
High Level Design of Remote ACLPeter Braam, Eric MeiFeb 22, 20051 Requirements
• Support ACL-based permission check on remote client.
• Support setacl/getacl on remote client.The main issue need to be addressed here is that UID/GID on remote client nolonger match which on MDS's, while usually ACL entries as well as permissionchecks are uid/gid based.There's an important premise. On MDS we'll have locally mounted lustre�lesystem, which is full functional lustre client with the exactly same view asother normal client. This will greatly simplify setacl/getacl from remote clients.This is another project, and in thie HLD we suppose it's already in place. Sothis also means the remote ACL project is depend on that project.2 Functional Speci�cation2.1 Cached permission on remote clientThe basic idea is: The actual ACL-based permission for each remote user isperformed by MDS, and we cache the result on client.On each inode on remote client, we'll have a �ag to indicate whether themaster inode on the MDS contains ACL. If the �ag is on, we'll maintain a list ofcached permission for each user, which is actually another form of ACL. Eachentry in the list describes that which user have what permission on this inode.Permission check on cached inode on client will be actually checking thecached permission. If there's no cached permission for a�ected user, an specialrpc will be issued to fetch the permission from MDS. For those inode which hasno ACL we'll use uid/gid to check the permission.2.2 Permission lookup RPCAs above described, it's not possible to retrive permission for all users in oneplace. Instead we must fetch it from MDS one by one during run time, whichis accomplished by a newly invented RPC 'MDS_ACCESS_CHECK'.1

2.3 Get/Set ACLs at remote client 2 FUNCTIONAL SPECIFICATIONOn a remote client, a user access an inode will result to permission check forthis user against a�ected inode. We �rstly check whether this inode containsACL. If yes, we check whether we have cached permission for this user. If failedto �nd one, an RPC 'MDS_ACCESS_CHECK' will be issued to fetch themissing entries from a MDS. The reply from MDS will contains the read, write,and execute permission bits for this user against this inode. This permission willbe cached at client, for further reference. From then on all permission checkingwill based on the cached entries.We can optimize the permission retrive a little bit. When a client begin topopulate an inode, an RPC which result to pass inode attributes to client, e.g.getattr, open, chdir, etc., will be �red to MDS. MDS will pack permission ofcurrent user into reply, if applicable. So if the same user access this inode sometime later, we don't need further 'MDS_ACCESS_CHECK' RPCs.2.3 Get/Set ACLs at remote clientWe'll use the exactly same user interface as standard getfacl/setfacl tools. Andactually we could modify based on source code of getfacl/setfacl. Please referto manual pages of getfacl/setfacl for details.There is one note: All the user/group name, printed out by getfacl or sup-plied to setfacl, is actually refers to name/group on MDS's user database, notuser database of the remote client. This require the user of getfacl/setfacl haveknowledge of MDS's user database, to pervent insane ACL manipulation.Although the user interface is the same, the modi�ed getfacl/serfacl inter-nally do things very di�erently. It will not perform any ACL internal datastructure mangling, or name/id translation. Instead it simply pass the com-mand line and the destinate �le name to kernel, and kernel will return thehuman readable text result, which is �nally output to user.The client kernel also did very simple things: pass the command to MDSwithout further translation. The reply from MDS should be human readabletext result, directly deliver it back to user space.2.4 MDS handle getfacl/setfacl requestMDS will invoke a user space helper, say �lacl_upcall�, to perform most ofthe job. For both getfacl/setfacl cases, MDS kernel will start the lacl_upcallvia upcall, feed with target �le name, and the command line passed in fromremote client. Then lacl_upcall will act for the correct user, issue the samegetfacl/setfacl command against the �le in the MDS's locally mounted lustre�lesystem. When the lcal_upcall end, the actual getacl/setacl should have been�nished. The output, which is human readable text messages, will be pass downto MDS kernel, and in turn be returned to client.Actually it could be treated as a local lustre client perform the exactly sameACL command for a remote lustre client.2

