

Lustre in a nutshell Cluster File Systems, Inc.

Lustre 1.4.7 Operations Manual
Version 1.4.7.1-man-v36 (11/30/2006)

This publication is intended to help Cluster File Systems, Inc. (CFS) Customers and
Partners who are involved in installing, configuring, and administering Lustre.

The information contained in this document has not been submitted to any formal CFS
test and is distributed AS IS. The use of this information or the implementation of any
of these techniques is a customer responsibility and depends on the customer's ability
to evaluate and integrate them into the customer's operational environment. While
each item may have been reviewed by CFS for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

CFS™ and Cluster File Systems, Inc.™ are trademarks of Cluster File systems, Inc.

Lustre® is a registered trademark of Cluster File Systems, Inc.

The Lustre logo is a trademark of Cluster File Systems, Inc.

Other product names are the trademarks of their respective owners.

Comments may be addressed to:

Cluster File Systems, Inc.

Suite E104 - 288

4800 Baseline Road

Boulder CO 80303

Copyright Cluster File Systems, Inc. 2006 All rights reserved.

ii

Lustre in a nutshell Cluster File Systems, Inc.

About the Manual
This Operations Manual is intended to support the users, architects and administrators
of Lustre File Systems. It describes various tasks involved in installing, configuring, and
administering Lustre.

For the ease of reference, the manual is sub-divided in various parts with respect to
the audience they are meant for, as mentioned below –

1. Architecture – For Architects of Lustre

2. Lustre Administration – For System Administrators

3. Lustre Profiling, Monitoring and Troubleshooting - For System Administrators

4. Lustre for Users – For Users of Lustre

5. Reference – For all the three audiences, namely Architects, Users and System
Administrators

iii

Lustre in a nutshell Cluster File Systems, Inc.

T A B L E O F C O N T E N T S

P A R T I . A R C H I T E C T U R E ... 1

C H A P T E R I – 1 . A C L U S T E R W I T H L U S T R E .. 2

1.1 Lustre Server Nodes .. 3

1.1.1 The Meta Data Server ... 4

1.1.2 The Object Storage Servers .. 5

C H A P T E R I – 2 . U N D E R S T A N D I N G L U S T R E N E T W O R K I N G 7

2.1 Introduction .. 8

2.2 Old Schema ... 9

2.3 New Schema ... 10

P A R T I I . L U S T R E A D M I N I S T R A T I O N ..1 1

C H A P T E R I I – 1 . P R E R E Q U I S I T E S ...1 2

1.1 Lustre Version Selection ... 13

1.1.1 How to get Lustre .. 13

1.1.2 Supported Configurations .. 13

1.2 Using a Pre-packaged Lustre Release .. 14

1.2.1 Choosing a Pre-packaged Kernel .. 14

1.2.2 Lustre Tools .. 14

1.2.3 Other Required Software ... 15
1.2.3.1 Core Requirements .. 15
1.2.3.2 High Availabi l i ty Software .. 15
1.2.3.3 Debugging Tools ... 15

1.3 Environment Requirements .. 17

1.3.1 Consistent Clocks .. 17

1.3.2 Universal UID/GID ... 17

iv

Lustre in a nutshell Cluster File Systems, Inc.

1.3.3 Proper Kernel I/O Elevator .. 17

C H A P T E R I I – 2 . L U S T R E I N S T A L L A T I O N .. 1 9

2.1 Installing Lustre .. 20

2.2 Quick Configuration of Lustre ... 21

2.2.1 Single System Test Using the l lmount.sh Script 21

2.3 Using Supplied Configuration Tools ... 24

2.3.1 Single Node Lustre .. 24

2.3.2 Mult iple Node Lustre ... 25

2.3.3 Starting Lustre .. 26

2.4 Building from Source .. 29

2.4.1 Building Your Own Kernel ... 29
2.4.1.1 Patch Series Selection ..29
2.4.1.2 Using Quil t .. 29

2.4.2 Building Lustre ... 30
2.4.2.1 Conf igurat ion Options ..32
2.4.2.2 Liblustre ...32
2.4.2.3 Compiler Choice ..32

C H A P T E R I I – 3 . C O N F I G U R I N G T H E L U S T R E N E T W O R K 3 3

3.1 Designing Your Network .. 34

3.1.1 Identify al l Lustre Networks .. 34

3.1.2 Identify nodes which wil l route between networks 34

3.1.3 Identify any network interfaces that should be included/excluded
from Lustre networking ... 34

3.1.4 Determine cluster-wide module configuration 34

3.1.5 Determine appropriate zconf-mount parameters for cl ients 35

3.2 Configuring Your Network ... 36

3.2.1 LNET Configurations ... 36
3.2.1.1 NID Changes .. 36
3.2.1.2 XML Changes ... 36

3.2.2 Module parameters .. 37

3.2.3 Module Parameters – Routing .. 38

v

Lustre in a nutshell Cluster File Systems, Inc.

3.2.4 Downed Routers ... 39

3.3 Starting and Stopping LNET ... 40

3.3.1 Starting LNET .. 40
3.3.1.1 Start ing Cl ients ..40

3.3.2 Stopping LNET ... 40

 C H A P T E R I I – 4 . C O N F I G U R I N G L U S T R E - E X A M P L E S 4 2

4.1 Simple TCP Network .. 43

4.2 Example One: Simple Lustre Network .. 44

4.2.1 Instal lat ion Summary .. 44

4.2.2 Usage Summary ... 44

4.2.3 Configuration Generation and Application .. 44

4.3 Example Two: Lustre with NFS .. 45

4.3.1 Instal lat ion Summary .. 45

4.3.2 Usage Summary ... 45

4.3.3 Configuration Generation and Application .. 45

4.4 Example Three: Exporting Lustre with Samba 46

4.4.1 Instal lat ion Summary ... 46

4.4.2 Usage Summary ... 46

4.4.3 Model of Storage .. 46

4.4.4 Configuration Generation and Application .. 46

4.5 Example Four: Heterogeneous Network with Failover Support 47

4.5.1 Instal lat ion Summary .. 47

4.5.2 Usage Summary ... 47

4.5.3 Model of Storage .. 47

4.5.4 Configuration Generation and Application .. 47

4.6 Example Five: OSS with Multiple OSTs .. 49

4.6.1 Instal lat ion Summary (*target) ... 49

4.6.2 Usage Summary ... 49

vi

Lustre in a nutshell Cluster File Systems, Inc.

4.6.3 Model of Storage .. 49

4.6.4 Configuration Generation and Application .. 49

4.7 Example Six: Client with Sub-clustering Support 50

4.7.1 Instal lat ion Summary .. 50

4.7.2 Usage Summary ... 50

4.7.3 Configuration Generation and Application .. 50

C H A P T E R I I – 5 . M O R E C O M P L I C A T E D C O N F I G U R A T I O N S 5 1

5.1 Multihomed Servers ... 52

5.1.1 Modprobe.conf .. 52

5.1.2 LMC Configuration Preparation .. 53

5.1.3 Start Servers ... 53

5.1.4 Start Clients .. 53

5.2 Elan to TCP routing ... 54

5.2.1 Modprobe.conf .. 54

5.2.2 LMC configuration preparation ... 54

5.2.3 Start servers ... 54

5.2.4 Start clients ... 54

C H A P T E R I I – 6 . F A I L O V E R ...5 5

6.1 What is Failover? .. 56

6.1.1 The Power Management Software ... 57

6.1.2 Power Equipment ... 57

6.1.3 Heartbeat ... 57
6.1.3.1 Roles of Nodes in a Fai lover ...57

6.2 OST Failover Review ... 59

6.3 MDS Failover Review ... 60

6.4 Configuring MDS and OSTs for Failover .. 61

6.4.1 Starting / Stopping a Resource .. 61

6.4.2 Active/Active Failover Configuration .. 61

vii

Lustre in a nutshell Cluster File Systems, Inc.

6.4.3 Hardware Configurations ... 62
6.4.3.1 Hardware Precondit ions ..62

6.5 Instructions for Failover Setup with Heartbeat Version1 63

6.5.1 Software Instal lat ions ... 63
6.5.2.2 Lustre Conf iguration .. 63
6.5.2.3 Heartbeat Configuration ..64

6.5.3 Mon (Status Monitor) .. 66
6.5.3.1 Mon Setup and Configuration .. 67

6.5.5 Scripts ... 69
6.5.5.1 auth.cf .. 69
6.5.5.2 fai l_lustre.alert .. 71
 6.5.5.3 ha.cf ...73
6.5.5.4 haresources ..74
6.5.5.5 lustre.mon.trap .. 74
6.5.5.6 lustre-resource-monitor ...76
6.5.5.7 mon.cf ...78
6.5.5.8 mon.ini t .. 81
6.5.5.9 mon.trap .. 82
6.5.5.10 S99mon.patch ..84
6.5.5.11 simple.health_check.monitor .. 85

6.6 Instructions for Failover Setup with Heartbeat Version2 87

6.6.1 Software Instal lat ions ... 87

6.6.2 Hardware Configurations ... 87
6.6.2.1 Hardware Precondit ions ..88
6.6.2.2 Lustre Conf iguration .. 88
 6.6.2.3 Heartbeat Conf igurat ion .. 88

6.6.3 Operation ... 90

6.6.4 Scripts ... 91
6.6.4.1 ha.cf .. 91
6.6.4.2 haresources ..91
6.6.4.3 basic.cib.xml .. 91
6.6.4.4 Modif ied basic.cib.xml ...93
6.6.4.5 HA with STONITH ... 94
6.6.4.6 Heartbeart CIB with basic STONITH 95

6.7 Considerations With Failover Software and Solutions 98

C H A P T E R I I – 7 . C O N F I G U R I N G Q U O T A S ..9 9

7.1 Working with Quotas ... 100

7.1.1 Configuring Disk Quotas .. 100

viii

Lustre in a nutshell Cluster File Systems, Inc.

7.1.2 Creating Quota Files and Quota Administration 101

7.1.3 Quota Allocation .. 102

C H A P T E R I I – 8 . R A I D .. 1 0 4

8.1 Considerations for Backend Storage .. 105

8.1.1 Reliabil ity ... 105

8.1.2 Selecting Storage for the MDS and OSS .. 105

8.1.3 Understanding Double Failures with Hardware and Software
RAID5 .. 105

8.1.4 Performance considerations ... 106

8.1.5 Formatt ing ... 106

8.2 Disk Performance Measurement ... 107

8.2.1 Sample Graphs ... 109
8.2.1.1 Graphs for Wri te Performance: .. 109
8.2.1.2 Graphs for Read Performance: ...110

C H A P T E R I I – 9 . B O N D I N G ... 1 1 2

9.1 Network Bonding .. 113

9.2 Requirements ... 114

9.3 Bonding Module Parameters .. 115

9.4 Setup ... 116

9.4.1 Examples ... 116

9.5 Lustre Configuration ... 119

9.6 References .. 120

P A R T I I I . L U S T R E T U N I N G , M O N I T O R I N G A N D
T R O U B L E S H O O T I N G .. 1 2 1

C H A P T E R I I I – 1 . L U S T R E I / O K I T .. 1 2 2

1.1 Prerequisites ... 123

1.2 Running the I/O Kit Tests .. 124

ix

Lustre in a nutshell Cluster File Systems, Inc.

1.2.1 sgpdd_survey ... 124

1.2.2 obdfi lter_survey .. 125

1.2.3 ost_survey ... 128

C H A P T E R I I I – 2 . L U S T R E P R O C .. 1 3 0

2.1 Introduction .. 131

2.1.1 /proc Entries for Lustre .. 131
2.1.1.1 Recovery ... 131
2.1.1.2 Lustre t imeouts/ debugging ... 131

 2.2 Input/output .. 133

2.2.1 Client Input/output RPC Stream Tunables 133

2.2.2 Watching the Client RPC Stream .. 134

2.2.3 Watching the OST Block Input/output Stream 136

2.2.4 mballoc History .. 137

2.3 Locking .. 139

2.4 Debug Support .. 140

2.4.1 RPC Information for Other OBD Devices .. 140

C H A P T E R I I I – 3 . L U S T R E T U N I N G ... 1 4 3

3.1 Module Options ... 144

3.1.1 OST Threads .. 144

3.1.2 MDS Threads .. 144

3.1.3 LNET Tunables ... 144

3.2 DDN Tuning .. 146

3.2.1 Settings .. 146
3.2.1.1 Segment Size ...146
3.2.1.2 maxcmds ... 146
3.2.1.3 Write-back Cache ... 146
3.2.1.4 Further Tuning Tips ... 147

C H A P T E R I I I – 4 . L U S T R E T R O U B L E S H O O T I N G A N D T I P S 1 4 9

4.1 Tips ... 150

x

Lustre in a nutshell Cluster File Systems, Inc.

P A R T I V . L U S T R E F O R U S E R S ...1 5 1

C H A P T E R I V – 1 . F R E E S P A C E A N D Q U O T A S ...1 5 2

1.1 Querying File System Space .. 153

1.2 Using Quota ... 155

C H A P T E R I V – 2 . S T R I P I N G A N D O T H E R I / O O P T I O N S 1 5 6

2.1 File Striping ... 157

2.1.1 Advantages of Striping ... 157

2.1.2 Disadvantages of Striping ... 157

2.1.3 Stripe Size ... 158

2.2 Displaying Striping Information with lfs getstripe 159

2.3 lfs setstripe – Setting Striping Patterns .. 160

2.3.1 Changing Striping for a Subdirectory ... 160

2.3.2 Using a Specif ic Striping Pattern for a Single File 160

2.4 Performing Direct Input/output ... 161

2.4.1 Making File System Objects Immutable .. 161

2.5 Other Input/output Options .. 162

2.5.1 MDS Space Util izat ion ... 162

2.5.2 End to End Client Checksums .. 162

C H A P T E R I V – 3 . L U S T R E S E C U R I T Y ... 1 6 4

3.1 Using Access Control Lists .. 165

3.1.1 How do ACLs work? .. 165

3.1.2 Lustre ACLs .. 165

3.1.3 Examples ... 166

C H A P T E R I V – 4 . O T H E R L U S T R E O P E R A T I N G T I P S 1 6 7

4.1 Expanding the File System by Adding OSTs 168

A simple data migration script ... 172

xi

Lustre in a nutshell Cluster File Systems, Inc.

P A R T V . R E F E R E N C E ...1 7 5

C H A P T E R V – 1 . U S E R U T I L I T I E S (M A N 1) .. 1 7 6

1.1 lfs ... 177

1.1.1 Synopsis .. 177

1.1.2 Description .. 177

1.1.3 Examples ... 179

C H A P T E R V – 2 . L U S T R E P R O G R A M M I N G I N T E R F A C E S (M A N 3) 1 8 3

2.1 Introduction .. 184

2.2 User/Group Cache Upcall .. 185

2.2.1 Name ... 185

2.2.2 Description .. 185

2.2.3 Parameters .. 185

2.2.4 Data structures ... 185

C H A P T E R V – 3 . C O N F I G F I L E S A N D M O D U L E P A R A M E T E R S (M A N 5) 1 8 6

3.1 Introduction .. 187

3.2 Module Options ... 188

3.2.1 LNET Options ... 188
3.2.1.1 Network Topology ...188
3.2.1.2 networks ("tcp") ... 190
3.2.1.3 routes (“”) ..190
3.2.1.4 forwarding ("") .. 190

3.2.2 SOCKLND Kernel TCP/IP LND .. 191

3.2.3 QSW LND .. 192

3.2.4 RapidArray LND ... 193

3.2.5 VIB LND ... 194

3.2.6 OpenIB LND .. 195

3.2.7 Portals LND (Linux) .. 195

xii

Lustre in a nutshell Cluster File Systems, Inc.

C H A P T E R V – 4 . S Y S T E M C O N F I G U R A T I O N U T I L I T I E S (M A N 8) 1 9 8

4.1 lmc ... 199

4.1.1 Synopsis .. 199

4.1.2 Description .. 199

4.1.3 Examples ... 202

4.2 lconf .. 204

4.2.1 Synopsis .. 204

4.2.2 Description .. 204

4.2.3 Examples ... 206

4.3 lctl .. 210

4.3.1 Synopsis .. 210

4.3.2 Description .. 210

4.3.3 Examples ... 214

C H A P T E R V – 5 . S Y S T E M L I M I T S .. 2 1 6

5.1 Introduction .. 217

5.1.1 Maximum Stripe Count ... 217

5.1.2 Maximum Stripe Size .. 217

5.1.3 Minimum Stripe Size ... 217

5.1.4 Maximum Number of OSTs and MDSs ... 217

5.1.5 Maximum Number of Clients ... 217

5.1.6 Maximum Size of a Fi le System .. 217

5.1.7 Maximum File Size .. 218

5.1.8 Maximum Number of Files or Subdirectories in a Single Directory
.. 218

5.1.9 MDS Space Consumption .. 218

5.1.10 Maximum Length of a Filename and Pathname 219

xiii

Lustre in a nutshell Cluster File Systems, Inc.

A P P E N D I X E S ...2 2 1

A P P E N D I X I : U P G R A D I N G F R O M 1 . 4 . 5 .. 2 2 2

Portals and LNET Interoperability ... 223

Portals Compatibi l ity Parameter .. 223

Upgrade a Cluster Using Shut Down .. 223

Upgrading a Cluster “Live” .. 224

Upgrading from 1.4.5 .. 225

F E A T U R E L I S T .. 2 2 7

T A S K L I S T .. 2 3 1

G L O S S A R Y ...2 3 3

A L P H A B E T I C A L I N D E X ..2 4 0

V E R S I O N L O G ... 2 4 3

xiv

Lustre in a nutshell Cluster File Systems, Inc.

