
High Level Design for bug 10707

Tian Zhiyong

2006.8.4–2006.8.6

1 Introduction

Because qd_count of structqunit_data is 32 bit, when using > 4G limits for quotas
the OSS nodes may die (never ending loop)

The faulty code is incheck_cur_qunit():if (limit <= usage + tune_sz) {while (qdata->qd_count + limit <= usage + tune_sz)qdata->qd_count += qunit_sz;ret = 1;} else if (limit > usage + qunit_sz + tune_sz) {while (limit - qdata->qd_count > usage + qunit_sz + tune_sz)qdata->qd_count += qunit_sz;ret = 2;}
2 Requirements

1. obey protocol compatibility policy.

2. after some time, qd_count of structqunit_data can be translate into 64bit with-
out making any trouble.

3. the size of structure qunit_data doesn’t change, which can reduce some work.

4. flag in structurequnit_data uses binary operation.

5. try to reduce the time of RPCs in order to improve the performance.

6. easy to test.

1



3 FUNCTIONAL SPECIFICATION

3 Functional specification

First of all, I will make some definitions.

• stale masteris a node holding the cluster wide limits for a uid or gid without the
code of fixing bug10707.

• stale slaveis a node which only considers hard quota and only has operational
quota files without the code of fixing bug10707.

• new master is a node holding the cluster wide limits for a uid or gid with the
code of fixing bug10707.

• new slaveis a node which only considers hard quota and only has operational
quota files with the code of fixing bug10707.

what I will do in order to fix this bug is:

• change structurequnit_data: makeing qd_count is 64bit; merging qd_type
and qd_isblk into qd_flags which does binary operation;

• adding a structure namingqunit_data_old,which is just old sturcturequnit_data.
That means that stale master/slave has:struct qunit_data {__u32 qd_id; /* ID appiles to (uid, gid) */__u32 qd_type; /* Quota type (USRQUOTA, GRPQUOTA) */__u32 qd_count; /* acquire/release count (bytes for block quota) */__u32 qd_isblk; /* Block quota or file quota */};

new master/slave has:struct qunit_data {__u32 qd_id; /* ID appiles to (uid, gid) */__u32 qd_flags; /* Quota type (USRQUOTA, GRPQUOTA)occupy one bit; Block quota or file quota occupy one bit*/__u64 qd_count; /* acquire/release count (bytes for block quota) */};struct qunit_data_old {__u32 qd_id; /* ID appiles to (uid, gid) */__u32 qd_type; /* Quota type (USRQUOTA, GRPQUOTA) */__u32 qd_count; /* acquire/release count (bytes for block quota) */__u32 qd_isblk; /* Block quota or file quota */};
2



5 LOGIC SPECIFICATION

• a new slave/master handles the quota using structqunit_data internally; only
when a new slave/master will send/receive the quota request/reply, it will trans-
late structqunit_data into structqunit_data_old or adverse if necessary.

• a new master discerns whether the master is new or stale throughOBD_CONNECT_QUOTA64;
a new slave is same. More details will be within the DLD.

• handle qd_flags using binary operations.

• add proc entries so that we can easily change the new master/slave’s connect_flags.
In this way, we can make the new master/slave just acting likethe old mas-
ter/slave. Doing this is just for the test.

4 Use cases

Test environments:

• a stale master and a new slave

• a new master and a stale slave

• a new master and a new slave

• a new master , a new slave and a stale slave

Writing multiple big files to lustre(total size > 4G) and thendeleting them in order that
an ost will release >4G quota. When deleting the files, a corresponding ost will release
>4G quota. it should send successfully and will never endless loop. This test will run
successfully under the four environments above.

Certainly the script of tests/sanity-quota.sh will run under the four environments above.
At last, when landing code this test will be added to tests/sanity-quota.sh.

5 Logic specification

5.1 Procedure of acquiring/releasing quota

• when a new slave sends a quota request, split thequnit_data struct into mul-
tiple qunit_data_old struct and send them if the master handling the quota
request is a stale master; send the request directly if the master handling the
quota request is a new master.

• when a new master receives a quota request, it will translatestructqunit_data_old
into structqunit_data and then handle it if the slave sending this request is a
stale slave; it will hanle it directly if the slave sending this request is a new slave.