3 USE CASES3 Use Cases3.1 Permission check case 11. Alice on remote client access �le1 which has no ACL at the �rst time.2. Lustre client issue GETATTR rpc to MDS.3. MDS return inode attributes.4. Bob on same client try to access �le1.5. Lustre check permission only based on Bob's uid and gid, along with �le1'sowner and group.3.2 Permission check case 21. Alice on remote client access �le1 which has ACL at the �rst time.2. Lustre client issue GETATTR rpc to MDS.3. MDS return inode attributes, and indicate this inode contains ACL, andthe permission of Alice on this �le.4. Lustre client cached Alice's permission in inode, and grant/deny Alice'saccess based on it.5. Alice's access right on �le1 will be determined by the cached permission.6. Bob on same client try to access �le1.7. Lustre client failed to �nd the cached permission for Bob, then issue'MDS_ACCESS_CHECK' rpc to MDS.8. MDS return Bob's permission on �le1.9. Lustre client cached Bob's permission in inode, and grant/deny Bob'saccess based on it.10. Alice on this client try to access �le1 again.11. Lustre client will grant/deny Alice's access based on cached permission.12. Somebody else changed permission �le1; Or somebody login/logout lustreon this client;13. DLM lock canceling which initiated by above chmod will result in clientto release all cached permissions.14. Alice try to access �le1 again. Inode attributes and permissions will bere-populated as above procedure again.3

3.3 Listing a directory 3 USE CASES3.3 Listing a directory1. Alice on remote client listing a directory by 'ls -l'.2. Lustre client will issue GETATTR for each �le within the directory. AndAlice's permission for all those �les will also be sent back by MDS's reply,and cached.3. Alice do 'ls -l' again, no rpc will be issued.4. Bob do 'ls -l', again no rpc will be issued.5. Bob try to access one of those �les which contains ACL, e.g. do open().6. Lustre client will issue MDS_ACCESS_CHECK rpc to MDS.3.4 getfacl1. Alice on remote client run 'getfacl �le1'.2. Lustre client send request to MDS.3. MDS kernel invoke �lacl_upcall getfacl �le1�, via upcall mechanism.4. lacl_upcall will do standard �getfacl �le1�, pass the text output �u:alice:rwx,u:bob:r-x� back to kernel, and exit.5. MDS kernel got the output, and simply return back to client.6. Lustre client got the reply, return back to user space.7. Alice's getfacl will output result �u:alice:rwx,u:bob:r-x� and exit.3.5 setfacl1. Alice on remote client run �setfacl -m u:alice:rwx,u:bob:rw- �le1�.2. Lustre client send request to MDS.3. MDS kernel invoke �lacl_upcall setfacl �le1 -m u:alice:rwx,u:bob:rw- �le1�,via upcall mechanism.4. lacl_upcall will do standard �setfacl �le1 -m u:alice:rwx,u:bob:rw- �le1�,pass the success or fail result back to kernel, and exit.5. MDS kernel got the output, and simply return back to client.6. Lustre client got the reply, return back to user space.7. Alice's setfacl will output result (if any), and exit with code indicated bykernel. 4

4 LOGIC SPECIFICATION4 Logic Speci�cation4.1 Cached permissionsEach client inode, if has ACL entries on master inode, could have list of cachedpermission. Each permission entry would roughly looks like:struct remote_perm_setxid {struct list_head list; /* permission list */uid_t uid;gid_t gid;uint16_t perm;};struct lustre_remote_perm {pag_t pag;uid_t auth_uid; /* authenticated uid */gid_t auth_gid; /* authenticated gid */uint16_t perm; /* permission bits */uint16_t allow_setuid:1,allow_setgid:1;struct remote_perm_setxid *perm_setxid;};This permission cache should be careful to conformed to which on MDS. TheLSD on MDS might selectively allow some users setuid/setgid, while block thispermission for others. So we record the uid/gid which used at authentica-tion time. If setuid/setgid ever be executed, we need check whether allow se-tuid/setgid, and �nd in cached setxid permission list. The whole procedure willroughly like:if (has_no_acl(inode))check based on uid/gid;return result;gss_ctxt = pag_to_ctx(current->pag);if (!is_valid(gss_ctxt))issue_rpc(MDS_ACCESS_CHECK);return result;for_each_in_cached_permission(pag)if (pag_matched)if (perm->auth_uid == current->fsuid &&perm->auth_gid == current->fsgid)return perm->perm;if (!allow_setuid && setuid ||!allow_setgid && setgid)return DENY;if (found_in_setxid_perms)return result; 5