Conventions for Command Syntax

All the commands in this manual appear in green color of the font Courier New (point
size 9) with the sign '| $' in the beginning. The other conventions are described below:

 Vertical Bar: '|' : To indicate alternative, mutually exclusive elements

 Square Brackets: '[]' : To indicate optional elements

 Braces: '{ }' : To indicate that a choice is required by the user

 Braces within brackets: '[{ }]' : To indicate that a choice is required within an optional
element

 Backslash: ' \' : To indicate that the command line is continued on the next line

 Boldface: To indicate that the word is to be entered literally as shown

 Italics: To indicate a variable or argument to be replaced by the user with an actual
value

xv

PART I. ARCHITECTURE

Part I. Architecture Lustre in a nutshell
Chapter I – 1. A Cluster with Lustre

CHAPTER I – 1. A CLUSTER WITH LUSTRE

2 Cluster File Systems, Inc.

Lustre in a nutshell Part I. Architecture
Chapter I – 1. A Cluster with Lustre

1.1 Lustre Server
Nodes

A Lustre cluster consists of three major types of systems:

i) the Meta Data Server (MDS)

ii) the Object Storage Server (OSS)

iii) the Lustre clients' server

Each of these systems are internally very modular in layout. For most of the
modules, the request processing layers and message passing layers are shared
between all of the systems, therefore forming an integral part of the framework. The
rest of the modules are unique, for example, the Lustre Lite client module on client
systems.

Figure 1.1.1: A Lustre Cluster shows the expected interactions between the
servers and clients of the Lustre file system.

Figure 1.1.1: A Lustre Cluster

Lustre clients use the Lustre file system. The system interacts with the Object
Storage Servers (OSSs) for file data input/output and with the Meta Data Server
(MDS) for name space operations.

When the client, OSS, and MDS systems are separate, Lustre appears similar to a
cluster file system with a file manager. However, it is also possible to have all these
subsystems running on the same system, leading to a symmetrical layout. Figure
1.1.2: Interactions between the systems illustrates the main protocols for file
system operations.

Cluster File Systems, Inc. 3

Part I. Architecture Lustre in a nutshell
Chapter I – 1. A Cluster with Lustre

Figure 1.1.2: Interactions between the systems

1.1.1 The Meta Data Server
The Meta Data Server (MDS) is perhaps the most complex of the Lustre
subsystems. It provides back-end storage for the meta data service and updates this
service with every transaction over a network interface. The MDS presently uses a
journal file system, however, other options such as shared object storage are also
considered. Figure 1.1.3: MDS Software Module illustrates how the MDS functions.

The MDS uses the locking modules and existing features of a journal file system,
such as Ext3 or XFS. In Lustre, the complexity is limited due to the presence of a
single meta data server. The system avoids single points of failure by offering
failover meta data services based on existing solutions such as Linux-HA. In a
Lustre file system with clustered meta data, meta data processing is load balanced,
resulting in significant complexity in accessing persistent meta data concurrently.

Figure 1.1.3: MDS Software Module

4 Cluster File Systems, Inc.

Lustre in a nutshell Part I. Architecture
Chapter I – 1. A Cluster with Lustre

1.1.2 The Object Storage
Servers

The core concept to Lustre is object storage. Objects can be thought of as i-nodes
that are used to store file data. An Object Storage Server (OSS) is a server node
that runs the Lustre software stack. It has one or more network interfaces, and
usually one or more disks. Every OSS exports one or more Object Storage Targets
(OST).

An Object Storage Target is a software interface to a single exported back-end
volume. It is conceptually similar to an NFS export except that an OST contains file
system objects instead of the whole name space.

OSTs provide the file input/output service in a Lustre cluster by facilitating access to
these objects. The name space is managed by a meta data service, which manages
the Lustre i-nodes. Such i-nodes can be directories, symbolic links, or special
devices where the associated data and meta data is stored on the meta data server.
When a Lustre i-node represents a file, the meta data merely holds references to the
file data objects stored on the OSTs.

The OSTs perform the block allocation for data objects, leading to distributed and
scalable allocation of data. The OSTs also enforce security on access to objects
from the clients. An interesting point to note is that the client-OST protocol bears
some similarity to systems like DAFS in that it combines request processing with
remote DMA.

The software modules in the OSTs are indicated in Figure 1.1.4: OST Software
Module. This graphic shows how object storage targets provide a networked
interface to other object storage. The second layer of object storage, direct object
storage drivers, consists of drivers that manage objects. These objects are the files
on persistent storage devices. There are many choices for direct drivers, which are
often interchangeable. Objects can be stored as raw ext2 i-nodes or as files in many
journal file systems by the filtering driver, which is now the standard driver for Lustre
Lite. More exotic compositions of subsystems are possible, for example, in some
situations an OBD filter direct driver can run on an NFS file system (where a single
NFS client is all that is supported).

In Figure 1.1.4: OST Software Module, networking is expanded into its
subcomponents. Lustre request processing is built on a thin API, called the LNET
API. LNET inter-operates with a variety of network transports through Network
Abstraction Layers (NAL).

This API provides the delivery and event generation in connection with network
messages. It also provides advanced capabilities such as using Remote DMA
(RDMA) if the underlying network transport layer supports this.

Cluster File Systems, Inc. 5

Part I. Architecture Lustre in a nutshell
Chapter I – 1. A Cluster with Lustre

Figure 1.1.4: OST Software Module

Figure 1.1.5: Client Software Module

6 Cluster File Systems, Inc.

Lustre in a nutshell Part I. Architecture
Chapter I – 2. Understanding Lustre Networking

CHAPTER I – 2. UNDERSTANDING LUSTRE
NETWORKING

Cluster File Systems, Inc. 7

Part I. Architecture Lustre in a nutshell
Chapter I – 2. Understanding Lustre Networking

2.1 Introduction

Lustre now contains a new networking model known as LNET. LNET is designed for
more complex topologies, better routing capabilities and simplified configuration.
However, until a new configuration scheme is implemented for Lustre in 1.6.0,
configuring LNET requires a hybrid of the old lconf/XML configuration and the new
module-based configuration. Your patience through this transition period is
appreciated. Lustre 1.6 will be configured entirely via standard Unix/Linux
commands ('mount', 'mkfs'), networking will be configured with kernel module
options.

8 Cluster File Systems, Inc.

Lustre in a nutshell Part I. Architecture
Chapter I – 2. Understanding Lustre Networking

2.2 Old Schema

Up until Lustre 1.4.5 was developed, networking configuration under Portals was
defined in the configuration XML file. Every node had a single network ID (NID) that
Portals used to identify the communication end points along with a specified network
type (nettype). Different networks of the same type were specified with “cluster_id”
attributes, similarly a single NID could be bound to multiple network interfaces
through “hostaddr” attributes. Routing capabilities were limited to Elan/TCP and the
routing function itself was over-complex in the way it was defined in the XML.

Cluster File Systems, Inc. 9

Part I. Architecture Lustre in a nutshell
Chapter I – 2. Understanding Lustre Networking

2.3 New Schema

Under the new schema the network ID (NID) concept expands to include the
network where all communication takes place. This means there is a NID for every
network a node uses and each NID now includes the network type A network
number, linked to the NID, distinguishes different networks of the same type. By
default, LNET uses all the available interfaces for a specified network type, but all
networking hardware specifics, including routing, are now defined as module
options.

An important point to note is that due to the NID changes, old portals and new LNET
networking are not wire compatible. Upgrading a live system can be considered but
it must be done in a particular order. See Appendix 1. Upgrading from 1.4.5.

Important terms:

Network: A group of nodes that communicate directly with each other. It is how
LNET represents a single cluster. Multiple networks can be used to connect clusters
together. Each network has a unique type and number (e.g. tcp3, elan1).

Network types include tcp (Ethernet), openib (Mellanox-Gold Infiniband), iib
(Infinicon Infiniband), vib (Voltaire Infiniband), ra (RapidArray), elan (Quadrics
Elan), gm (Myrinet), LNET.

NID: A Lustre networking address. Every node has one NID for each network it is
on.

LND: Lustre networking device layer, a modular subcomponent of LNET that
implements one of the network types.

10 Cluster File Systems, Inc.

PART II. LUSTRE ADMINISTRATION

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 1. Prerequisites

CHAPTER II – 1. PREREQUISITES

12 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 1. Prerequisites

1.1 Lustre Version
Selection

1.1.1 How to get Lustre
The current, stable version of Lustre is available for download from the website of
Cluster File Systems:

http://www.clusterfs.com/download.html

The software available for download on this website is released under the GNU
General Public License. It is strongly recommended to read the complete license
and release notes for this software before downloading it, if you have not done so
already. The license and the release notes can also be found at the aforementioned
website.

1.1.2 Supported
Configurations

Cluster File Systems, Inc. supports Lustre on the configurations listed in Table1.1.1:
Supported Configurations.

ASPECT SUPPORT TYPE
Operating Systems: Red Hat Enterprise Linux 3+, SuSE Linux Enterprise

Server 9, Linux 2.4 and 2.6

Platforms IA-32, IA-64, x86-64, PowerPC architectures, and
mixed-endian clusters

Interconnect TCP/IP; Quadrics Elan 3 and 4; Myranet, Mellanox,
Infiniband (Voltaire, OpenIB and Silverstrom)

Table 1.1.1: Supported Configurations

Cluster File Systems, Inc. 13

http://www.clusterfs.com/download.html

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 1. Prerequisites

1.2 Using a Pre-
packaged Lustre
Release

Due to the complexity involved in building and installing Lustre, Cluster File Systems
has made available several different pre-packaged releases that cover some of the
most common configurations.

The pre-packaged release consists of five different RPM packages given below.
Install them in the following order:

 kernel-smp-<release-ver>.rpm – This is the Lustre patched Linux kernel RPM.
Use it with matching Lustre Utilities and Lustre Modules package.

 kernel-source-<release-ver>.rpm – This is the Lustre patched Linux kernel
source RPM. This comes with the kernel package, but is not required to build or
use Lustre.

 lustre-modules-<release-ver>.rpm – The Lustre kernel modules for the above
kernel.

 lustre-<release-ver>.rpm – These are the Lustre Utilities or userspace utilities
for configuring and running Lustre. Use them only with the matching kernel RPM
as mentioned above.

 lustre-source-<release-ver>.rpm – This contains the Lustre source code
(including the kernel patches). It is not required to build or use Lustre.

The source package is required only if you need to build your own modules (for
networking, and so on) against the kernel source.

NOTE: Lustre contains kernel modifications, which interact with your storage
devices and may introduce security issues and data loss if not installed,
configured, or administered properly. Please exercise caution and back up all
data before using this software.

1.2.1 Choosing a Pre-
packaged Kernel

Determining the best suitable pre-packaged kernel, depends largely on the
combination of hardware and software being run. CFS provides pre-packaged
releases on our download Web site.

1.2.2 Lustre Tools
The lustre * package is required for proper Lustre setup and monitoring. The
package contains many tools, the most important ones being:

 lconf: High-level configuration tool that acts on XML files;

 lctl: A low-level configuration utility that can also be used for troubleshooting and
debugging;

14 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 1. Prerequisites

 lfs: A tool for reading/setting striping information for the cluster, as well as
performing other actions specific to Lustre File Systems;

 mount.lustre: A mounting script required by Lustre clients.

1.2.3 Other Required
Software

Besides the tools provided along with Lustre, Lustre also requires some separate
software tools to be installed.

1.2.3.1 Core Requirements

Table 1.2.1: Software URLs contains Hyperlinks to the software tools required by
Lustre. Depending on your operating system, pre-packaged versions of these tools
may be available, either from the sources listed below, or from your operating
system vendor.

SOFTWARE VERSION LUSTRE FUNCTION
perl >=5.6 Scripting language: used by monitoring and test

scripts perl
http://www.perl.com/download.csp

python >=2 Scripting language: required by core Lustre tools
python
http://www.python.org/download/

PyXML >=0.8 XML processor for python: requires PyXML
http://sourceforge.net/project/showfiles . php?group_i
d=6473

Table 1.2.1: Software URLs

1.2.3.2 High Availability Software

If you plan to enable failover server functionality with Lustre (either on OSS or on
MDS), a high availability software will be a necessary addition to your cluster
software. One of the better known high availability software packages is Heartbeat.

Linux-HA (Heartbeat) supports redundant system with access to the Shared
(Common) Storage with a dedicated connectivity; and can determine the general
state of the system. (For details, see Part II - Chapter 6. Failover.)

1.2.3.3 Debugging Tools

Things inevitably go wrong – disks fail, packets get dropped, software has bugs –
and when they do, it is always useful to have debugging tools on hand to help figure
out, how and why.

The most useful tool in this regard is GDB, coupled with crash. Together, these tools
can be used to investigate both, live systems and kernel core dumps. There are also
useful kernel patches/ modules, such as netconsole and netdump, that allow core
dumps to be made across the network.

More information about these tools can be found at the following locations:

Cluster File Systems, Inc. 15

http://sourceforge.net/project/showfiles.php?group_id=6473
http://sourceforge.net/project/showfiles.php?group_id=6473
http://www.python.org/download/
http://www.perl.com/download.csp

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 1. Prerequisites

GDB: http://www.gnu.org/software/gdb/gdb.html

crash: http://oss.missioncriticallinux.com/projects/crash/

netconsole: http://lwn.net/2001/0927/a/netconsole.php3

netdump: http://www.redhat.com/support/wpapers/redhat/netdump/

16 Cluster File Systems, Inc.

http://www.redhat.com/support/wpapers/redhat/netdump/
http://lwn.net/2001/0927/a/netconsole.php3
http://oss.missioncriticallinux.com/projects/crash/
http://www.gnu.org/software/gdb/gdb.html

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 1. Prerequisites

1.3 Environment
Requirements

1.3.1 Consistent Clocks
Lustre always uses the client clock for timestamps. If the machine clocks across the
cluster are not in sync, Lustre should not break. However, the unsynchronized
clocks in a cluster will always be a source of headache as it will be very difficult to
debug any multi-node issue, or otherwise correlate the logs. For this reason, CFS
recommends that the machine clocks should be kept in sync as much as possible.
The standard way to accomplish this is by using the Network Time Protocol, or NTP.
All the machines in your cluster should synchronize their time from a local time
server (or servers) at a suitable time interval.

More information about ntp can be found at:

http://www.ntp.org/

1.3.2 Universal UID/GID
In order to maintain uniform file access permissions on all the nodes of your cluster,
the same user (UID) and group (GID) IDs should be used on all the clients. Pretty
much like any cluster usage, Lustre uses the common UID/GID on all the cluster
nodes.

1.3.3 Proper Kernel I/O
Elevator

One of the many functions of the Linux kernel (indeed, of any OS kernel), is to
provide access to disk storage. The algorithm which decides how the kernel
provides disk access is known as the "I/O Scheduler," or "Elevator." In the 2.6 kernel
series, there are four interchangeable schedulers, as follows:

 cfq- "Completely Fair Queuing" makes a good default for most workloads on
general-purpose servers. It is not a good choice for Lustre OSS nodes,
however, as it introduces overhead and I/O latency

 as - "Anticipatory Scheduler" is best for workstations and other systems with
slow, single-spindle storage. It is not at all good for OSS nodes, as it
attempts to aggregate or batch requests in order to improve performance for
slow disks

 deadline - “Deadline” is a relatively simple scheduler which tries to minimize
I/O latency by re-ordering requests to improve performance. Best for OSS
nodes with "simple" storage, that is software RAID, JBOD, LVM, and so on

 noop- “NOOP” is the most simple scheduler of all, and is really just a single
FIFO queue. It does not attempt to optimize I/O at all, and is best for OSS
nodes that have high-performance storage, that is DDN, Engenio, and so
on. This scheduler may yield the best I/O performance if the storage
controller has been carefully tuned for the I/O patterns of Lustre

Cluster File Systems, Inc. 17

http://www.ntp.org/

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 1. Prerequisites

Please note that the above is just our best advice, and we strongly suggest that
local testing is the best way to ensure high performance with Lustre. Also note that
most distributions ship with either “cfq” or “as” configured as the default scheduler,
and thus choosing an alternate scheduler is an absolutely necessary step in
configuring Lustre for the best performance. The “cfq” and “as” schedulers should
never be used for server platform.

Please see the following resources for more in-depth discussion on choosing an I/O
scheduler algorithm for Linux:

 http://www.redhat.com/magazine/008jun05/features/schedulers

 http://www.novell.com/brainshare/europe/05_presentations/tut303.pdf

 http://kerneltrap.org/node/3851

There are two ways to change the I/O scheduler - at boot time, or with new kernels
at runtime. For all Linux kernels, appending 'elevator={noop|deadline}' to the kernel
boot string sets the I/O elevator.

With LILO, you can use the 'append' keyword:
image=/boot/vmlinuz-2.6.14.2
label=14.2
append="elevator=deadline"
read-only
optional

With GRUB, append the string to the end of the kernel command:
title Fedora Core (2.6.9-5.0.3.EL_lustre.1.4.2custom)
root (hd0,0)
kernel /vmlinuz-2.6.9-5.0.3.EL_lustre.1.4.2custom ro
root=/dev/VolGroup00/LogVol00 rhgb noapic quiet elevator=deadline

With newer Linux kernels (Red Hat Enterprise Linux v3 Update 3 does not have this
feature. It is present in the main Linux tree as of 2.6.15), one can change the
scheduler while running. If the file /sys/block/<DEVICE>/queue/scheduler exists
(where DEVICE is the block device you wish to affect), it will contain a list of
available schedulers and can be used to switch the schedulers.

(hda is the <disk>):
[root@cfs2]# cat /sys/block/hda/queue/scheduler
noop [anticipatory] deadline cfq
[root@cfs2 ~]# echo deadline > /sys/block/hda/queue/scheduler
[root@cfs2 ~]# cat /sys/block/hda/queue/scheduler
noop anticipatory [deadline] cfq

The other schedulers (anticipatory and cfq) are better suited for desktop use.

