llog init: it will call llog get/put context to get the llog ctxt and
set recovery unlink callback of the unlink llog ctxt.

filter llog finish: it will call llog get context to get the llog ctxt and
cleanup it.

filter disconnect, filter sync: it will call llog get/put_context to get the
llog ctxt and flush any remaining cancel unlink log to MDS.

filter _destroy: it will call llog_get/put_ context to get the llog ctxt and
send the cancel unlink log if the object is already gone.

filter set info async: it will call llog get/put_context to init the im-
port of unlink ctxt import.

LOV

lov_llog origin add, lov_llog origin connect, lov_llog repl cancel :
These llog APT are used to help mds distribute its llog operations to each
osc. They will call llog_get/put_context to get the llog ctxt of each OSC
and hold the refcount of it, then do the operations, then put the llog ctxt.

lov_llog finish: it will call llog get context to get the llog ctxt and
cleanup it.
MGC

mgc_llog init: it will call llog get/put_context to get the llog ctxt and
init the ctxt import.

mgc_llog finish: it will call llog get context to get the llog ctxt and
cleanup it.

e mge process log: it will call llog get context to get the remote config
ctxt and try to retrieve the config log from mgs server and copy it to the
local log if possible then call llog get context to get the local log ctxt,
then process these config log, finally, call llog_put_context to put these
llog ctxt.

5.8 LLOG _TEST

e llog test N: these llog test API will call llog get/put_context to get the
llog ctxt and do various of llog test.

6 Logic specification

6.1 LLog get context

In the llog_get/put_ context, the ctxt refcount will be increased. Before increas-
ing the refcount of ctxt, we should check whether the correspondent obd _llog ctxt
entry is NULL, if it is NULL, it means the llog ctxt is being freed at that time,
and it should return NULL. If it is not, then the ctxt refcount could be increase,
and return the ctxt. Note: to prevent llog cleanup process just intruding
between checking obd llog ctxt and llog ctxt get, these two steps
should be protected with spin_lock(obd dev lock).

\begin{lstlisting}

#define llog_ctxt_ get(ctxt)

S

struct llog _ctxt *ctxt = ctxt;

LASSERT (atomic_read(&ctxt ->loc_refcount) > 0);

atomic_inc(&ctxt _->loc_refcount);

CDEBUG(D_INFO, "GETting ctxt %p : new refcount %d\n", ctxt_,

atomic_read(&ctxt_->loc_refcount));

ctxt_;

)

static inline struct llog_ctxt *llog _get context(struct obd _device *obd, int
index)

spin_lock(&obd->obd _dev_lock);

if (obd->obd_llog_ ctxt[index] == NULL) {
spin__unlock(&obd->obd dev_lock);

CWARN("obd %p and ctxt index %d is NULL \n", obd, index);
return NULL;

}

ctxt = llog_ctxt_get(obd->obd llog ctxt[index]);
spin_unlock(&obd->obd dev_lock);

return ctxt;

}
\end{lstlisting}

6.2 llog put context

In llog put context, it will decrease the ctxt refcount, if the refcount is zero,
the ctxt will be freed and wake up the process waiting for this ctxt. Note:
to prevent other llog users access the llog ctxt between the ref-
count become zero and freeing the ctxt, we will obd _llog ctxt entry
to NULL after refcount become 0, and put these two steps under
spin_lock(obd dev lock).

\begin{lstlisting }

static void llog_ctxt_destroy(struct llog ctxt *ctxt)

idx = ctxt->loc_idx;

obd = ctxt->loc_obd;

if (ctxt->loc_exp)

class_export put(ctxt->loc_exp);
OBD _ FREE(ctxt, sizeof(*ctxt));

int __llog ctxt put(struct llog_ctxt *ctxt)

obd = ctxt->loc_obd;

spin_lock(&obd->obd _dev_lock);

if (latomic_dec_and_test(&ctxt->loc_refcount)) {
spin_ unlock(&obd->obd dev_lock);

return 0;