4.2 MDS_ACCESS_CHECK RPC 4 LOGIC SPECIFICATIONelseissue_rpc(MDS_ACCESS_CHECK);return result;Note in all cases, no supplementary groups will be involved into permissioncheck.One optimization could be done is: Embed one permission (e.g. the lastaccessed one) into ll_inode_info, which has the biggest chance to be referenced.4.2 MDS_ACCESS_CHECK RPCThis rpc should be quite simple, just with one note. During permission checking,client will hold inodebits DLM of a�ected inode, thus keep holding it duringMDS_ACCESS_CHECK rpc. So mds handler of MDS_ACCESS_CHECKshould avoid obtaining any DLM lock to prevent deadlock. Just �nd the inodeby �d, lock local inode, perform access test and reply the result.On MDS side, the permission check should go through all the normal proce-dure: uid/gid translation, checking against LSD, etc. Just like any other normalrequest handling, except did nothing but return the permission result.4.3 Client support getfacl/setfaclWe can take code from standard getfacl/setfacl, or patch against them, onlykeep the parameter parsing part, to prevent the wrong format, etc. Aftermake sure the parameters are valid, getfacl/setfacl call standard syscall �getx-attr()/setxattr()� against the directory of the target �le. The extended attributename could be a special one, like �system.lustre_remote_acl�, kernel will recog-nize it; The parameter include the target �le name, along with the parametersuser supplied. For example, user invoke:setxattr dir1/dir2/file1 -m u:alice:rw-And setxattr will �nally invoke syscall:char *param = �file1 -m u:alice:rw-�int size = strlen(param);sys_setxattr(�dir1/dir2�,�system.lustre_remote_acl�,param, size, flag);Client kernel handler for getxattr/setxattr recognize the special attribute name,and send the FID of the parent dir, here is FID of �dir1/dir2�, and the �param�to MDS. The reply from MDS will contains:
• Error code. 0 for success.
• Text output. For getacl it's the ACL list, for setacl it might be nothing.Or just error message. 6

4.4 MDS handle getfacl/setfacl 6 ALTERNATIVESClient kernel just pass the reply directly back to user space. The progarmgetfacl/setfacl will output the text message return from syscall, and return thecode as indicated by kernel.4.4 MDS handle getfacl/setfaclMDS kernel got the request, �nd the parent directory from the FID sent fromclient, and check whether current user execute permission on the directory. Ifnot, just deny the request. After that, we'll set the directory as �current workdirectory�, and invoke lacl_upcall to user space via upcall, with the parameterssent from client. So when lacl_upcall running, it's already in the right directory.lacl_upcall could simply invoke standard getacl/setacl with the exactly sameparameters, which will interact with locally mounted lustre �lesystem on MDS.lacl_upcall will get the output and exit code, and pass to kernel via /proc orany other proper mechanism.After got result from upcall, MDS kernel just send the output and error codeback to client.5 State ManagementThe cached permission will also be treated as a normal attribute of inode. Everyrequest issued by md_intent_lock() from client which intend to obtain inodeattributes, i.e. IT_LOOKUP, IT_GETATTR, and IT_CHDIR, will also bereplied the permission for this user, and then cached at client inode. They areprotected by inodebits DLM lock, just like other inode attributions. In thispoint the state management of cached permission is nothing special.A new rpc MDS_ACCESS_CHECK is added, which is a simple, non-transactional rpc, so no special recovery consideration is needed. For the get-facl/setfacl, they use the existing interface, and no DLM lock will be involvedat client side.No disk format changes.6 AlternativesNFSv4 support two kinds of setacl/setacl interface:1. POSIX ACL: uid/gid is passed across kernel boundary. Tools like setfaclwill resolve user name into uid, passed to kernel, kernel then map uid toNFSv4 domain name, via idmap daemon, then send text name to server;Server again reverse map domain name back to uid via idmap daemon.2. NFSv4 ACL: User tools will resolve name to NFSv4 domain name, directlypass text name into kernel. 7

7 FOCUS OF INSPECTION7 Focus of Inspection
• Are the client side cache and logic reasonable?
• Any security hole there?

8