18 Cluster File Systems, Inc.

http://kerneltrap.org/node/3851
http://www.novell.com/brainshare/europe/05_presentations/tut303.pdf
http://www.redhat.com/magazine/008jun05/features/schedulers/

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 2. Lustre Installation

CHAPTER II – 2. LUSTRE INSTALLATION

Cluster File Systems, Inc. 19

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 2. Lustre Installation

2.1 Installing Lustre

Follow the steps outlined below to install Lustre:

1. Install the Linux base OS as per your requirements along with the prerequisites
like GCC, Python and Perl (as mentioned in Part II – Chapter 1. Prerequisites).

2. Install the RPMs as described in section 1.2 Using a Pre-packaged Lustre
Release, in Part II – Chapter 1. Prerequisites. The preferred installation order is:

 the Lustre patched version of the linux kernel (kernel-*)

 the Lustre modules for that kernel (lustre-modules-*)

 the Lustre user space programs (lustre-*). Other packages (optional).

3. Verify that all cluster networking is correct. This may include /etc/hosts, or DNS.
Set the correct networking options for Lustre in /etc/modprobe.conf. (See 5.1.1 and
5.2.2 Modprobe.conf in Part II – Chapter 5. More Complicated Configurations.)

TIP:
When installing Lustre with InfiniBand you need to keep the ibhost, kernel and
Lustre all on the same revision. Follow these steps to achieve this:
1. Install the kernel source (Lustre patched).
2. Install the Lustre source and the ibhost source.
3. Compile the ibhost against your kernel.
4. Compile the Linux kernel.
5. Compile Lustre against the ibhost source --with-vib=<path to ibhost>.
Now you can use the RPMs created by the above steps.

20 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 2. Lustre Installation

2.2 Quick
Configuration of
Lustre

As we have already discussed, Lustre consists of three types of subsystems – a
metadata server (MDS), object storage targets (OSTs) and clients. All of these can
co-exist on a single system or can run on different systems. The object storage
servers and metadata server together present a Logical Object Volume (LOV) which
is an abstraction that appears in the configuration.

It is possible to set up the Lustre system with many different configurations by using
the administrative utilities provided with Lustre. Lustre includes some sample scripts
in the /usr/lib/lustre/examples directory on a system where Lustre is installed (or the
lustre/tests subdirectory of a source code installation). These scripts enable quick
setup of some simple, standard configurations.

The next section describes how to install a simple Lustre setup using these scripts.

2.2.1 Single System Test
Using the llmount.sh Script

The simplest Lustre installation is a configuration where all three subsystems
execute on a single node. You can execute the script llmount.sh, located in the
/usr/lib/lustre/examples directory, to set up, initialize and start the Lustre file system
on a single node, using loopback devices in place of physical partitions. This script
first executes a configuration script identified by a NAME variable. This configuration
script then uses the LMC utility to generate an XML configuration file, which is in
turn used by the lconf utility to perform the actual system configuration. The
llmount.sh script then loads all the modules required by the specified configuration.

Next, the script creates small loopback file systems in /tmp for the server nodes.
You can change the size and location of these files by modifying the configuration
script.

Finally, the script mounts the Lustre file system at the mount point specified in the
initial configuration script. The default used is /mnt/lustre.

Outlined below are the steps needed to configure and test Lustre for a single
system. (You can use the llmount.sh script for initial testing to hide many of the
background steps needed to configure Lustre. It is not intended to be used as a
configuration tool for production installations.)

1. Starting the system: Two initial configuration scripts are provided for a single
system test. In order to start the system, update these scripts as per the changes
made to the loopback file system locations or sizes, or as per the changes made to
the Lustre file system mount point.

• Execute the local.sh script with the LMC commands to generate an XML
(local.xml) configuration file for a single system.

• Execute the lov.sh script with the LMC commands to generate a configuration file
with an MDS, LOV, two OSTs and a client.

2. Executing the llmount.sh script as shown below, by specifying the setup
based on either local.sh or lov.sh:

$ NAME={local|lov} sh llmount.sh

Cluster File Systems, Inc. 21

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 2. Lustre Installation

Below is a sample output when this command is executed:
$ NAME=local sh llmount.sh
loading module: libcfs srcdir None devdir libcfs
loading module: lnet srcdir None devdir lnet
loading module: ksocklnd srcdir None devdir klnds/socklnd
loading module: lvfs srcdir None devdir lvfs
loading module: obdclass srcdir None devdir obdclass
loading module: ptlrpc srcdir None devdir ptlrpc
loading module: ost srcdir None devdir ost
loading module: ldiskfs srcdir None devdir ldiskfs
loading module: fsfilt_ldiskfs srcdir None devdir lvfs
loading module: obdfilter srcdir None devdir obdfilter
loading module: mdc srcdir None devdir mdc
loading module: osc srcdir None devdir osc
loading module: lov srcdir None devdir lov
loading module: mds srcdir None devdir mds
loading module: llite srcdir None devdir llite
NETWORK: NET_mds.clusterfs.com_tcp \
NET_mds.clusterfs.com_tcp_UUID tcp mds.clusterfs.com
OSD: OST_mds.clusterfs.com OST_mds.clusterfs.com_UUID obdfilter \
/tmp/ost1-mds.clusterfs.com 400000 ldiskfs no 0 0
OST mount options: errors=remount-ro
MDSDEV: mds1 mds1_UUID /tmp/mds1-mds.clusterfs.com ldiskfs no
recording clients for filesystem: FS_fsname_UUID
Recording log mds1 on mds1
LOV: lov_mds1 110aa_lov_mds1_3af7a3d69c mds1_UUID 1 1048576 0 0 \
[u'OST_mds.clusterfs.com_UUID'] mds1
OSC: OSC_mds.clusterfs.com_OST_mds.clusterfs.com_mds1 \
110aa_lov_mds1_3af7a3d69c OST_mds.clusterfs.com_UUID
End recording log mds1 on mds1
MDSDEV: mds1 mds1_UUID /tmp/mds1-mds.clusterfs.com ldiskfs \
400000 no
MDS mount options: errors=remount-ro,user_xattr,acl,
LOV: lov1 4987a_lov1_765ed779f4 mds1_UUID 1 1048576 0 0 \
[u'OST_mds.clusterfs.com_UUID'] mds1
OSC: OSC_mds.clusterfs.com_OST_mds.clusterfs.com_MNT_mds \
.clusterfs.com 4987a_lov1_765ed779f4 OST_mds.clusterfs.com_UUID
MDC: MDC_mds.clusterfs.com_mds1_MNT_mds.clusterfs.com \
f9c37_MNT_mds.clusterfs._30aaf9b569 mds1_UUID
MTPT: MNT_mds.clusterfs.com MNT_mds.clusterfs.com_UUID \
/mnt/lustre mds1_UUID lov1_UUID

Now you can verify if the file system is mounted from the output of df:

22 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 2. Lustre Installation

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/ubd/0 1011928 362012 598512 38% /
/dev/ubd/1 6048320 3953304 1787776 69% /r
none 193712 16592 167120 10% /mnt/lustre

NOTE: The output of the df command following the output of the script shows
that the Lustre file system is mounted on the mount-point /mnt/lustre. Although
the actual output of the script included with your Lustre installations may have
changed due to enhancements or additional messages, they should still
resemble the example above.

You can also verify that the Lustre stack has been set up correctly by observing the
output of find /proc/fs/lustre.

NOTE: The actual output may depend on the inserted modules and on the
instantiated OBD devices. Also note that the file system statistics presented
from /proc/fs/lustre are expected to be the same as those obtained from df.

3. Bringing down a cluster and cleaning it up by using the llmountcleanup.sh
script: Execute the command below to cleanup and unmount the file system:

$ NAME=<local/lov> sh llmountcleanup.sh

4. Remounting the file system by using the llrmount.sh script: llmount.sh
reformats the devices. Therefore use llrmount.sh if you want to retain data in the file
system.

$ NAME=<local/lov> sh llrmount.sh

Cluster File Systems, Inc. 23

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 2. Lustre Installation

2.3 Using Supplied
Configuration Tools

It is possible to set up Lustre on a single system or on multiple systems. Lustre
distribution comes with utilities that can be used to create configuration files easily
and to set up Lustre for various configurations. Lustre uses three administrative
utilities – lmc, lconf and lctl – to configure nodes. The lmc utility is used to create
XML configuration files describing the configuration. The lconf utility uses the
information in this configuration file to invoke the low-level configuration utility lctl.
Lastly, lctl actually configures the systems. For further details on these utilities
please refer the man pages. You must keep the complete configuration for the
whole cluster in a single XML file, and similarly, use the same file on all the cluster
nodes to configure the individual nodes.

The next few sections describe the process of setting up a variety of configurations.

TIP:
You can use "lconf -v" to show more verbose messages when running other
lconf commands.

NOTE: You must use fstype = ext3 for Linux 2.4 kernels, and fstype = ldiskfs
for 2.6 kernels. (In 2.4, Lustre patches the ext3 driver while in 2.6, it provides its
own driver.)

2.3.1 Single Node Lustre
Let us consider a simple configuration script where the MDS, the OSTs and the
client are running on a single system. You can use the LMC utility to generate a
configuration file for this as shown below. All the devices in the script are shown to
be loopback devices, but you can specify any device here. The size option is
required only for the loopback devices; for others the utility will extract the size from
the device parameters. (See the usage of real disks below.)

#!/bin/sh
local.sh

Create a node:
rm -f local.xml
lmc -m local.xml --add node --node localhost
lmc -m local.xml --add net --node localhost –nid localhost@tcp \
--nettype lnet

Add the MDS:
lmc -m local.xml --add mds --node localhost --mds \
mds-test --fstype ldiskfs –-dev /tmp/mds-test –size 50000

Add the logical object volume (Note the relationship to the MDS):

24 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 2. Lustre Installation

lmc -m local.xml --add lov --lov lov-test --mds mds-test \
--stripe_sz 4194304 --stripe_cnt -1 --stripe_pattern 0

Add the OSTs: (Note the linkage to the LOV)
lmc -m local.xml --add ost --node localhost –lov lov-test \
--ost ost1-test --fstype ldiskfs –dev /tmp/ost1-test --size 100000
lmc -m local.xml --add ost --node localhost –lov lov-test \
--ost ost2-test --fstype ldiskfs –dev /tmp/ost2-test --size 100000

Define the mount point:
lmc -m local.xml --add mtpt --node localhost –path /mnt/lustre \
--mds mds-test --lov lov-test

On running the script, these commands create a local.xml file describing the
specified configuration. Now you can execute the actual configuration by using the
command below.

To configure using LCONF:
$ sh local.sh
$ lconf --reformat local.xml

This command loads all the required Lustre and LNET modules and also does the
low level configuration of every device using lctl. The reformat option here is
essential to use the first time to initialize the file systems on the MDS and OSTs. If it
is used on any subsequent attempts to bring up the Lustre system it will re-initialize
the file systems.

2.3.2 Multiple Node Lustre
Now let us consider an example when setting up Lustre on multiple systems – with
the MDS on one node, the OSTs on other nodes and the client on one or more
nodes.

You can use the following configuration script to create this setup by replacing
node-* in the example with the hostnames of real systems. The servers, clients and
the node running the configuration script all need to resolve those hostnames into IP
addresses via DNS or /etc/hosts. One common problem with some Linux setups is
that the hostname is mapped in /etc/hosts to 127.0.0.1, which causes the clients to
fail in communicating with the servers. For this example we will use read disks, and
we add some mount options. (For a real disks, these mount options should be
considered mandatory)

1. Define the nodes, with a generic client node:
#!/bin/bash
A few handy definitions:
dt=`date +%m%d_%H%M`
config="test_${dt}.xml"
LMC="lmc -m $config"

first, clean up
rm -f $config

Cluster File Systems, Inc. 25

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 2. Lustre Installation

${LMC} --add node --node ft2
${LMC} --add node --node d1_q_0
${LMC} --add node --node d2_q_0
${LMC} --add node --node client

2. Configure the networking:
${LMC} --add net --node client --nid '*' --nettype lnet
${LMC} --add net --node d1_q_0 --nid 10.67.73.160@tcp --nettype \
lnet
${LMC} --add net --node d2_q_0 --nid 10.67.73.150@tcp --nettype \
lnet
${LMC} --add net --node ft2 --nettype lnet --nid 10.67.73.181@tcp

3. Define the MDS:
${LMC} --add mds --node ft2 --mds mds-l --fstype ldiskfs --dev \
$MDSDEV --failover --quota quotaon=ug,iunit=200,bunit=10 \
--mountfsoptions=acl || exit 7

4. Add the LOV:
${LMC} --add lov --lov lov-l --mds mds-l --stripe_sz 4194304 \
--stripe_cnt -1 --stripe_pattern 0

5. Add the OSTs:
${LMC} --add ost --node d1_q_0 --lov lov-l --ost ost-alpha \
--fstype ldiskfs --dev /dev/sdb1 --failover --mountfsoptions \
extents,mballoc
${LMC} --add ost --node d2_q_0 --lov lov-l --ost ost-beta \
--fstype ldiskfs --dev /dev/sdb2 --failover --mountfsoptions \
extents,mballoc

6. Define the client mountpoint:
${LMC} --add mtpt --node client --path /mnt/lustre --mds mds-l \
--lov lov-l --mountfsoptions extents,mballoc

7. Run the script to generate the config.xml (only once):

Put the file at a location where all the nodes can access it, for example, an NFS
share. The XML is not especially human-readable, so we do not include an example
here.

2.3.3 Starting Lustre
Follow the steps below to start Lustre for the first time.

1 . Reformat and start the OSTs:
$ lconf --reformat --node node-ost1 config.xml
$ lconf --reformat --node node-ost2 config.xml

26 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 2. Lustre Installation

$ lconf --reformat --node node-ost3 config.xml

Sample output:
loading module: libcfs srcdir None devdir libcfs
loading module: lnet srcdir None devdir lnet
loading module: ksocklnd srcdir None devdir klnds/socklnd
loading module: lvfs srcdir None devdir lvfs
loading module: obdclass srcdir None devdir obdclass
loading module: ptlrpc srcdir None devdir ptlrpc
loading module: ost srcdir None devdir ost
loading module: ldiskfs srcdir None devdir ldiskfs
loading module: fsfilt_ldiskfs srcdir None devdir lvfs
loading module: obdfilter srcdir None devdir obdfilter
NETWORK: NET_oss_tcp NET_oss_tcp_UUID tcp oss
OSD: oss-test oss-test_UUID obdfilter /dev/hdc 0 ldiskfs no 0 256
OST mount options: errors=remount-ro
File not found or readable: oss
File not found or readable: oss
configuring for host: ['oss']
setting /proc/sys/net/core/rmem_max to at least 16777216
setting /proc/sys/net/core/wmem_max to at least 16777216
Service: network NET_oss_tcp NET_oss_tcp_UUID
loading module: libcfs srcdir None devdir libcfs
+ /sbin/modprobe libcfs
loading module: lnet srcdir None devdir lnet
+ /sbin/modprobe lnet
+ /sbin/modprobe lnet
loading module: ksocklnd srcdir None devdir klnds/socklnd
+ /sbin/modprobe ksocklnd
Service: ldlm ldlm ldlm_UUID
loading module: lvfs srcdir None devdir lvfs
+ /sbin/modprobe lvfs
loading module: obdclass srcdir None devdir obdclass
+ /sbin/modprobe obdclass
loading module: ptlrpc srcdir None devdir ptlrpc
+ /sbin/modprobe ptlrpc
Service: osd OSD_oss-test_oss OSD_oss-test_oss_UUID
loading module: ost srcdir None devdir ost

Cluster File Systems, Inc. 27

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 2. Lustre Installation

+ /sbin/modprobe ost
loading module: ldiskfs srcdir None devdir ldiskfs
+ /sbin/modprobe ldiskfs
loading module: fsfilt_ldiskfs srcdir None devdir lvfs
+ /sbin/modprobe fsfilt_ldiskfs
loading module: obdfilter srcdir None devdir obdfilter
+ /sbin/modprobe obdfilter
+ sysctl lnet/debug_path /tmp/lustre-log-oss
+ /usr/sbin/lctl modules > /tmp/ogdb-oss
Service: network NET_oss_tcp NET_oss_tcp_UUID
NETWORK: NET_oss_tcp NET_oss_tcp_UUID tcp oss
Service: ldlm ldlm ldlm_UUID
Service: osd OSD_oss-test_oss OSD_oss-test_oss_UUID
OSD: oss-test oss-test_UUID obdfilter /dev/hdc 0 ldiskfs no 0 256
+ sfdisk -s /dev/hdc
+ mkfs.ext2 -j -b 4096 -F -J size=388 -I 256 /dev/hdc
+ tune2fs -O dir_index /dev/hdc
+ dumpe2fs -f -h /dev/hdc
no external journal found for /dev/hdc
OST mount options: errors=remount-ro
+ /usr/sbin/lctl
 attach obdfilter oss-test oss-test_UUID
 quit
+ /usr/sbin/lctl
 cfg_device oss-test
 setup /dev/hdc ldiskfs f errors=remount-ro
 quit
+ /usr/sbin/lctl
 attach ost OSS OSS_UUID
 quit
+ /usr/sbin/lctl
 cfg_device OSS
 setup
 quit

2. Reformat and start the MDS:
$ lconf --reformat --node node-mds config.xml

3. Mount the file system on the clients:
$ mount -t lustre node-mds:/mds-test/client /mnt/lustre

28 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 2. Lustre Installation

2.4 Building from
Source

2.4.1 Building Your Own
Kernel

In the case that the hardware is not standard or CFS support have asked that you
apply a patch, Lustre will require some changes to the core Linux kernel. These
changes are organized in a set of patches in the kernel_patches directory of the
Lustre CVS repository. If you are building your kernel from the source you will need
to apply the appropriate patches.

Managing patches for the kernels is a very involved process given that most patches
are intended to work with several kernels. To facilitate support, CFS maintains the
tested version on the FTP site as some versions may not work properly with the
patches from CFS. We recommend you use the Quilt package developed by
Andreas Gruenbacher as it simplifies the process considerably. Patch management
with Quilt works as follows:

 a series file lists a collection of patches

 the patches in a series form a stack

 using Quilt you then push and pop the patches

 you then edit and refresh (update) the patches in the stack that is being
managed with Quilt

 you can then revert inadvertent changes and fork or clone the patches and
conveniently show the difference in work, before and after.