}

obd->obd _llog ctxt[ctxt->loc_idx] = NULL;
spin__unlock(&obd->obd dev_lock);

if (CTXTP(ctxt, cleanup))

rc = CTXTP(ctxt, cleanup)(ctxt);

llog ctxt_destroy(ctxt);

wake up(&obd->obd _llog waitq);

return rc;

}

#define llog put context(ctxt)
do {

__llog_ctxt_put(ctxt);

} while (0)

\end{lstlisting}

6.3 llog cleanup

In llog cleanup, if the ctxt refcount is not zero, which means other llog users are
using this ctxt, the cleanup process will be added to a waitq(obd llog waitq)
and wait other users release the ctxt. Note: we can not make cleanup
process go on to destroy the obd device without waiting other users
releasing the ctxt, because only keep the ctxt for other llog user
thread is not enough, and they may also need a health obd. So
cleanup process must wait all the llog user release the ctxt and free
it, then continue.

\begin{lstlisting}

int llog_ cleanup(struct llog_ ctxt *ctxt)

/*Note: this put is for banlancing the ctxt get when calling llog cleanup

*
/

llog put_context(ctxt);

/* check whether the obd was cleanup */

spin_lock(&obd->obd _dev_lock);

LASSERT(obd->obd _stopping == 1);

spin_ unlock(&obd->obd dev_lock);

idx = ctxt->loc_idx;

/*release the ctxt of its own obd and

try to free the ctxt inside _ llog ctxt put/

rc = _ llog ctxt_put(ctxt);

1 wait_event(obd->obd llog waitq, obd->obd _llog ctxt[idx] == NULL,
&lwi);

RETURN(rc);

\end{lstlisting}
Note: Once those llog users detect the llog is cleanup(obd->obd _stopping
== 1) , it should stop immediately and release the llog ctxt.

7 State Management

Currently, there are two kinds of llog users,

7.1 Synchronize llog user

There are two kinds of Synchronize llog users:

e For those users, who access the llog ctxt in req handler synchronausly. Be-
cause when handling req, the refcount of obd export (also the exp rpc_count)
will be increased to protect this export being disconnected. In the other
hand, in obd cleanup process, all the exports should be disconnected be-
fore llog_cleanup, which will make sure all these synchronize llog user will

finished before llog cleanup. So there will be no ctxt free race for this
kind of case.

e Another kind of synchronize llog user are setup/cleanup process. For
clients, we will use “mount” to mount client and vfs mount mechanism
will make sure mount and umount will not happened in the same time,
which means config llog processing will not happened in the same time
with llog cleanup, so we do not need consider llog cleanup race for client
setup. As for server setup, there are two kinds of situation

— For new mountconfig, MDS/OST will call mgc process_log to pro-
cess the config log, so we should check whether the ctxt is NULL
after get it by llog get context, in case it is being cleanup.

— For old zero config, only mds will use config log and it will call
class_config parse llog to process the config log in mds__postsetup,
so we should also check whether the ctxt is NULL there.

7.2 Asynchronize llog user

Asynchronize llog users mean those users who use llog ctxt in a separate thread
asynchronously. Because we do not have synchronize mechanism between these
users and llog cleanup, the race might happen between them. So when these
asynchronize users access the llog ctxt, they should check whether the llog ctxt
is releasing. If it’s not releasing, the user should call llog get context to in-
crease the refcount and prevent the ctxt being released when using it, and call
llog _put_context to put the refcount after using it. Currently, there are four
kinds of asynchronize llog users:

1. Filter llog llog cleanup vs llog recovery process

(a) When Filter setup, it tries to get recovery log (unlink log) from MDS
and processes these llogs in a separate thread. llog context get
should be called to increase the ctxt refcount. Note: If the obd is
stopping, it should stop accessing the llog ctxt and return immedi-
ately.