3



5.2 Functions manipulate the qunit_data structure 5 LOGIC SPECIFICATION

• when a new master replies a quota request, it will translate struct qunit_data
into structqunit_data_old and send it if the slave sending this request is a
stale slave; it will send the reply directly if the slave sending this request is a new
slave.

• when a new slave receives a quota reply, it will translate structqunit_data into
structqunit_data_oldand handle it if the master handling the quota request is
a stale master; it will handle the request directly if the master handling the quota
request is a new master.

The key idea is that a new slave/master handles the quota using structqunit_data
internally; only when a new slave/master will send/receivethe quota request/reply, it
will translate structqunit_data into structqunit_data_old or adverse if necessary.

5.2 Functions manipulate the qunit_data structure

• When a slave sends a quota request to a master, it will call function sched-
ule_dqacq to send it. This function will translate the format of qunit_data to
qunit_data_old if necessary. There are three functions: dqacq_completion, qc-
txt_adjust_qunit, qslave_recovery_main. They will call schedule_dqacq and are
charge of spliting the quota request if necessary.

• Then the master receives the request and sends it to functiontarget_handle_dqacq_callback
to handle it. After that, it will send a reply back to the slave. This function maybe
change qd_count.

• The slave receives the reply and sends it to function dqacq_interpret to handle it.

For example, when a client writes a big file to lustre, the chain of functions call is:

1. slave(send a quota request to the master): ptlrpc_main->ptlrpc_server_handle_request-
>ost_handle->ost_brw_write->filter_commitrw->filter_commitrw_write->filter_quota_adjust-
>qctxt_adjust_qunit->schedule_dqacq;

2. master(receive a quota request and send the reply back): ptlrpc_main->ptlrpc_server_handle_request-
>ldlm_callback_handler->target_handle_dqcaq_callback;

3. slave(receive the reply): ptlrpcd->ptlrpcd_check->ptlrpc_check_set->dqacq_interpret

5.3 RPC which will be affected

It only changes the format of qunit_data based on capabilities of other peer before the
RPC. The length of qunit_data and the order of RPC isn’t changed. Details can be seen
in “Procedure of acquiring/releasing quota”.

4



5.4 Swabbing problem 6 STATE MANAGEMENT

5.4 Swabbing problem

There are two swabbing functions to deal with swabbing. lustre_swab_qdata deals with
qunit_data; lustre_swab_qdata_old deals with qunit_data_old.

6 State management

A new master has two states, when the corresponding slave is astale slave, it will do
translation; when the corresponding slave is a new slave, itwon’t do translation.

The same to a new slave.

A new master/slave switches the states by the correspondingimport or export(reference
to exp->exp_connect_flags or imp->imp_connect_data->ocd_connect_flags)

6.1 Scalability & performance

This does nothing to scalability.

Only when a new master and a new slave handle quota request, itis efficient. Ex-
cept that, when there are >4G quota to release/acquire, it isspilit into small quota
requests(<4G). That is less efficient in that situation.

6.2 Wire format changes

Stale master/slave has:struct qunit_data {__u32 qd_id; /* ID appiles to (uid, gid) */__u32 qd_type; /* Quota type (USRQUOTA, GRPQUOTA) */__u32 qd_count; /* acquire/release count (bytes for block quota) */__u32 qd_isblk; /* Block quota or file quota */};
new master/slave has:struct qunit_data {__u32 qd_id; /* ID appiles to (uid, gid) */__u32 qd_flags; /* Quota type (USRQUOTA, GRPQUOTA)occupy one bit; Block quota or file quota occupy one bit*/__u64 qd_count; /* acquire/release count (bytes for block quota) */};struct qunit_data_old {__u32 qd_id; /* ID appiles to (uid, gid) */

5



6.2 Wire format changes 6 STATE MANAGEMENT__u32 qd_type; /* Quota type (USRQUOTA, GRPQUOTA) */__u32 qd_count; /* acquire/release count (bytes for block quota) */__u32 qd_isblk; /* Block quota or file quota */};
structruequnit_data is changed, but its size isn’t changed. The code will deal with
the difference.

6