2.4.1.1 Patch Series Selection

Depending on the kernel being used, a different series of patches needs to be
applied. CFS maintains a collection of different patch series files for the various
supported kernels in the directory lustre/kernel_patches/series/. This directory is in
the Lustre tarball distributed by CFS.

For instance, the file lustre/kernel_patches/series/rh-2.4.20 lists all the patches that
should be applied to a Red Hat 2.4.20 kernel to build a Lustre compatible kernel.

The current set of all the supported kernels and their corresponding patch series can
always be found in the file lustre/kernel_patches/which_patch.

2.4.1.2 Using Quilt

A variety of Quilt packages (RPMs, SRPMs, and tarballs) are available from Linux.
As Quilt changes from time to time, we advise you to download the appropriate
package from CFS' FTP site:

ftp://ftp.clusterfs.com/pub/quilt/

Quilt RPMs have some installation dependencies on other utilities, for example, the
core-utils RPM that is available only in Red Hat 9. You will also need a recent

Cluster File Systems, Inc. 29

ftp://ftp.clusterfs.com/pub/quilt/

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 2. Lustre Installation

version of the diffstat package. If you cannot fulfill the Quilt RPM dependencies for
the packages made available by CFS we suggest building Quilt from the tarball.

After you have acquired the Lustre source (CVS or tarball) and chosen a series file
to match your kernel sources you must also choose a kernel config file. The
supported kernel ".config" files are in the folder
lustre/kernel_patches/kernel_configs, and are named in such a way as to indicate
which kernel and architecture they are meant for. For example, vanilla-
2.4.20.uml.config is a UML config file for the vanilla 2.4.20 kernel series.

Next unpack the appropriate kernel source tree. For the purposes of illustration, this
documentation assumes that the resulting source tree is in /tmp/kernels/linux-2.4.20,
called the destination tree.

You are now ready to use Quilt to manage the patching process for your kernel. The
following set of commands will setup the necessary symlinks between the Lustre
kernel patches and your kernel sources.

$ cd /tmp/kernels/linux-2.4.20
$ quilt setup -l ../lustre/kernel_patches/series/rh-2.4.20 -d \
../lustre/kernel_patches/patches

You can now have Quilt apply all the patches in the chosen series to your kernel
sources by using the set of commands given below.

$ cd /tmp/kernels/linux-2.4.20
$ quilt push -av

If the right series files are chosen, and the patches and the kernel sources are up-to-
date, the patched destination Linux tree should now be able to act as a base Linux
source tree for Lustre.

The patched Linux source does not need to be compiled in order to build Lustre
from it. However, the same Lustre-patched kernel must be compiled and then
booted on any node on which you intend to run the version of Lustre being built
using this patched kernel source.

2.4.2 Building Lustre
The Lustre source can be obtained by registering on the site:

http://www.clusterfs.com/download.html

Once you register you will receive an email with the link for download.

The following set of packages are available for each supported Linux distribution
and architecture. The files employ the naming convention:

kernel-smp-<kernel versrion>_lustre.<lustre version>.<arch>.rpm

 Example of binary packages for 1.4.7:

• kernel-smp-2.6.9-42.EL_lustre.1.4.7.i686.rpm will contain patched kernel

• lustre-1.4.7-2.6.9_42.EL_lustre.1.4.7smp.i686.rpm will contain Lustre user space
files and utilities

• lustre-modules-1.4.7-2.6.9_42.EL_lustre.1.4.7smp.i686.rpm will contain Lustre
modules (kernel/fs/lustre and kernel/net/lustre).

You can install the binary packages by issuing the standard RPM commands:
$ rpm -ivh kernel-smp-2.6.9-42.EL_lustre.1.4.7.i686.rpm

30 Cluster File Systems, Inc.

http://www.clusterfs.com/download.html

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 2. Lustre Installation

$ rpm -ivh lustre-1.4.7-2.6.9_42.EL_lustre.1.4.7smp.i686.rpm
$ rpm -ivh lustre-modules-1.4.7- \
2.6.9_42.EL_lustre.1.4.7smp.i686.rpm

 Example of Source packages:

• kernel-source-2.6.9-42.EL_lustre.1.4.7.i686.rpm will contain the source for the
patched kernel

• lustre-source-1.4.7-2.6.9_42.EL_lustre.1.4.7smp.i686.rpm will contain the source
for Lustre modules and user space utilities.

The kernel-source and lustre-source packages are provided in case you need to
build external kernel modules or use additional network types. They are not required
to run Lustre.

Once you have your Lustre source tree you can build Lustre by running the
sequence of commands given below.

$ cd <path to kernel tree>
$ cp /boot/config-'uname -r' .config
$ make oldconfig || make menuconfig

For 2.6 kernels
 $ make include/asm
 $ make include/linux/version.h
 $ make SUBDIRS=scripts

For 2.4 kernels
 $ make dep

To configure Lustre and to build Lustre RPMs, go into the Lustre source directory
and run:

$./configure --with-linux=<path to kernel tree>
$ make rpms

This will create a set of .rpms in /usr/src/redhat/RPMS/<arch>
with a date-stamp appended (the SUSE path is /usr/src/packages).

Example:
lustre-1.4.7-\
2.6.9_42.xx.xx.EL_lustre.1.4.7.custom_200609072009.i686.rpm
lustre-debuginfo-1.4.7-\
2.6.9_42.xx.xx.EL_lustre.1.4.7.custom_200609072009.i686.rpm
lustre-modules-1.4.7-\
2.6.9_42.xx.xxEL_lustre.1.4.7.custom_200609072009.i686.rpm
lustre-source-1.4.7-\
2.6.9_42.xx.xx.EL_lustre.1.4.7.custom_200609072009.i686.rpm

cd into the kernel source directory and run
$ make rpm

This will create a kernel RPM suitable for the installation.

Example: kernel-2.6.95.0.3.EL_lustre.1.4.2custom-1.i386.rpm

Cluster File Systems, Inc. 31

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 2. Lustre Installation

2.4.2.1 Configuration Options

Lustre supports several different features and packages that extend the core
functionality of Lustre. These features/packages can be enabled at the build time by
issuing appropriate arguments to the configure command. A complete listing of the
supported features and packages can always be obtained by issuing the command
“./configure –help” in your Lustre source directory. The config files matching the
kernel version are in the configs/ directory of the kernel source. Copy one to .config
at the root of the kernel tree.

2.4.2.2 Liblustre

The Lustre library client, liblustre, relies on libsysio, which is a library that provides
POSIX-like file and name space support for remote file systems from the application
program address space. Libsysio can be obtained from:

http://sourceforge.net/projects/libsysio/

NOTE: Liblustre is not for general use. It was created to work with specific
hardware (Cray) and should never be used with other hardware.

Development of libsysio has continued ever since it was first targeted for use with
Lustre. First checkout the b_lustre branch from the libsysio CVS repository. This
gives the version of libsysio compatible with Lustre. Once checked out, the steps
listed below will build libsysio.

$ sh autogen.sh
$./configure --with-sockets
$ make

Once libsysio is built, you can build liblustre using the following commands.
$./configure --with-lib –with-sysio=/path/to/libsysio/source
$ make

2.4.2.3 Compiler Choice

The compiler must be greater than GCC version 3.3.4. GCC v4.0 is not currently
supported. GCC v3.3.4 has been used to successfully compile all of the pre-
packaged releases made available by CFS, and as such is the only compiler that is
officially supported. Your mileage may vary with other compilers, or even with other
versions of GCC.

NOTE: GCC v3.3.4 was used to build 2.6 series kernels.

32 Cluster File Systems, Inc.

http://sourceforge.net/projects/libsysio/

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 3. Configuring the Lustre Network

CHAPTER II – 3. CONFIGURING THE LUSTRE
NETWORK

Cluster File Systems, Inc 33

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 3. Configuring the Lustre Network

3.1 Designing Your
Network

Before configuration can take place, a clear understanding of your Lustre network
topologies is essential.

3.1.1 Identify all Lustre
Networks

A network is a group of nodes that communicate directly with each other. As
mentioned previously, Lustre supports a variety of network types and hardware,
including TCP/IP, Elan, varieties of Infiniband and others. The normal rules for
specifying networks apply, for example, two TCP networks on two different subnets
would be considered two different Lustre networks. For example, tcp0 and tcp1.

3.1.2 Identify nodes which
will route between
networks

Any node with appropriate interfaces can route LNET between different networks –
the node may be a server, a client, or a standalone router. LNET can route across
different network types (For example, TCP to Elan) or across different topologies
(For example, bridging two Infiniband or TCP/IP networks).

3.1.3 Identify any network
interfaces that should be
included/excluded from
Lustre networking

LNET by default uses all interfaces for a given network type. If there are interfaces it
should not use, (for example, Administrative networks, IP over IB, and so on), then
the included interfaces should be explicitly listed.

3.1.4 Determine cluster-
wide module configuration

The LNET configuration is managed via module options, typically specified in
/etc/modprobe.conf or /etc/modprobe.conf.local (depending on distro). To help ease
the maintenance of large clusters, it is possible to configure the networking setup for
all nodes through a single unified set of options in the modprobe.conf file on each
node. See the ip2nets option below for more information.

LibLustre users should set the accept=all parameter, see the appendix for details.

34 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 3. Configuring the Lustre Network

3.1.5 Determine appropriate
zconf-mount parameters
for clients

In their mount commands, clients use the NID of the MDS host to retrieve their
configuration information. Since an MDS may have more than one NID, clients
should use the NID appropriate for its local networks. If unsure, there is a lctl
command that can help. On the MDS,

lctl list_nids

will display the server's NIDs. On a client,
lctl which_nid <NID list>

will display the closest NID for that client. So from a client with SSH access to the
MDS,

mds_nids=`ssh the_mds lctl list_nids`
lctl which_nid $mds_nids

will in general be the correct NID to use for the MDS in the mount command.

Cluster File Systems, Inc 35

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 3. Configuring the Lustre Network

3.2 Configuring Your
Network

LNET before mountconf (mountconf was introduced in Lustre 1.4.6)

3.2.1 LNET Configurations
LNET and portals use different network addressing schemes; that is, their NIDs are
different. Lmc/lconf allow NIDs to be specified in either format so that old
configuration (lmc) scripts and old XML configuration files continue to work and the
NIDs are converted to LNET format as required.

LNET NIDs take the form: nid = <address>[@<network>], where <address> is the
network address within the network and <network> is the identifier for the network
itself (network type + instance number). For example, 192.73.220.107@tcp0 would
be a typical NID on a TCP network. '3@elan0' would be a typical Elan NID.

The network number can be used to distinguish between instances of the same
network type, e.g. tcp0 and tcp1. An unspecified network number is 0, and
unspecified network type is tcp.

NOTE: If a machine has multiple network interfaces, Lustre networking must be
specified by modprobe.conf options (networks or ip2nets) as the default
configuration will almost certainly not work for a multi-homed host.

3.2.1.1 NID Changes

The LNET NID is generated from old (lmc) configuration scripts by using the network
type (specified by --nettype <type>) as the LNET network identifier. New
configuration scripts should use the network type lnet and specify the LNET NID
directly.

Example lmc line specifying a server’s NID:
$ LMC --add net --node srv1 --nettype lnet --nid 192.168.2.1@tcp1

(The lmc tool will be obsolete with mountconf in Lustre 1.6.0)

Example lmc line for clients on all networks:
$ LMC --add net --node client --nettype lnet --nid '*'

A client’s actual NIDs are determined from its local networks at client startup time.

3.2.1.2 XML Changes

These changes affect lmc and the XML it produces, as well as zeroconf mount
commands. (The lmc tool will be obsolete with mountconf in Lustre 1.6.0)

Example zeroconf client mount command pointing to an MDS on an elan network:
mount -t lustre 3@elan:/mdsA/client /mnt/lustre

NOTE: We recommend using dotted-quad IP addressing rather than host

36 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 3. Configuring the Lustre Network

names. We have found this aids in reading debug logs, and helps greatly when
debugging configurations with multiple interfaces.

3.2.2 Module parameters
LNET network hardware and routing are now configured via module parameters of
the LNET and LND-specific modules. Parameters should be specified in the
/etc/modprobe.conf or /etc/modules.conf file, for instance:

options lnet networks=tcp0,elan0

specifies that this node should use all available TCP and elan interfaces.

Under Linux 2.6, the LNET configuration parameters can be viewed under
/sys/module/; generic and acceptor parameters under lnet and LND-specific
parameters under the corresponding LND's name.

Under Linux 2.4, sysfs is not available, but the LND-specific parameters are
accessible via equivalent paths under /proc.

Notes about quotes: Depending on the Linux distribution, options with included
commas may need to be escaped by using single and/or double quotes. Worst-case
quotes look like this:

options lnet 'networks="tcp0,elan0"' 'routes="tcp [2,10]@elan0"'

But the additional quotes may confuse some distributions. Check for messages such
as:

lnet: Unknown parameter `'networks'

After modprobe LNET, the additional single quotes should be removed from
modprobe.conf in this case.

Additionally, the message "refusing connection - no matching NID" generally points
to an error in the LNET module configuration.

NOTE: By default, Lustre will ignore the loopback (lo0) interface. Lustre will not
ignore IP addresses aliased to the loopback. Specify all Lustre networks in this
case.

Liblustre network parameters may be set by exporting the environment variables
LNET_NETWORKS, LNET_IP2NETS and LNET_ROUTES. Each of these variables
uses the same parameters as the corresponding modprobe option.

Please note that it is very important that a liblustre client includes ALL the routers in
its setting of LNET_ROUTES. A liblustre client cannot accept connections, it can
only create connections. If a server sends RPC replies via a router that the liblustre
client hasn't already connected to, these RPC replies will be lost.

NOTE: Liblustre is not for general use. It was created to work with specific
hardware (Cray) and should never be used with other hardware.

SilverStorm InfiniBand Options -

Cluster File Systems, Inc 37

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 3. Configuring the Lustre Network

For the SilverStorm/Infinicon Infiniband LND (iiblnd), the network and HCA may be
specificied, as in the example below:

options lnet networks="iib3(2)"

This says that this node is on iib network number 3, using HCA[2] == ib3

3.2.3 Module Parameters –
Routing

route=<net type> <router NID(s)>

This parameter specifies a colon-separated list of router definitions. Each route is
defined as a network type, followed by a list of routers.

Examples:
options lnet 'networks="tcp0, elan0"' 'routes="tcp[2,10]@elan0"'

This identifies the Elan NIDS 2@elan0 and 10@elan0 as routers for the TCP
network.

A more complicated example:
options lnet 'ip2nets="tcp0 192.168.0.*; elan0 132.6.1.*"' \
'routes="tcp [2,10]@elan0; elan 192.168.0.[2,10]@tcp0"

This specifies bi-directional routing - Elan clients can reach Lustre resources on the
TCP networks and TCP clients can access the Elan networks. (For more information
on ip2nets, see section 5.1.1)

And here is a very complex routed configuration with Voltaire Infiniband and Myranet
(GM) systems, with four systems configured as routers:

options lnet\
 ip2nets="gm 10.10.3.* # aa*-i0;\
 vib 10.10.131.[11-18] # aa[11-18]-ipoib0;\
 vib 10.10.132.* # cc*-ipoib0;"\
 routes="gm 10.10.131.[11-18]@vib # vib->gm via aa[11-13];\
 vib 0xdd7f813b@gm # gm->vib via aa11;\
 vib 0xdd7f81c7@gm # gm->vib via aa12;\
 vib 0xdd7f81c2@gm # gm->vib via aa13"

live_router_check_interval, dead_router_check_interval, auto_down,
check_routers_before_use and router_ping_timeout

In a routed Lustre setup with nodes on different networks such as TCP/IP and Elan,
the router checker checks the status of a router. Currently, only the clients using the
sock LND and Elan LND avoid failed routers. CFS is working on extending this
behavior to include all types of LNDs. The auto_down parameter enables/disables
(1/0) the automatic marking of router state. The parameter
live_router_check_interval specifies a time interval in seconds after which the

38 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 3. Configuring the Lustre Network

router checker will ping the live routers. In the same way, you can set the parameter
dead_router_check_interval for checking dead routers. You can set the timeout for
the router checker to check the live or dead routers by setting the parameter
router_ping_timeout. The Router pinger sends a ping message to a dead/live
router once every dead/live_router_check_interval seconds, and if it does not get
a reply message from the router within router_ping_timeout seconds, it believes
the router is down. The last parameter is check_routers_before_use, which is off
by default. If it is turned on, you must also give dead_router_check_interval a
positive integer value.

The router checker gets the following variables for each router:

• last time that it was disabled

• duration for which it is disabled.

The initial time to disable a router should be 1 minute (enough to plug in a cable
after removing it usually). If the router is administratively marked as "up", the router
checker clears the timeout. When a route is disabled, the (possibly new) "sent
packets" counter is set to 0. When the route is first re-used (that is an elapsed
disable time is found), the sent packets counter is incremented to 1, and is
incremented for all further uses of the route. If the route has been used for 100
packets successfully, then the sent-packets counter should be with a value of 100.
You should set the timeout to 0, so that future errors will no longer double the
timeout.

NOTE: The router_ping_timeout is consistent with the default LND timeouts.
You may have to increase it on very large clusters if the LND timeout is also
increased.

For larger clusters, we suggest increasing the check interval.

3.2.4 Downed Routers
There are two mechanisms to update health status of a peer or a router:

• LNET can actively check health status of all routers and mark them as dead
or alive automatically. This is off by default. To enable it set auto_down and
if desired check_routers_before_use. This initial check may cause a
pause equal to router_ping_timeout at system startup, if there are dead
routers in the system.