(b) If the filter is cleaning up(filter llog cleanup) before the llog recovery
thread stops, the cleanup process will wait log recovery thread stop
and release the ctxt, then continue.

\begin{lstlisting}

static int llog_recovery generic(struct llog _ctxt *ctxt, void *handle,void
*arg)

if (obd->obd_stopping) {

up(&llpa.llpa_sem);
RETURN(-ENODEV);
}

llpa.llpa_ctxt = llog get context(ctxt->loc_obd, ctxt->loc_ idx);
if (NMap.lpa_ ctxt) {

up(&llpa.llpa_sem);

RETURN(-ENODEV);

\end{lstlisting}

2. Filter llog cleanup vs llog cancel cookie callbacks

(a) In filter objects destroy commit callback, the filter will send the un-
link log cookie back to MDS. Before accessing the llog, llog ctxt get
should be called to increase the ctxt refcount.

(b) If the filter was clean up before the callback thread stop, the cleanup
process will wait the callback thread stop release the ctxt, then con-
tinue.

\begin{lstlisting}
void filter cancel cookies cb(struct obd device *obd, _ u64 transno, void
*cb_data, int error)

if (obd->obd _stopping) {
OBD_ FREE(cookie, sizeof(*cookie));
return;

}

ctxt = llog_get context(obd, cookie->lgc subsys + 1);
if (letxt) 4

OBD_ FREE(cookie, sizeof(*cookie));

return;

\end{lstlisting}

10

1. Filter llog cleanup vs log _commit_thread

Log commit thread is running in the OSS level, and it maintains a list
of lled, and each llcd item will access the attached llog ctxt without
checking whether it is freed, so there is a race between this thread with
llog cleanup.

(a) llog_get context should be called to protect itself before the ctxt is
attached to the llcd items. Note: log commit thread can not
make sure each llcd item will be put until the OSS service
stop(ptlrpc module exit in oss level), but it happened af-
ter llog cleanup. So we should move log commit thread
to obdfilter level, and each obdfiler will have their own
log commit thread. And before the llog cleanup, it should
stop this thread to avoid the race. Then we may need put
llog commit master to the obdfilter and callllog cleanup commit master
in filter cleanup. There is another method discussed in Al-
ternative methods.

(b) Check whether the ctxt is being freed(checking obd stopping flags,
obd _stopping is set before llog cleanup), when adding the llcd to
the send list.

(¢) When the llog commit thread is stopped, all the llcd and its ctxt
will be put.
\begin{lstlisting}
llog obd_repl cancel()

lled = lled _grab();
lled->1led ctxt = llog get context(ctxt);

lled put()
{

llog put_context(lled->1led ctxt);

}

/* Do not add llcd items to the sending lled list, if the obd is stopping */
void lled _send(struct llog canceld ctxt *1led)

{

/* this lled ctxt is protect by llog get context, so no need checking
NULL pointer */

11

if (lled->1led _ ctxt->loc_obd->obd _stopping)
return;

\end{lstlisting}

2. MDS cleanup vs MDS llog _connect
(a) When MDS dollog _connect to OST in an separate thread(__mds_lov_synchronize),
it should call llog_ctxt_get to increase the llog ctxt refcount.
(b) If MDS was clean up before the thread(__mds_lov_synchronize)
stop, the cleanup process will wait synchronize thread stop and re-
lease the ctxt, then continue.
\begin{lstlisting}

static int __mds_lov_ synchronize(void *data)

if (obd->obd _ stopping)

RETURN(-ENODEV);

ctxt = llog get context(obd, LLOG_MDS OST ORIG_CTXT);
if (letxt)

RETURN(-ENODEV);

\end{lstlisting}

8 Protocol, APIs, disk format.

LLog ctxt_get/put should be called before/after accessing the llog. No wire
protocols and disk format changes for this HLD.

9 Test Plan

Replay dual 17 will be used to test this case. Several replay single test case
will be also needed for testing those asynchronous llog user.

1. llog cleanup vs ost llog_recovery thread. OBD FAIL TIMEOUT will
be used for simulate the race between them.

12

\begin{lstlisting}
#define OBD _FAIL OST LLOG_RECOVERY TIMEOUT 0x21f
static int filter _recov_log mds_ost_ ch(struct llog_handle *1lh,
struct llog_rec_hdr *rec, void *data)

if (OBD FAIL CHECK(OBD FAIL OST LLOG RECOVERY TIMEOUT))
OBD FAIL TIMEOUT(OBD FAIL OST LLOG_RECOVERY TIMEOUT,
30);

#test race llog recovery thread vs llog cleanup
test 59()

mkdir $DIR /$tdir

createmany -o $DIR/$tdir/$tfile-%d 800

replay barrier ost

OBD_FAIL OST_LLOG_RECOVERY TIMEOUT 0x21f
unlinkmany $DIR/$tdir/$tfile-%d 800

do_facet ost "sysctl -w lustre.fail loc=0x8000021f"
facet _failover ost

sleep 10

fail ost

sleep 30

do_facet ost "sysctl -w lustre.fail loc=0x0"
$CHECKSTAT -t file $DIR/$tdir/$tfile-* && return 1
rmdir $DIR/$tdir

}

run_test 59 "test race llog recovery vs llog cleanup"
\end{lstlisting}

1. llog cleanup vs llog cancel cookie callback.

\begin{lstlisting}
#define OBD FAIL OST_CANCEL_ COOKIE TIMEOUT 0x221
void filter _cancel cookies c¢b()

if (OBD_FAIL CHECK(OBD_ FAIL OST_CANCEL_ COOKIE TIMEOUT))
OBD_FAIL_ TIMEOUT(OBD FAIL OST_CANCEL_COOKIE TIMEOUT,
30);

#test race cancel cookie cb vs llog cleanup
test_59¢()

{

13

OBD_FAIL OST_ CANCEL COOKIE_ TIMEOUT 0x221
touch $DIR/$tfile

do_facet ost "sysctl -w lustre.fail loc=0x80000221"

rm $DIR/$tfile

sleep 10

fail ostl

}

run_test 59c¢ "test race mds llog sync vs llog cleanup"
\end{lstlisting}

1. llog cleanup vs llog commit thread

Because we will stop log _commit thread, before llog cleanup. So there
is no race between log cleanup and log commit_thread.

2. llog cleanup vs MDS cleanup

\begin{lstlisting}
#define OBD FAIL OST LLOG_RECOVERY TIMEOUT 0x220
static int __mds_lov_synchronize()
{

if (OBD _FAIL CHECK(OBD_FAIL_ MDS_LLOG_SYNC_TIMEOUT))

OBD_FAIL TIMEOUT(OBD FAIL MDS_LLOG_SYNC_ TIMEOUT, 60);

#test race mds llog sync vs llog cleanup +test 59b()

{

4 OBD_FAIL MDS_LLOG_SYNC_ TIMEOUT 0x137
do_facet mds "sysctl -w lustre.fail loc=0x80000137"
facet _failover mds

sleep 10

fail mds

do_ facet client dd if=/dev/zero of=$DIR/$tfile bs=4k count=1 || return 1
rmdir $DIR/$dir

}

run_test 59b "test race mds llog sync vs llog cleanup"
\end{lstlisting}

14

10 Alternatives.

We can also add some flags to indicate whether other threads are using the
ctxt. But there are many kinds of llog user threads(as section 6 indicate), if we
implement in this way, we might need separate flags for each user which will
make things much complicated and out of control. So we choose using llog ctxt
refcount to make things clear and easy.

Another method to resolve the race between llog_cleanup and llog__commit__thread
is that

o Still put log commit thread in OSS level.

e Try to walk through thelled list and put the correspondent lled item. But
in current implementation, the llcd items was in three list in log__commit_thread:led lled list,
lled pending list, lled resend list, and unfortunately, led lled list can
not be accessed from outside of log commit thread. So we need create
a new list for each import and track the llcd for the import. But it will
bring much complication and trouble.

15