• When there is a communication error, all LNDs will notify LNET that the
peer (not necessarily a router) is down. This mechanism is always on, and
there is no parameter to turn it off. However if you set the LNET module
parameter auto_down to 0, LNET will ignore all such peer-down
notifications.

Some key differences in both the mechanisms:

1. The router pinger only checks routers for their health, while LNDs can notice all
dead peers irrespective of whether they are a router or not.

2. The router pinger checks the router health actively by sending pings, but LNDs
can only notice a dead peer when there is network traffic going on.

3. The router pinger can bring a router from alive to dead or vice versa, but LNDs
can only bring a peer down.

Cluster File Systems, Inc 39

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 3. Configuring the Lustre Network

3.3 Starting and
Stopping LNET

LNET is started and stopped automatically by Lustre, but can also be started
manually in a standalone manner. This is particularly useful to verify that your
networking setup is working correctly before you attempt to start Lustre.

3.3.1 Starting LNET
The command to start the lnet is -

$ modeprob lnet
$ lctl network up

To see the list of local nids -
$ lctl list_nids

This will tell you if your local node's networks are set up correctly.
If not, see modules.conf "networks=" line and insure the network layer modules are
correctly installed and configured.

To get the best remote nid -
$ lctl which_nid

This will take the "best" nid from a list of the nids of a remote host. The "best" nid is
the one the local node will use when trying to communicate with the remote node.

3.3.1.1 Starting Clients

TCP client:
mount -t lustre mdsnode:/mdsA/client /mnt/lustre/

Elan client:
mount -t lustre 2@elan0:/mdsA/client /mnt/lustre

3.3.2 Stopping LNET
Before the LNET modules can be removed, LNET references
must be removed. In general, these references are removed automatically during
Lustre shutdown, but for standalone routers, an explicit step is necessary. It is to
stop the LNET network by using the following command:

lctl network unconfigure

NOTE: Attempting to remove the Lustre modules prior to stopping the network
may result in a crash, or an LNET hang. If this occurs, the node must be
rebooted in most cases. So it is advised to be certain that the Lustre network
and Lustre are stopped prior to module unloading, and to be extremely careful
when using rmmod -f.

To unconfigure LCTL network, following command can be used:

40 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 3. Configuring the Lustre Network

modprobe –r <any lnd and the lnet modules>
lconf -–cleanup

This command will do the Lustre and LNET cleanup automatically in cases where
lconf was used to start the services.

TIP:
To remove all the Lustre modules:
$ lctl modules | awk '{print $2}' | xargs rmmod

Cluster File Systems, Inc 41

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 4. Configuring Lustre - Examples

CHAPTER II – 4. CONFIGURING LUSTRE -
EXAMPLES

42 Cluster File Systems, Inc

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 4. Configuring Lustre - Examples

4.1 Simple TCP
Network

Because the default network is tcp0, we always omit the “@tcp0” command. We
also use actual hostnames rather than numerical IP addresses within the lmc and
mount commands. (NB hostnames, which are symbolic IP addresses cannot be
used in LNET module parameters.)

${LMC} --add net --node megan --nettype lnet --nid megan
${LMC} --add net --node oscar --nettype lnet --nid oscar
${LMC} --add net --node client --nettype lnet --nid '*'

Modprobe.conf is the same on all nodes (since this is the default we can also omit
this step):

options lnet networks=tcp0

The servers megan and oscar are started with lconf, while clients are started by
using the mount command:

mount –t lustre megan:/mdsA/client /mnt/lustre

Cluster File Systems, Inc 43

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 4. Configuring Lustre - Examples

4.2 Example One:
Simple Lustre Network

4.2.1 Installation Summary
 Eight OSS

 One MDS

 40 Lustre clients

 All dual processor Intel machines

 Storage provided via DDN nodes

 All gigabit network

4.2.2 Usage Summary
 Typically 17 clients and two OSS for continuous Lustre testing

 Testing new kernels and Lustre versions

 Testing various configurations and software for integration into production
clusters

4.2.3 Configuration
Generation and Application

 Shell script runs “lmc'' to generate XML

 Lustre XML stored in shared NFS

 Zeroconf mounting used

 Configurations are also generated using the ltest framework

 Uses same structure of shell script and shared NFS, but the hostnames and
devices are determined by the test names.

44 Cluster File Systems, Inc

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 4. Configuring Lustre - Examples

4.3 Example Two:
Lustre with NFS

4.3.1 Installation Summary
 Five OSS

 One MDS

 One Lustre client and NFS Server

 One AIX NFS client

 All dual processor Intel machines

 Storage provided from serial ATA drives connected to 3ware RAID cards with
32TB total available

 Two gigabyte Ethernet networks, one each for Lustre and NFS

 Streaming input/output performance over NFS typically 50-75% of Lustre

 No failover enabled or configured

 Initially three OSS configured, two more added when data from GFS was
migrated in

4.3.2 Usage Summary
 Near-line storage for ESMF computing facility

 Replaced GFS – very poor performance and reliability, could not go beyond
2TB/fs limit

 Scientific application data that is pushed off local AIX storage

4.3.3 Configuration
Generation and Application

 Shell script runs “lmc” to generate XML

 Scp used to distribute XML to Lustre nodes

 Custom script used from AIX client to start Lustre, NFS server and mount NFS
client

 Zeroconf not used, could be added without issue

 Need to verify it does not reorder LOV when additional OSTs are added

Cluster File Systems, Inc 45

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 4. Configuring Lustre - Examples

4.4 Example Three:
Exporting Lustre with
Samba

4.4.1 Installation Summary
 Two OSS

 One MDS

 Two Lustre clients; one exports Lustre via Samba

 One Windows Samba client, two Mac samba clients

 One flat gigabit Ethernet network

 Failover is enabled, no failover pairs configured

4.4.2 Usage Summary
 /home filespace for Linux

 My Documents stored from Windows

 Both Mac and Windows access streaming music stored in Lustre

 Streaming input/output of 70-80M/s, ~18M/s over samba

4.4.3 Model of Storage
Typical Webfarm Home Network

4.4.4 Configuration
Generation and Application

 Shell script runs “lmc'' to generate XML

 Lconf used to start MDS/OST by hand

 Zeroconf mounting used on Lustre clients

46 Cluster File Systems, Inc

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 4. Configuring Lustre - Examples

4.5 Example Four:
Heterogeneous
Network with Failover
Support

4.5.1 Installation Summary
 64 OSS, 96 OSTs; each OSS has two gigE connections

 Two MDS, one primary but not configured for failover

 16 Portals routers; each has four gigE and one Elan connection

 ~1000 Lustre clients (NB: once federated gigE network is installed we hope to
mount another 2000 clients (MCR clients and BGL IONs))

 Heterogeneous:

Ia64 clients, MDS, Portals routers

Ia32 OSS

 Storage is provided with 12 tiers of disk over eight DDN nodes

 Failover is enabled, no failover pairs configured(the hardware is there, but not yet
configured due to perceived and real lack of reliable failover software and its
ease of integration with Lustre)

4.5.2 Usage Summary
 Scientific computation

 ~180 TB File system

 Theoretical best performance: 6.4GB/s;

best observed: 5.5GB/s;

typical observed: 2.0GB/s

4.5.3 Model of Storage
Typical LARGE HPC installation with mixed networking

4.5.4 Configuration
Generation and Application

 Home-grown bash scripts provide batch input to LMC

 XML still edited by hand when new configurations are tested

 Rare problems with the python XML parser

Cluster File Systems, Inc 47

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 4. Configuring Lustre - Examples

 Configuration files distributed by custom configuration mgmt

 Lctl used in home-grown scripts to check certain values against known correct
values in order to verify health of servers or clients

 /etc/init.d/lustre used to start OSTs, routers and MDS

 zconf used whenever possible – much faster and friendlier

48 Cluster File Systems, Inc

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 4. Configuring Lustre - Examples

4.6 Example Five: OSS
with Multiple OSTs

4.6.1 Installation Summary
(*target)

 224 OSS, 448 OSTs; each OSS has two gigE connections

 Two MDS, one primary but not configured for failover

 ~1024 Lustre clients ― input/output nodes (ION)

 64 Compute nodes (CN) per ION

Total of 65,536 CN

CN do not see Lustre, input/output forwarded to IONs

 All gigabit Ethernet networking for Lustre

 Compute nodes communicate with ION through the tree network

 Storage is provided with 16 tiers on eight DDN nodes

 Currently in initial stages of Lustre testing

4.6.2 Usage Summary
 Scientific computation

 ~900 TB file system

 Theoretical best performance: 40GB/s

4.6.3 Model of Storage
Next generation ultra-large HPC installation

4.6.4 Configuration
Generation and Application

Generating and applying the configuration in Example Five: OSS with Multiple
OSTs is similar to Example Four: Heterogeneous Network with Failover
Support. Please refer to 4.5.4 Configuration Generation and Application.

Cluster File Systems, Inc 49

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 4. Configuring Lustre - Examples

4.7 Example Six:
Client with Sub-
clustering Support

4.7.1 Installation Summary
 104 OSS

 One MDS

 1280 Lustre clients

Clients are arranged in sub-clusters of 256 nodes

 All dual processor Intel machines

 Storage provided via DDN nodes

 All gigabit network

 Peak performance of 11.1GB/s

4.7.2 Usage Summary
 NSF grants allocations for researchers all over the world

 General scientific load includes chemistry, cosmology, weather

4.7.3 Configuration
Generation and Application

 Shell script runs “lmc'' to generate XML

 Lustre XML stored in shared NFS

 Zeroconf mounting used

50 Cluster File Systems, Inc

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 5. More Complicated Configurations

CHAPTER II – 5. MORE COMPLICATED
CONFIGURATIONS

Cluster File Systems, Inc. 51

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 5. More Complicated Configurations

5.1 Multihomed
Servers

Servers megan and oscar each have three tcp NICs (eth0, eth1, and eth2) and an
elan NIC. eth2 is used for management purposes and should not be used by LNET.
TCP clients have a single TCP interface and Elan clients have a single Elan
interface.

5.1.1 Modprobe.conf
Options under modprobe.conf are used to specify the networks available to a node.
You have the choice of two different options – the networks option, which explicitly
lists the networks available and the ip2nets option, which provides a list-matching
lookup. Only one of these options can be used at any one time. The order of LNET
lines in modprobe.conf is important when configuring multi-homed servers. If a
server node can be reached using more than one network, the first network
specified in modprobe.conf will be used.

Networks

On the servers:
options lnet 'networks="tcp0(eth0,eth1),elan0"'

Elan-only clients:
options lnet networks=elan0

TCP-only clients:
options lnet networks=tcp0

IB-only clients:
options lnet networks="iib0"
options kiiblnd ipif_basename=ib0

NOTE: In case of TCP-only clients, all the available IP interfaces will be used
for tcp0 since the interfaces are not specified. If there is more than one, the IP
of the first one found is used to construct the tcp0 NID.

ip2nets

The ip2nets option is typically used to provide a single, universal modprobe.conf file
that can be run on all servers and clients. An individual node identifies the locally
available networks based on the listed IP address patterns that match the node's
local IP addresses. Note that the IP address patterns listed in this option (ip2nets)
are used only to identify the networks that an individual node should instantiate.
They are not used by LNET for any other communications purpose. The servers
megan and oscar have eth0 ip addresses 192.168.0.2 and .4. They also have IP
over Elan (eip) addresses of 132.6.1.2 and .4. TCP clients have IP addresses
192.168.0.5-255. Elan clients have eip addresses of 132.6.[2-3].2, .4, .6, .8.

Modprobe.conf is identical on all nodes:
options lnet 'ip2nets="tcp0(eth0,eth1)192.168.0.[2,4]; tcp0 \
192.168.0.*; elan0 132.6.[1-3].[2-8/2]"'

52 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 5. More Complicated Configurations

NOTE: Lnet lines in modprobe.conf are used by the local node only to
determine what to call its interfaces. They are not used for routing decisions.

Because megan and oscar match the first rule, LNET uses eth0 and eth1 for tcp0 on
those machines. Although they also match the second rule, it is the first matching
rule for a particular network that is used. The servers also match the (only) elan rule.
The [2-8/2] format matches the range 2-8 stepping by 2; that is 2,4,6,8. For
example, clients at 132.6.3.5 would not find a matching Elan network.

5.1.2 LMC Configuration
Preparation

The tcp NIDs specified should use the address of the first TCP interface listed in the
networks or ip2nets options line above (eth0).

${LMC} --add net --node megan --nettype lnet --nid \
192.168.0.2@tcp0
${LMC} --add net --node megan --nettype lnet --nid 2@elan
${LMC} --add net --node oscar --nettype lnet --nid \
192.168.0.4@tcp0
${LMC} --add net --node oscar --nettype lnet --nid 4@elan
A single client profile will work for both tcp and elan clients:
${LMC} --add net --node client --nettype lnet --nid '*'

NOTE: The example above shows that in --add net option for each interface the
--node parameter is the same but the --nid parameter is changing, which
specifies the NID of the interface.

5.1.3 Start Servers
Start servers with lconf. The recommended order is the OSSs then the MDS.
(Remember to start Lustre on servers with: lconf config.xml.)

5.1.4 Start Clients
Tcp clients can use the hostname or ip address of the MDS:

mount –t lustre megan@tcp0:/mdsA/client /mnt/lustre

Elan clients will be started with:
mount –t lustre 2@elan0:/mdsA/client /mnt/lustre

Cluster File Systems, Inc. 53

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 5. More Complicated Configurations

5.2 Elan to TCP
routing

Servers megan and oscar are on the elan network with eip addresses 132.6.1.2 and
.4. Megan is also on the TCP network at 192.168.0.2 and routes between TCP and
elan. There is also a standalone router, router1, at elan 132.6.1.10 and tcp
192.168.0.10. Clients are on either elan or tcp.

5.2.1 Modprobe.conf
Modprobe.conf is identical on all nodes:

options lnet 'ip2nets="tcp0 192.168.0.*; elan0 132.6.1.*"' \
'routes="tcp [2,10]@elan0; elan 192.168.0.[2,10]@tcp0"'

5.2.2 LMC configuration
preparation

${LMC} --add net --node megan --nettype lnet --nid \
192.168.0.2@tcp0
${LMC} --add net --node megan --nettype lnet --nid 2@elan
${LMC} --add net --node oscar --nettype lnet --nid 4@elan
${LMC} --add net --node client --nettype lnet --nid '*'

5.2.3 Start servers
router1

modprobe lnet
lctl network configure

megan and oscar:
lconf route.xml

5.2.4 Start clients
tcp client:

mount -t lustre megan:/mdsA/client /mnt/lustre/

elan client:
mount -t lustre 2@elan0:/mdsA/client /mnt/lustre

54 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

CHAPTER II – 6. FAILOVER

Cluster File Systems, Inc. 55

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

6.1 What is Failover?

We say a computer system is Highly Available when the services it provides are
available with minimum downtime. Even in case of failure conditions such as loss of
a server, or network or software fault, the services being provided remain unaffected
for the user. We generally measure availability by the percentage of time we require
the system to be available.

Availability is accomplished by providing replicated hardware and/or software, so
that failure of any system will be covered by a paired system. What we call “failover”
is a method of automatically switching an application and it's supporting resources
to a standby server when the primary system fails or the service is temporarily shut
down for maintenance. Failover should be automatic and in most cases completely
application-transparent.

Lustre failover requires two nodes (a failover pair), which must be connected to a
shared storage device. Lustre supports failover for both metadata and object
storage servers.

Lustre provides a file system resource. The Lustre file system supports failover at
the server level. Lustre does not provide the tool set for the system-level
components necessary for a complete failover solution (node failure detection,
power control, and so on), as this functionality has been available for some time
from third party tools. CFS does provide the necessary scripts to interact with these
packages, and exposes health information for system monitoring. The
recommended choice is the Heartbeat package from linux-ha.org. Lustre will work
with any HA software that supports resource (I/O) fencing. The Heartbeat software
is responsible for detecting failure of the primary server node and controlling the
failover.

The hardware setup requires a pair of servers with a shared connection to a
physical storage (like SAN, NAS, hardware RAID, SCSI, Fiber Channel). The
method of sharing the storage should be essentially transparent at the device level,
that is the same physical LUN should be visible from both nodes. To ensure high
availability at the level of physical storage, we encourage the use of RAID arrays to
protect against drive-level failures.

To have a fully automated high available Lustre system, one needs a power
management software and HA software, which must provide the following -

A) -- Resource fencing - Physical storage must be protected from simultaneous
access by two nodes

B) -- Resource control - Starting and stopping the Lustre processes as a part of
failover, maintaining the cluster state, and so on

C) -- Health monitoring - Verifying the availability of hardware and network
resources, responding to health indications given by Lustre.

For proper resource fencing, the Heartbeat software must be able to completely
power off the server or disconnect it from the shared storage device. It is absolutely
vital that no two active nodes access the same partition, at the risk of severely
corrupting data. When the Heartbeat detects a server failure, it calls a process
(STONITH) to power off the failed node; and then starts Lustre on the secondary
node. HA software controls the Lustre resources with a service script. CFS provides
/etc/init.d/lustre for this purpose.

Servers providing Lustre resources are configured in primary/secondary pairs for the
purpose of failover. A system administrator can failover manually with lconf. When

56 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

an “lconf --cleanup --failover” command is issued, the disk device is set read-only.
This allows the second node to start service using that same disk, after the
command completes. This is known as a soft failover, in which case both the
servers can be running and connected to the net. Powering the node off is known as
a hard failover.

To automate failover with Lustre, one needs a power management software, remote
control power equipment, and HA software.

6.1.1 The Power
Management Software

The linux-ha package includes a set of power management tools, known as
STONITH (Shoot The Other Node In The Head). STONITH has native support for
many power control devices, and is extensible. It uses expect scripts to automate
control. PowerMan, by the Lawrence Livermore National Laboratory, is a tool for
manipulating remote power control (RPC) devices from a central location. Several
RPC varieties are supported natively by PowerMan.

The latest version is available on

http://www.llnl.gov/linux/ powerman /

6.1.2 Power Equipment
A multi-port, Ethernet addressable Remote Power Control is relatively inexpensive.
Consult the list of supported hardware on the PowerMan site for recommended
products. Linux Network Iceboxes are also very good tools. They combine both the
remote power control and the remote serial console into a single unit.

6.1.3 Heartbeat
The heartbeat program is one of the core components of the Linux-HA (High-
Availability Linux) project. Heartbeat is highly portable, and runs on every known
Linux platform, and also on FreeBSD and Solaris.

For more information, see:

http://linux-ha.org/heartbeat/

For download, go to:

http://linux-ha.org/download

CFS supports both Heartbeat V1 and Heartbeat V2. V1 has a simpler configuration
and works very well. V2 adds monitoring and supports more complex cluster
topologies. The linux-ha web site contains a great deal of information. We
recommend it as a resource.

6.1.3.1 Roles of Nodes in a
Failover

A failover pair of nodes can be configured in two ways – active/active and
active/passive. An active node actively serves data and a passive node is idle,
standing by to take over in the event of a failure. In the example case of using two

Cluster File Systems, Inc. 57

http://linux-ha.org/download
http://linux-ha.org/heartbeat/
http://www.llnl.gov/linux/powerman/
http://www.llnl.gov/linux/powerman/
http://www.llnl.gov/linux/powerman/

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

OSTs (both of which are attached to the same shared disk device), the following
failover configurations are possible:

active/ passive - This configuration has two nodes out of which only one is actively
serving data all the time. In case of a failure, the other node takes over.

If the active node fails, the OST in use by the active node will be taken over by the
passive node, which now becomes active. This node will serve most of the services
that were on the failed node.

active/ active - This configuration has two nodes actively serving data all the time.
In case of a failure, one node would take over for the other.

To configure this with respect to the shared disk, the shared disk would need to
provide multiple partitions, and each of the OSTs would be the primary server for
one partition and the secondary server for the other partition. The active/passive
configuration doubles the hardware cost without improving performance, and is
seldom used for OST servers.

58 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

6.2 OST Failover
Review

The OST has two operating modes: failover and failout. The default mode is failover.
In this mode, the clients reconnect after a failure, and the transactions, which were
in progress, get completed. Data on the OST is written synchronously, and the client
replays uncommitted transactions after the failure.

In the failout mode when any communication error occurs, the client attempts to
reconnect, but is unable to continue with the transactions that were in progress
during the failure. Also, if the OST actually fails, data that has not been written to the
disk (still cached on the client) is lost. Applications usually see an -EIO for
operations done on that OST until the connection is reestablished. However, the
LOV layer on the client avoids using that OST. Hence, the operations such as file
creates and fsstat still succeed. The failover mode is the current default, while the
failout mode is seldom used.

Cluster File Systems, Inc. 59

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

6.3 MDS Failover
Review

The MDS has only one failover mode: active/passive, as only one MDS may be
active at a given time.

60 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

6.4 Configuring MDS
and OSTs for Failover

The failover MDS and OSTs are configured in the same way – multiple objects are
added to the configuration with the same service name. The --failover option is
specified on at least one of the objects to enable the failover mode. (This is required
to enable failover on the OSTs.) For example, to create a failover OST named ost1
on nodes nodeA and nodeB with a shared disk device referenced on both nodes as
/dev/sdb1; you can follow the steps below:

lmc --add ost --ost ost1 --failover --node nodeA --lov lov1 \
--dev /dev/sdb1
lmc --add ost --ost ost1 --failover --node nodeB --lov lov1 \
--dev /dev/sdb1

In addition, CFS recommends setting the mount option errors=panic (the default is
“errors=ro”) to further protect data in the event of a disk issue.

6.4.1 Starting / Stopping a
Resource

You can use the lconf --service option to override the current active node for a
particular service, or to start services individually. To start ost1 on nodeB in the
above example:

lconf –-service=ost1 <path to XML>

6.4.2 Active/Active Failover
Configuration

With OST servers it is possible to have a load balanced active/active configuration.
Each node is the primary node for a group of OSTs, and the failover node for other
groups. To expand the simple two-node example, we add ost2 which is primary on
nodeB, and is on the LUNs nodeB:/dev/sdc1 and nodeA:/dev/sdd1. This is to
demonstrate the /dev/ identify can differ between nodes, but both devices must map
to the same physical LUN.

lmc --add ost --ost ost1 --failover --node nodeA --group nodeA \
--lov lov1 --dev /dev/sda1
lmc --add ost --ost ost1 --failover --node nodeB --lov lov1 \
--dev /dev/sdb1
lmc --add ost --ost ost2 --failover --node nodeB --group nodeB \
--lov lov1 --dev /dev/sdc1
lmc --add ost --ost ost2 --failover --node nodeA --lov lov1 \
--dev /dev/sdd1

If the --group nodeB option is used, then only the active services in group nodeB will
be started. This is generally used on a node, which is already running the services.
If it is not used, then all the services active on nodeA will be started, which is
generally needed at the boot time.

To return to the original load-balanced configuration, first stop the service in the

Cluster File Systems, Inc. 61

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

failover mode. Restart it on the original node, and then update the active node for
the affected services. The clients will treat this as a failover, and recover normally.

On nodeA, limit the scope to only group nodeB
lconf --cleanup --force –service=ost2 <config.xml>

On nodeB
lconf –service=ost2 <config.xml>

6.4.3 Hardware
Configurations

6.4.3.1 Hardware Preconditions

1. The setup must consist of a failover pair where each node of the pair has
access to shared storage. If possible, the storage paths should be identical
(nodeA:/dev/sda == nodeB:/dev/sda).

2. Shared storage can be arranged in an active/passive (MDS,OSS) or
active/active (OSS only) configuration. Each shared resource will have a
primary (default) node. Heartbeat will assume that the non-primary node is
secondary for that resource.

3. The two nodes must have one or more communication paths for heartbeat
traffic. A communication path can be:

• dedicated Ethernet

• serial live (serial crossover cable)

Failure of all heartbeat communication is not good. This condition is called
“split-brain” and the heartbeat software will resolve this situation by
powering down one node.

4. The two nodes must have a method to control each other's state. The
Remote Power Control hardware is the best. There must be a script to
start and stop a given node from the other node. STONITH provides soft
power control methods (ssh, meatware) but these cannot be used in a
production situation.

5. Heartbeat provides a remote ping service that is used to monitor the health
of the external network. If you wish to use the ipfail service, you must have a
very reliable external address to use as the ping target. Typically, this would
be a firewall router, or another very reliable network endpoint external to the
cluster.

62 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

6.5 Instructions for
Failover Setup with
Heartbeat Version1

6.5.1 Software Installations
1. Install Lustre as described in Chapter II – 2. Lustre Installation.

2. Install RPMs required for configuring Heartbeat

The following packages are needed for Heartbeat (v1). We used the 1.2.3-1 version.
Red Hat supplies v1.2.3-2. Heartbeat is available as an RPM or source.

Heartbeat packages, in order:

 heartbeat-stonith -> heartbeat-stonith-1.2.3-1.i586.rpm

 heartbeat-pils -> heartbeat-pils-1.2.3-1.i586.rpm

 heartbeat itself -> heartbeat-1.2.3-1.i586.rpm

You can find the above RPMs at the location given below -

http://linux-ha.org/download/index.html#1.2.3

3. Install Prerequisites

Heartbeat 1.2.3 installation requires following:

 python

 openssl

 libnet-> libnet-1.1.2.1-19.i586.rpm

 libpopt -> popt-1.7-274.i586.rpm

 librpm -> rpm-4.1.1-222.i586.rpm

 glib -> glib-2.6.1-2.i586.rpm

 glib-devel -> glib-devel-2.6.1-2.i586.rpm

6.5.1.1 Lustre Configuration

 Add the secondary servers to your configuration and re-create your XML
configuration if necessary

 Create the directory /etc/lustre

 Copy your XML file to /etc/lustre/config.xml

 Verify that /etc/init.d/lustre exists

 Note the names of your OST and MDS resources

Cluster File Systems, Inc. 63

http://linux-ha.org/download/index.html#1.2.3

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

 Decide which node owns each resource

6.5.1.2 Heartbeat Configuration

A. Basic Configuration - no STONITH

The linux-ha web site has several guides covering basic setup and initial testing of
Heartbeat, we advise reading them.

1. It is good to configure and test the Heartbeat setup before adding STONITH.

Let us assume two nodes, nodeA and nodeB. nodeA owns ost1 and nodeB owns
ost2. Both the nodes are with dedicated ethernet – eth0 having serial crossover link
– /dev/ttySO. Consider that both the nodes are pinging to a remote host –
192.168.0.3 for health.

a. Create /etc/ha.d/ha.cf

• This file must be identical on both the nodes

• Follow the order of the directives as it matters

• See sample ha.cf file in the section 6.5.5.3 ha.cf of this chapter

b. Create /etc/ha.d/haresources

• This file must be identical on both the nodes

• It specifies a virtual IP address, and a service

• See sample in the section 6.5.5.4 haresources of this chapter

• The virtual IP address should be a subnet matching a physical Ethernet.
Failure to do so will result in error messages, but these errors will not be
fatal.

c. Create /etc/ha.d/authkeys

• Copy example from /usr/share/doc/heartbeat-<version>

• chmod the file '0600' – heartbeat will not start if the permissions on this file
are incorrect.

d. Execute the following commands to create symlinks between /etc/init.d/lustre and
/etc/ha.d/resource.d/<lustre service name>

$ ln -s /etc/init.d/lustre /etc/ha.d/resource.d/ost1
$ ln -s /etc/init.d/lustre /etc/ha.d/resource.d/ost2

e. Restart heartbeat

Monitor the syslog on both nodes. After the initial deadtime interval, you should see
the nodes discovering each other's state, and then they will start the Lustre
resources they own. You should see the startup command in the log:

Sep 7 10:42:40 d1_q_0 heartbeat: info: Running \
/etc/ha.d/resource.d/ost1 start

In this example, 'ost1' is our shared resource. Common things to watch out for:

• If you configure two nodes as primary for one resource, you will see both
nodes attempt to start it. This is very bad. Shutdown immediately and
correct your haresources files.

• If the commutation between nodes is not correct, both nodes may also

64 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

attempt to mount the same resource, or will attempt to STONITH each
other. There should be many error messages in syslog indicating a
communication fault.

• When in doubt, you can set a Heartbeat debug level in ha.cf – levels above
5 will produce huge volumes of data.

f. Try some manual failover/ failback. Heartbeat provides two tools for this purpose
(by default they are installed in /usr/lib/heartbeat) –

• hb_standby [local|foreign] – Causes a node to yield resources to another
node – if a resource is running on its primary node it is local, otherwise it is
foreign.

• hb_takeover [local|foreign] – Causes a node to grab resources from another
node.

B. Basic Configuration - Adding STONITH

STONITH automates the process of power control with the expect package. Expect
scripts are very dependent on the exact set of commands provided by each
hardware vendor, and as a result any change made in the power control hardware/
firmware will require tweaking STONITH.

Much must be deduced by running the STONITH package by hand. STONITH has
some supplied packages, but can also run with an external script. There are two
STONITH modes:

a. Single STONITH command for all nodes found in ha.cf:
--------/etc/ha.d/ha.cf-------------------
stonith <type> <config file>

b. STONITH command per-node:
-------/etc/ha.d/ha.cf--------------------
stonith_host <hostfrom> <stonith_type> <params...>

You can use an external script to kill each node:
stonith_host nodeA external foo /etc/ha.d/reset-nodeB
stonith_host nodeB external foo /etc/ha.d/reset-nodeA

Here foo is a placeholder for an un-used parameter.

To get the proper syntax:
$ stonith -L

The above command lists supported models.
$ stonith -l -t <model>

The above command lists required parameters, and specifies config file name.

You should attempt a test with
$ stonith -l -t <mode1> <fake host name>

This will also give data on what is required. You will be able to test by using a real
host name. The external STONITH scripts should take the parameters {start|stop|
status} and return 0 or 1.

Cluster File Systems, Inc. 65

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

STONITH _only happens when the cluster cannot do things in an orderly manner. If
two cluster nodes can communicate, they usually shutdown properly. This means
many tests will not produce a STONITH, for example:

 Calling init 0 or shutdown or reboot on a node, orderly halt, no STONITH

 Stopping the heartbeat service on a node, again, orderly halt, no STONITH

You really have to do something drastic (for example, killall -9 heartbeat) like pulling
cables, or so on before you trigger STONITH.

Also, the alert script does a software failover, which halts Lustre but does not halt or
STONITH the system. To use STONITH, edit the fail_lustre.alert script (section
6.5.5.2 lustre_fail.alert) and add your preferred shutdown command after the line -

`/usr/lib/heartbeat/hb_standby local &`;

A simple method to halt the system is the sysrq method:
$!/bin/bash

This script will force a boot
$ 'echo s' = sync
$ 'echo u' = remount read-only
$ 'echo b' = reboot
$
SYST="/proc/sysrq-trigger"

if [! -f $SYST]; then
 echo "$SYST not found!"
 exit 1
fi

$ sync, unmount, sync, reboot
echo s > $SYST
echo u > $SYST
echo s > $SYST
echo b > $SYST

exit 0

6.5.2 Mon (Status Monitor)
 Mon requires two scripts:

i. A monitor script, which checks a resource for health

ii. An alert script, which is triggered by failure of the monitor

 Mon requires one configuration file:

/etc/mon/mon.cf

66 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

 We use a trap-based monitor. The trap is set with a time interval. The trap is
cleared by checking Lustre health. If the trap is not cleared, mon will trigger a
failover.

 All monitors are configured in one file. Mon is started as a service at boot prior to
heartbeat startup. All monitors are disabled at startup and enabled by Heartbeat
in conjunction with resource startup/shutdown.

6.5.2.1 Mon Setup and
Configuration

A. Install Prerequisites for Mon

Mon is not required for a basic failover setup. It is not required for Heartbeart V2, as
monitoring is included in V2.

Heartbeat monitors the health of the node. Adding Mon to the setup allows us to
monitor application health, the application in this case being Lustre.

The base package is available from

ftp://ftp.kernel.org/pub/software/admin/

Mon requires following Perl packages:

Time::Period

Time::HiRes

Convert::BER

Mon::SNMP

As always, when installing Perl we recommend using CPAN. The packages are also
available as tarballs (see cpan.org).

B. Install Mon

After installing the Perl packages, get the Mon tarball from:

ftp://ftp.kernel.org/pub/software/admin/mon/

 Untar the tarball

 Copy the Mon program to a location on the root path

(/usr/lib/mon/mon is default)

 Install the moncmd program

 For this setup, CFS has altered the Mon startup a bit (see the section 6.5.5.10
S99mon.patch). You must patch the S99mon script, and install the result as
/etc/init.d/mon – set this routine to start at boot, prior to heartbeat startup

$ chkconfig --add mon

 Verify that the path for moncmd in the init script matches where you installed
moncmd (/usr/local/bin/moncmd is the default).

 Create a set of Mon directories as specified in /etc/mon/mon.cf

cfbasedir = /etc/mon

alertdir = /usr/local/lib/mon/alert.d

Cluster File Systems, Inc. 67

ftp://ftp.kernel.org/pub/software/admin/mon/
ftp://ftp.kernel.org/pub/software/admin/

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

mondir = /usr/local/lib/mon/mon.d

statedir = /usr/local/lib/mon/state.d

logdir = /usr/local/lib/mon/log.d

dtlogfile = /usr/local/lib/mon/log.d/downtime.log

 Create the /etc/mon/auth.cf file - allow everything in the command section
change AUTH_ANY to all.

 Create the /etc/mon/mon.cf file

Starting with the provided example,

a. Verify that the correct paths are set

b. For each Lustre object, create two watches

• The first watch runs the trap monitor

• The second watch receives the trap

• Both monitors will attempt to fail Lustre if they fail

• The monitor currently hard kills heartbeat to guarantee failover

A CFS user has provided a shell script that will generate a mon.cf file. It is
provided in the section 6.5.5.7 mon.cf.

 Copy the supplied trap generator script (mon.trap) to a proper location
(/usr/local/lib/mon/)

a. This Perl script is based on a script found on the Mon mailing list. Other
scripts are also available there

 Copy the provided Lustre monitor script (lustre.mon.trap) to the mon monitor
directory (/usr/local/lib/mon/mon.d)

a. Verify that the location of TRAPPER points at the trap generation script from
mon.trap

b. Verify that the name matches the script specified in /etc/mon/mon.cf

c. This script is based on /etc/init.d/lustre

 Copy the provided Lustre alert script to the mon alert directory

(/usr/local/lib/mon/alert.d)

a. Verify the name matches script specified in /etc/mon/mon.cf

b. This is a stock script from the mon package

c. For Lustre failover sequence you are free to choose another method of
triggering the transition

• The script will _not STONITH the node

• You should edit the script to provide hard node power off or reboot if needed

C. Add Mon to the heartbeat configuration.

• Copy the lustre-resource-monitor script to the Heartbeat resource directory
(/etc/ha.d/resource.d)

68 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

– Give the script a unique name (alpha-mon, beta-mon)

– Edit the script, and set MONLIST to the service names
to be monitored (two services per object as defined in
/etc/mon/mon.cf)

• Edit /etc/ha.d/haresources to add the mon scripts – the mon script will
appear on the same line as the Lustre resource

• Restart heartbeat

– the trap should appear in syslog:

Apr 26 13:45:38 d2_q_0 mon[3000]: trap trap 1 from 192.168.0.150 \
for alpha-ost lustre_a, status 255

6.5.3 Scripts
In this section, all the scripts necessary for Failover setup with Heartbeat Version 1
are given. The scripts are listed below in the order they appear in the manual.

auth.cf

fail_lustre.alert

ha.cf

haresources

lustre.mon.trap

lustre-resource-monitor

mon.cf

mon.init

mon.trap

S99mon.patch

simple.health_check.monitor

6.5.3.1 auth.cf
#
authentication file
#
entries look like this:
command: {user|all}[,user...]
#
THE DEFAULT IT TO DENY ACCESS TO ALL IF THIS FILE
DOES NOT EXIST, OR IF A COMMAND IS NOT DEFINED HERE
#

#
command section

Cluster File Systems, Inc. 69

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

#
command section

ack: all
checkauth: all
clear: all
disable: all
dump: all
enable: all
get: all
list: all
loadstate: all
protid: all
quit: all
reload: all
reset: all
savestate: all
servertime: all
set: all
start: all
stop: all
term: all
test: all
version: all

#
trap section
#
if no source hosts or users are defined, then do not
accept traps
#
trap section

#source_host user password
#
allow from user "mon" from any host
#
* mon monpassword

70 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

#
allow from host 127.0.0.1 without requiring
a valid username and password
#
 # localhost * *
 # d1_q_0 * *
 # d2_q_0 * *
 # 127.0.0.1 * *
* * *
#

6.5.3.2 fail_lustre.alert
#!/usr/bin/perl
#
template for an alert
#
Jim Trocki, trockij@transmeta.com
#
$Id: alert.template 1.1 Sat, 26 Aug 2000 15:22:34 -0400 trockij
$
#
Copyright (C) 1998, Jim Trocki
#
This program is free software; you can redistribute it \
and/or modify
it under the terms of the GNU General Public License as \
published by
the Free Software Foundation; either version 2 of the \
License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be \
useful,
but WITHOUT ANY WARRANTY; without even the implied warranty \
of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public \
License
along with this program; if not, write to the Free Software

Cluster File Systems, Inc. 71

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA \
02111-1307 USA
#
use Getopt::Std;
getopts ("s:g:h:t:l:u");

#
the first line is summary information, adequate to send to a \
pager
or email subject line
#
#
the following lines normally contain more detailed information,
but this is monitor-dependent
#
see the "Alert Programs" section in mon(1) for an explanation
of the options that are passed to the monitor script.
#
$summary=<STDIN>;
chomp $summary;

$t = localtime($opt_t);
($wday,$mon,$day,$tm) = split (/\s+/, $t);

print <<EOF;

Alert for group $opt_g, service $opt_s
EOF

print "This alert was sent because service was restored\n"
 if ($opt_u);

print <<EOF;
This happened on $wday $mon $day $tm
Summary information: $summary
Arguments passed to this script: @ARGV
Detailed information follows:

EOF

72 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

We will do a very simple setup here
We will attempt to release all resources
`/usr/lib/heartbeat/hb_standby local`;
`/usr/lib/heartbeat/hb_standby foreign`;
while (<STDIN>) {
 print;
}

 6.5.3.3 ha.cf
Suggested fields - logging
debugfile /var/log/ha-debug
logfile /var/log/ha-log
logfacility local0
Requited fields - Timing
keepalive 2
deadtime 30
initdead 120

if using serial heartbeat
baud 19200
serial /dev/ttyS0

for ethernet broadcast
udpport 694
bcast eth0

use manual fail back
auto_failback off

Cluster members - name must match `hostname`
node d1_q_0
node d2_q_0

remote health ping
ping 192.168.0.3
respawn hacluster /usr/lib/heartbeat/ipfail

Cluster File Systems, Inc. 73

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

Uncomment for STONITH
a. Single command for both nodes:
stonith <type> <config file>

b. per-node STONITH command
stonith_host <hostfrom> <stonith_type> <params...>
Using an external script to kill each node
stonith_host d1_q_0 external foo /etc/ha.d/reset-nodeB
stonith_host d2_q_0 external foo /etc/ha.d/reset-nodeA
'foo' is a placeholder for an un-used parameter

6.5.3.4 haresources
d1_q_0 192.168.0.191 beta-ost alpha-mon
d2_q_0 192.168.0.192 beta-mon beta-mon

6.5.3.5 lustre.mon.trap
#!/bin/sh
This script monitors a Lustre object
The object name is passed with the '-o' parameter
set -x

TRAPPER="/usr/local/lib/mon/mon.trap"
HOST=`hostname`
Mon group
GROUP=$1
Mon service
SERVICE=$2

Lustre object or 'lustre'
SRV=$3

STATE="unknown"
GOOD_ARGS="-o ok -r 0 -s $STATE $HOST ${GROUP}:${SERVICE}"
BAD_ARGS="-o fail -r 1 -s $STATE $HOST ${GROUP}:${SERVICE}"

LOGFILE=/var/log/health.log
DT=`date`
echo "$DT" >> $LOGFILE

74 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

LOGFILE=/var/log/health.log
DT=`date`
echo "trap check $DT $HOST" >> $LOGFILE

if [! $SRV]; then
 echo "service not specified"
 exit 1
fi

This is the inverse of /etc/init.d/lustre
We will look for failed states first.
Missing conditions will trigger a failure.
We exit by calling the trap routine.
NOTE - if this node is a router-only node, this script will \
NOT WORK
First,modules must be loaded
egrep -q "libcfs|lvfs|lnet" /proc/modules
[$? -ne 0] && $TRAPPER $BAD_ARGS && exit 1

Second the kernel dir must exist
[! -d /proc/fs/lustre] && $TRAPPER $BAD_ARGS && exit 1

Third, the health check must pass
HEALTH="/proc/fs/lustre/health_check"
[-f "$HEALTH"] && grep -q "NOT HEALTHY" $HEALTH && $TRAPPER \
$BAD_ARGS && exit 1

[-f "$HEALTH"] && grep -q "LBUG" $HEALTH && $TRAPPER \
$BAD_ARGS && exit 1

Finally, if we are checking a specific service, it must be found
DUMMY=`lctl dl | grep -q $SRV`
[$? -ne 0] && $TRAPPER $BAD_ARGS && exit 1

$TRAPPER $GOOD_ARGS
exit 0

Cluster File Systems, Inc. 75

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

6.5.3.6 lustre-resource-monitor
#!/bin/sh
#
start/stop the mon server
#
You probably want to set the path to include
nothing but local filesystems.
#
chkconfig: 2345 99 10
description: mon system monitoring daemon
processname: mon
config: /etc/mon/mon.cf
pidfile: /var/run/mon.pid
#
PATH=/bin:/usr/bin:/sbin:/usr/sbin
export PATH

Source function library.
. /etc/init.d/functions

These next two items should be customized for your config
Each mon instance must have a unique port
MYNAME=${0##*/}
SERVICE=`echo $MYNAME | sed 's/-mon//g'`
MONCONFIG="/etc/mon/mon.cf"
MONCMD="/usr/local/bin/moncmd"
HAPATH="/etc/ha.d/resource.d"
LUSTRE=$HAPATH/$SERVICE

sleep_lustre () {
A function to delay until lustre startup.

 STOP=5
 SLEEP=30
 $LUSTRE status
 RC=$?
 while [$STOP -gt 0] && [$RC -ne 0];

76 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

 do
 STOP=$((STOP - 1))
 sleep $SLEEP
 $LUSTRE status
 RC=$?
 done
 if [$RC -ne 0];then
 echo "Failed to start Lustre!"
 exit 1
 fi

}

Here we are defining a naming convention. We need to start two
watches. For a base name, the mon watches will use the name
of the Lustre object being monitored. (OBJECT)
The mon watch that recieves the traps will be called
OBJECT-obj . The mon watch that sends the trap will be called
OBJECT-mon . The OBJECT-mon watch is responsible to checking
Lustre health and generating the trap.
If the OBJECT-mon health check fails to run, it will
also trigger a heartbeat takeover

MONLIST="${SERVICE}-mon ${SERVICE}-obj"
See how we were called.
case "$1" in
 start)
 sleep_lustre
 echo -n "Starting monitors : "

 $MONCMD stop
 for i in $MONLIST
 do
 echo "Enabling $i"
 $MONCMD enable watch $i
 done
 $MONCMD start
 $MONCMD list watch

Cluster File Systems, Inc. 77

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

 exit 0
 ;;
 stop)
 echo -n "Stopping monitors : "
 $MONCMD stop
 for i in $MONLIST
 do
 echo "Disabling $i"
 $MONCMD disable watch $i
 done
 $MONCMD start
 $MONCMD list disabled
 exit 0
 ;;
 status)
 $MONCMD list watch
 exit 0
 ;;
 restart)
 killall -HUP mon
 ;;
 *)
 echo "Usage: mon {start|stop|status|restart}"
 exit 1
esac

exit 0

6.5.3.7 mon.cf
#
Example "mon.cf" configuration for "mon".
#
$Id: example.cf 1.1 Sat, 26 Aug 2000 15:22:34 -0400 trockij $
#

#
This works with 0.38pre8
#

78 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

#
global options
#
cfbasedir = /etc/mon
alertdir = /usr/local/lib/mon/alert.d
mondir = /usr/local/lib/mon/mon.d
statedir = /usr/local/lib/mon/state.d
logdir = /usr/local/lib/mon/log.d
dtlogfile = /usr/local/lib/mon/log.d/downtime.log
maxprocs = 20
histlength = 100
randstart = 60s

#
authentication types:
getpwnam standard Unix passwd, NOT for shadow passwords
shadow Unix shadow passwords (not implemented)
userfile "mon" user file
#
authtype = getpwnam

#
NB: hostgroup and watch entries are terminated with a blank \
line (or
end of file). Don't forget the blank lines between them or \
you lose.
#

#
group definitions (hostnames or IP addresses)
EXAMPLE
Two servers: d1_q_0, d2_q_0
Two OSTs: ost-alpha, ost-beta

#
hostgroup beta-ost d1_q_0 d2_q_0
hostgroup beta-mon d1_q_0 d2_q_0
#

Cluster File Systems, Inc. 79

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

hostgroup alpha-ost d1_q_0 d2_q_0
hostgroup alpha-mon d1_q_0 d2_q_0

#
Lustre failover - the trap script needs
group service object

The lustre.mon.trap script is based on one found on the
mon mailing list, there are otherw available that will work
equally well
the 'group' and 'service' tags are used by mon only,
They must be unique

#
watch beta-mon
 service lustre_mon_b
 description sends traps for the lustre service
 interval 3m
 monitor lustre.mon.trap beta-ost lustre_b ost-beta
 period
 alert fail_lustre.alert

watch beta-ost
 service lustre_b
 description will fail unless trap recieved
 traptimeout 6m
 period wd {Sat-Sun}
 alert fail_lustre.alert
Second OST
#
watch alpha-mon
 service lustre_mon_a
 description sends traps for the lustre service
 interval 3m
 monitor lustre.mon.trap alpha-ost lustre_a ost-alpha
 period
 alert fail_lustre.alert

80 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

watch alpha-ost
 service lustre_a
 description will fail unless trap recieved
 traptimeout 6m
 period
 alert fail_lustre.alert

6.5.3.8 mon.init
#!/bin/sh
#
start/stop the mon server
#
You probably want to set the path to include
nothing but local filesystems.
#
chkconfig: 2345 99 10
description: mon system monitoring daemon
processname: mon
config: /etc/mon/mon.cf
pidfile: /var/run/mon.pid
#
PATH=/bin:/usr/bin:/sbin:/usr/sbin
export PATH

Source function library.
. /etc/rc.d/init.d/functions

dismon() {

MONCMD="/usr/local/bin/moncmd"
for i in `$MONCMD list watch | awk '{print $1}'`
do
 echo "Disabling watch $i"
 $MONCMD disable watch $i
done
$MONCMD list watch
}
See how we were called.

Cluster File Systems, Inc. 81

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

case "$1" in
 start)
 echo -n "Starting mon daemon: "
 daemon /usr/lib/mon/mon -S -f -c /etc/mon/mon.cf
 echo
 dismon
 echo
 touch /var/lock/subsys/mon

 ;;
 stop)
 echo -n "Stopping mon daemon: "
 killproc mon
 echo
 rm -f /var/lock/subsys/mon
 ;;
 status)
 status mon
 ;;
 restart)
 killall -HUP mon
 ;;
 *)
 echo "Usage: mon {start|stop|status|restart}"
 exit 1
esac

exit 0

6.5.3.9 mon.trap
#!/usr/bin/perl

use strict;
use Getopt::Std;
use Mon::Client;

my @opstrings= (
 "fail", "ok", "coldstart", "warmstart", "linkdown",

82 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

 "unknown", "timeout", "untested",
);

my $usage= "montrap [-p port] [-r retval] -o opstatus -s summary \
[-d detail]
host group:service\n";

use vars qw($opt_p $opt_r $opt_o $opt_s $opt_d);
getopts("p:r:o:s:d:");

die $usage unless @ARGV == 2 and $ARGV[1] =~ /[^:]+:[^:]+/;

my $host= $ARGV[0];
my ($group, $service)= $ARGV[1] =~ /^([^:]+):([^:]+)/;

my $port= $opt_p || 2583;
my $retval= $opt_r || 255;
my $opstatus= $opt_o || die "montrap: '-o opstatus' required\n";

die "montrap: unrecognized opstatus: $opstatus\n" unless
 grep $opstatus, @opstrings;

my $summary= $opt_s || die "montrap: '-s summary' required\n";
my $detail= $opt_d || "";

my $mon;
my $res;
my $failure;

 if (!defined ($mon = Mon::Client->new(host => $host, \
port => $port,))) {
 die "$0: could not create client object: $@";
 }
 $mon->host($host);

 $mon->send_trap(
 group=> $group,
 service=> $service,
 retval=> $retval,

Cluster File Systems, Inc. 83

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

 opstatus=> $opstatus,
 summary=> $summary,
 detail => $detail,
);

if (!$res) {
 $failure = $mon->error();
 print $failure . "\n";
 }

6.5.3.10 S99mon.patch
--- /home/cliffw/failover/mon/mon-0.99.2/etc/S99mon 2000-08-26 \
12:22:34.000000000 -0700
+++ mon.init 2006-04-26 10:26:14.000000000 -0700
@@ -17,13 +17,26 @@ export PATH
 # Source function library.
 . /etc/rc.d/init.d/functions

+dismon() {
+
+MONCMD="/usr/local/bin/moncmd"
+for i in `$MONCMD list watch | awk '{print $1}'`
+do
+ echo "Disabling watch $i"
+ $MONCMD disable watch $i
+done
+$MONCMD list watch
+}
 # See how we were called.
 case "$1" in
 start)
 echo -n "Starting mon daemon: "
- daemon /usr/lib/mon/mon -c /etc/mon/mon.cf
+ daemon /usr/lib/mon/mon -S -f -c /etc/mon/mon.cf
+ echo
+ dismon
 echo
 touch /var/lock/subsys/mon

84 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

+
 ;;
 stop)
 echo -n "Stopping mon daemon: "

6.5.3.11
simple.health_check.monitor

#!/bin/sh
This script monitors a Lustre object
The object name is passed with the '-o' parameter

touch /etc/ha.d/nohb to stop on boot
KILLFILE="/etc/ha.d/nohb"
if [-f $KILLFILE]; then
 echo "NO HEARTBEAT - remove $KILLFILE to start"
 exit 0
fi

SRV='foo'

while getopts "o:" opt; do
 case $opt in
 o) SRV=$OPTARG
 ;;
 \?) echo "Usage: health_check.monitor -o <service>"
 echo "use -o lustre for all services"
 esac
done

SERV=${!OPTIND}
ME=`hostname`

LOGFILE=/var/log/health.log
DT=`date`
echo "simple health $DT $SERV" >> $LOGFILE

if [$ME != $SERV];then
 echo "$SERV Not local host" >> $LOGFILE

Cluster File Systems, Inc. 85

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

 exit 0
fi

if [$SRV == "foo"]; then
 SRV="lustre"
fi

if [$SRV == "lustre"];then
 echo "all status"
 unset SRV
fi

STATE="stopped"

 # check for error in health_check
 HEALTH="/proc/fs/lustre/health_check"
 [-f "$HEALTH"] && grep -q "NOT HEALTHY" $HEALTH && \
STATE="unhealthy"

 # check for LBUG
 [-f "$HEALTH"] && grep -q "LBUG" $HEALTH && STATE="LBUG"

 if ["$SRV"]; then
 if ["$DISCON" -o $STATE == "unhealthy" -o $STATE == \
"LBUG"];then
 exit 1
 else
 exit 0
 fi
 else
 echo $STATE
 fi
exit 0

86 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

6.6 Instructions for
Failover Setup with
Heartbeat Version2

6.6.1 Software Installations
1. Install Lustre as described in Part II – Chapter 2. Lustre Installation.

2. Install RPMs required for configuring Heartbeat.

The following packages are needed for Heartbeat (v2). We used the 2.0.4 version of
Heartbeat.

Heartbeat packages, in order:

 heartbeat-stonith -> heartbeat-stonith-2.0.4-1.i586.rpm

 heartbeat-pils -> heartbeat-pils-2.0.4-1.i586.rpm

 heartbeat itself -> heartbeat-2.0.4-1.i586.rpm

You can find all the RPMs at the location given below:

http://linux-ha.org/download/index.html#2.0.4

3. Install Prerequisites.

To install Heartbeat 2.0.4-1, you require:

 Python

 openssl

 libnet-> libnet-1.1.2.1-19.i586.rpm

 libpopt -> popt-1.7-274.i586.rpm

 librpm -> rpm-4.1.1-222.i586.rpm

 libtld- > libtool-ltdl-1.5.16.multilib2-3.i386.rpm

 lingnutls -> gnutls-1.2.10-1.i386.rpm

 Libzo ->lzo2-2.02-1.1.fc3.rf.i386.rpm

 glib -> glib-2.6.1-2.i586.rpm

 glib-devel -> glib-devel-2.6.1-2.i586.rpm

6.6.2 Hardware
Configurations

Heartbeat v2 runs well with an un-altered v1 configuration. This makes upgrading
simple. You can test the basic function and quickly roll back if issues appear.

Cluster File Systems, Inc. 87

http://linux-ha.org/download/index.htmlC Prerequisites

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

Heartbeat v2 does not require a virtual IP address to be associated with a resource.
This is good since we do not use virtual IPs.

Heartbeat v2 supports multi-node clusters (of more than two nodes), though it has
not been tested for a multi-node cluster. This section describes only the two-node
case. The multi-node setup adds a score value to the resource configuration. This
value is used to decide the proper node for a resource when failover occurs.

Heartbeat v2 adds a resource manager (crm). The resource configuration is
maintained as an XML file. This file is re-written by the cluster frequently. Any
alterations to the configuration should be made with the HA tools or when the cluster
is stopped.

6.6.2.1 Hardware Preconditions

The basic cluster assumptions are the same as those for Heartbeat v1. We are re-
iterating the preconditions for the sake of clarity.

1. The setup must consist of a failover pair where each node of the pair has access
to shared storage. If possible, the storage paths should be identical
(d1_q_0:/dev/sda == d2_q_0:/dev/sda).

2. Shared storage can be arranged in an active/passive (MDS,OSS) or active/active
(OSS only) configuration. Each shared resource will have a primary (default)
node. The secondary node is assumed.

3. The two nodes must have one or more communication paths for heartbeat traffic.
A communication path can be:

• dedicated Ethernet

• serial live (serial crossover cable)

Failure of all heartbeat communication is not good. This condition is called “split-
brain” and the heartbeat software will resolve this situation by powering down
one node.

4. The two nodes must have a method to control each other's state. The Remote
Power Control hardware is the best. There must be a script to start and stop a
given node from the other node. STONITH provides soft power control methods
(ssh, meatware) but these cannot be used in a production situation.

5. Heartbeat provides a remote ping service that is used to monitor the health of the
external network. If you wish to use the ipfail service, you must have a very
reliable external address to use as the ping target.

6.6.2.2 Lustre Configuration

 Lustre configuration is identical to the V1 case.

 6.6.2.3 Heartbeat Configuration

See the link below for thorough details on all the configuration options:

http://linux-ha.org/ha.cf

As mentioned earlier, you can run Heartbeat v2 with v1 configuration. To convert
from v1 configuration to v2, use the haresources2cib.py script, typically found in
/usr/lib/heartbeat. If you are starting with v2, we recommend creating a v1-style
configuration and converting it, as the v1 style is human-readable. The heartbeat
XML configuration is located at /var/lib/heartbeat/cib.xml and the new resource

88 Cluster File Systems, Inc.

http://linux-ha.org/ha.cf

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

manager is enabled with the crm yes directive in /etc/ha.d/ha.cf. Further
information on CiB can be found at:

http://linux-ha.org/clusterinformationbase/userguide

A. Heartbeat log daemon

Heartbeat v2 adds a logging daemon, which manages logging on behalf of cluster
clients. The UNIX syslog API makes calls that can block, heartbeat requires log
writes to complete as a sign of health. This daemon prevents a busy syslog from
triggering a false failover. The logging configuration has been moved to /etc/logd.cf,
while the directives are essentially unchanged.

B. Basic configuration (No STONITH or monitor)

- Assuming two nodes, d1_q_0 and d21_q_0

- d1_q_0 owns ost-alpha

- d2_q_0 owns ost-beta

- dedicated Ethernet - eth0

- serial crossover link - /dev/ttySO

- remote host for health ping - 192.168.0.3

a. Create symlinks from /etc/init.d/lustre to /etc/init.d/<resource_name>

- These links must exist before running the conversion script.

- Placing these scripts in /etc/init.d/ causes the conversion script to identify the
script as type lsb. This gives us more flexibility for script parameters. Scripts
found in /etc/ha.d/resource.d are considered to be of type heartbeat and have
more restrictions.

b. Create the basic ha.cf and haresources files

- haresources no longer requires the dummy virtual IP address.

Example of /etc/ha.d/haresouces

d1_q_0 ost-alpha
d2_q_0 ost-beta

Once you have these files created, you can run the conversion tool:

$ /usr/lib/heartbeat/haresources2cib.py -c basic.ha.cf \
basic.haresources > basic.cib.xml

c. Examine the cib.xml file

The first section in the XML file is <attributes>. The default values should be fine for
most installations.

The actual resources are defined in the <primitive> section. The default behavior of
Heartbeat is an automatic failback of resources when a server is restored. To avoid
this, you must add a parameter to the <primitive> definition. You may also like to

Cluster File Systems, Inc. 89

http://linux-ha.org/ClusterInformationBase/UserGuide

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

reduce the timeouts a bit. In addition, the current version of the script does not name
the parameters correctly.

- Copy the modified resource file to /var/lib/heartbeat/crm/cib.xml

- Start Heartbeat

- After startup, Heartbeat will re-write the cib.xml, adding a <node> section and
status information. Do not alter those fields.

C. Basic Configuration – Adding STONITH

As per B. Basic Configuration – Adding STONITH in the section 6.5.2.3
Heartbeat Configuration. The best way to do this is to add the STONITH options to
ha.cf and run the conversion script. A sample example is in the section 6.6.4.1
ha.cf. See http://linux-ha.org/externalstonithplugins for more information.

6.6.3 Operation
In normal operation, Lustre should be controlled by Heartbeat. Start Heartbeat at the
boot time. It will start Lustre after the initial dead time.

A. Initial startup

 Stop heartbeat if running

 If this is a new Lustre file system:
lconf --reformat /etc/lustre/config.xml (both nodes)
lconf --cleanup /etc/lustre.config.xml (both nodes)

 If this is a new Lustre configuration, remember to lconf
write_conf on the MDS

 /etc/init.d/heartbeat start on one node

 tail -f /var/log/ha-log to see progress

 After initdead, this node should start all Lustre objects

 /etc/init.d/heartbeat start on second node

 After heartbeat is up on both the nodes, failback the resources to the second
node. On the second node, run:
$ /usr/lib/heartbeart/hb_takeover local

 You should see the resources stop on the first node, and start up on the second
node

B. Testing

 Pull power from one node

 Pull networking from one node

 After Mon is setup, pull the connection between the OST and the backend
storage

90 Cluster File Systems, Inc.

http://linux-ha.org/ExternalStonithPlugins

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

C. Failback

In normal case, do the failback manually after determining that the failed node is
now good. Lustre clients can work during a failback, but block momentarily.

6.6.4 Scripts
In this section, all the scripts necessary for Failover setup with Heartbeat Version 2
are given. The scripts are listed below in the order they appear in the manual.

ha.cf

haresouces

basic.cib.xml

Modified basic.cib.xml

HA with STONITH

Heartbeat CIB with basic STONITH

6.6.4.1 ha.cf
use_logd on
keepalive 1
deadtime 10
initdead 60
udpport 694
bcast eth1
baud 19200
serial /dev/ttyS1
auto_failback off
crm yes
node d1_q_0 d2_q_0
ping 192.168.0.60
respawn hacluster /usr/lib/heartbeat/ipfail

6.6.4.2 haresources
d1_q_0 ost-alpha
d2_q_0 ost-beta

6.6.4.3 basic.cib.xml
<cib>
<configuration>
<crm_config>
<cluster_property_set id="deafult">

Cluster File Systems, Inc. 91

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

<attributes>
<nvpair id="symmetric_cluster" name="symmetric_cluster" \
value="true" />
<nvpair id="no_quorum_policy" name="no_quorum_policy" \
value="stop" />
<nvpair id="default_resource_stickiness" \
name="default_resource_stickiness" value="0" />
<nvpair id="stonith_enabled" name="stonith_enabled" \
value="false" />
<nvpair id="stop_orphan_resources" name="stop_orphan_resources" \
value="false" />
<nvpair id="stop_orphan_actions" name="stop_orphan_actions" \
value="true" />
<nvpair id="remove_after_stop" name="remove_after_stop" \
value="false" />
<nvpair id="short_resource_names" name="short_resource_names" \
value="true" />
<nvpair id="transition_idle_timeout" \
name="transition_idle_timeout" value="5min" />
<nvpair id="is_managed_default" name="is_managed_default" \
value="true" />
</attributes>
</cluster_property_set>
</crm_config>
<nodes />
<resources>
<primitive class="lsb" id="ost-alpha_1" provider="heartbeat" \
type="ost-alpha">
<operations>
<op id="ost-alpha_1_mon" interval="120s" name="monitor" \
timeout="60s" />
</operations>
</primitive>
<primitive class="lsb" id="ost-beta_2" provider="heartbeat" \
type="ost-beta">
<operations>
<op id="ost-beta_2_mon" interval="120s" name="monitor" \
timeout="60s" />
</operations>
</primitive>
</resources>
<constraints>
<rsc_location id="rsc_location_ost-alpha_1" rsc="ost-alpha_1">
<rule id="prefered_location_ost-alpha_1" score="100">

92 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

<expression attribute="#uname" \
id="prefered_location_ost-alpha_1_expr" operation="eq" \
value="d1_q_0" />
</rule>
</rsc_location>
<rsc_location id="rsc_location_ost-beta_2" rsc="ost-beta_2">
<rule id="prefered_location_ost-beta_2" score="100">
<expression attribute="#uname" \
id="prefered_location_ost-beta_2_expr" operation="eq" \
value="d2_q_0" />
</rule>
</rsc_location>
</constraints>
</configuration>
<status />
</cib>

6.6.4.4 Modified basic.cib.xml
<cib>
<configuration>
<crm_config>
<cluster_property_set id="deafult">
<attributes>
<nvpair id="symmetric_cluster" name="symmetric_cluster" \
value="true" />
<nvpair id="no_quorum_policy" name="no_quorum_policy" \
value="ignore" />
<nvpair id="default_resource_stickiness" \
name="default_resource_stickiness" value="0" />
<nvpair id="stonith_enabled" name="stonith_enabled" \
value="false" />
<nvpair id="stop_orphan_resources" name="stop_orphan_resources" \
value="false" />
<nvpair id="stop_orphan_actions" name="stop_orphan_actions" \
value="true" />
<nvpair id="remove_after_stop" name="remove_after_stop" \
value="false" />
<nvpair id="short_resource_names" name="short_resource_names" \
value="true" />
<nvpair id="transition_idle_timeout" \
name="transition_idle_timeout" value="5min" />
<nvpair id="is_managed_default" name="is_managed_default" \
value="true" />
</attributes>

Cluster File Systems, Inc. 93

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

</cluster_property_set>
</crm_config>
<nodes />
<resources>
<primitive class="lsb" id="ost-alpha_1" type="ost-alpha" \
resource_stickiness="INFINITY">
<operations>
<op id="1" interval="10s" name="monitor" timeout="30s" />
</operations>
</primitive>
<primitive class="lsb" id="ost-beta_2" type="ost-beta" \
resource_stickiness="INFINITY">
<operations>
<op id="2" interval="10s" name="monitor" timeout="30s" />
</operations>
</primitive>
</resources>
<constraints>
<rsc_location id="rsc_location_ost-alpha_1" rsc="ost-alpha_1">
<rule id="prefered_location_ost-alpha_1" score="100">
<expression attribute="#uname" \
id="prefered_location_ost-alpha_1_expr" operation="eq" \
value="d1_q_0" />
</rule>
</rsc_location>
<rsc_location id="rsc_location_ost-beta_2" rsc="ost-beta_2">
<rule id="prefered_location_ost-beta_2" score="100">
<expression attribute="#uname" \
id="prefered_location_ost-beta_2_expr" operation="eq" \
value="d2_q_0" />
</rule>
</rsc_location>
</constraints>
</configuration>
<status />
</cib>

6.6.4.5 HA with STONITH
apiauth stonithd uid=root
respawn root /usr/lib/heartbeat/stonithd

94 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

use_logd on
keepalive 1
deadtime 10
initdead 60
udpport 694
bcast eth1
baud 19200
serial /dev/ttyS1
auto_failback off
crm yes
node d1_q_0 d2_q_0
ping 192.168.0.60
respawn hacluster /usr/lib/heartbeat/ipfail
stonith_host d1_q_0 ssh d1_q_0
stonith_host d2_q_0 ssh d2_q_0

6.6.4.6 Heartbeart CIB with basic
STONITH

<cib>
<configuration>
<crm_config>
<cluster_property_set id="deafult">
<attributes>
<nvpair id="symmetric_cluster" name="symmetric_cluster" \
value="true" />
<nvpair id="no_quorum_policy" name="no_quorum_policy" \
value="stop" />
<nvpair id="default_resource_stickiness" \
name="default_resource_stickiness" value="0" />
<nvpair id="stonith_enabled" name="stonith_enabled" value="true" \
/>
<nvpair id="stop_orphan_resources" name="stop_orphan_resources" \
value="false" />
<nvpair id="stop_orphan_actions" name="stop_orphan_actions" \
value="true" />
<nvpair id="remove_after_stop" name="remove_after_stop" \
value="false" />
<nvpair id="short_resource_names" name="short_resource_names" \
value="true" />
<nvpair id="transition_idle_timeout" \
name="transition_idle_timeout" value="5min" />
<nvpair id="is_managed_default" name="is_managed_default" \

Cluster File Systems, Inc. 95

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

value="true" />
</attributes>
</cluster_property_set>
</crm_config>
<nodes />
<resources>
<primitive class="lsb" id="ost-alpha_1" provider="heartbeat" \
type="ost-alpha">
<operations>
<op id="1" interval="10s" name="monitor" timeout="20s" />
</operations>
</primitive>
<primitive class="lsb" id="ost-beta_2" provider="heartbeat" \
type="ost-beta">
<operations>
<op id="2" interval="10s" name="monitor" timeout="20s" />
</operations>
</primitive>
<primitive class="stonith" id="stonith_3" provider="heartbeat" \
type="ssh">
<operations>
<op id="stonith_3_mon" interval="5s" name="monitor" \
prereq="nothing" timeout="20s" />
<op id="stonith_3_start" name="start" prereq="nothing" \
timeout="20s" />
</operations>
<instance_attributes>
<attributes>
<nvpair id="stonith_3_attr_2" name="hostlist" value="d1_q_0" />
 </attributes>
</instance_attributes>
</primitive>
<primitive class="stonith" id="stonith_4" provider="heartbeat" \
type="ssh">
<operations>
<op id="stonith_4_mon" interval="5s" name="monitor" \
prereq="nothing" timeout="20s" />
<op id="stonith_4_start" name="start" prereq="nothing" \
timeout="20s" />
</operations>
<instance_attributes>

96 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 6. Failover

<attributes>
<nvpair id="stonith_4_attr_2" name="hostlist" value="d2_q_0" />
</attributes>
</instance_attributes>
</primitive>
</resources>
<constraints>
<rsc_location id="rsc_location_ost-alpha_1" rsc="ost-alpha_1">
<rule id="prefered_location_ost-alpha_1" score="100">
<expression attribute="#uname" \
id="prefered_location_ost-alpha_1_expr" operation="eq" \
value="d1_q_0" />
</rule>
</rsc_location>
<rsc_location id="rsc_location_ost-beta_2" rsc="ost-beta_2">
<rule id="prefered_location_ost-beta_2" score="100">
<expression attribute="#uname" \
id="prefered_location_ost-beta_2_expr" operation="eq" \
value="d2_q_0" />
</rule>
</rsc_location>
<rsc_location id="rsc_location_stonith_3" rsc="stonith_3">
<rule id="prefered_location_stonith_3" score="100">
<expression attribute="#uname" \
id="prefered_location_stonith_3_expr" operation="eq" \
value="d1_q_0" />
</rule>
</rsc_location>
<rsc_location id="rsc_location_stonith_4" rsc="stonith_4">
<rule id="prefered_location_stonith_4" score="100">
<expression attribute="#uname" \
id="prefered_location_stonith_4_expr" operation="eq" \
value="d2_q_0" />
</rule>
</rsc_location>
</constraints>
</configuration>
<status />
</cib>

Cluster File Systems, Inc. 97

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 6. Failover

6.7 Considerations
With Failover
Software and
Solutions

The failover mechanisms used by Lustre and tools such as Hearbeat are soft
failover mechanisms. They check system and/or application health at a regular
interval, typically measured in seconds. This, combined with the data protection
mechanisms of Lustre, is usually sufficient for most user applications.

However, these soft mechanisms are not perfect. The Heartbeat poll interval is
typically 30 seconds. To avoid a false failover, Heartbeat waits for a deadtime
interval before triggering a failover. In normal case, a user I/O request should block
and recover after the failover completes. But this may not always be the case, given
the delay imposed by Heartbeat.

Likewise, the Lustre health_check mechanism cannot be a perfect protection
against any or all failures. It is a sample taken at a time interval, not something that
brackets each and every I/O request. This is true for every HA monitor, not just the
Lustre health_check.

There will indeed be cases where a user job will die prior to the HA software
triggering a failover. You can certainly shorten timeouts, add monitoring, and take
other steps to decrease this probability. But there is a serious trade-off – shortening
timeouts increases the probability of false-triggering a busy system. Increasing
monitoring takes the system resources, and can likewise cause a false trigger.

Unfortunately, hard failover solutions capable of catching failures in the sub-second
range generally require special hardware. As a result, they are quite expensive.

98 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 7. Configuring Quotas

CHAPTER II – 7. CONFIGURING QUOTAS

Cluster File Systems, Inc. 99

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 7. Configuring Quotas

7.1 Working with
Quotas

Quotas allow a system administrator to limit the maximum amount of disc space a
user or group can consume in a directory. Quotas are set by root, and can be set for
both individual users and/or groups. Before a file is written to a partition where
quotas have been set, the quota of the creator's group is checked first. If a quota for
that group exists, the size of the file is counted towards that group's quota. If no
quota exists for the group, the owner's user quota is checked before the file is
written.

Lustre quota enforcement differs from standard Linux quota support in several ways:

 it is administered via the lfs command

 the quota is distributed (as Lustre is a distributed file system), which has
several ramifications

 the quota is allocated and consumed in a quantized fashion

 the client does not set the usrquota or grpquota options to mount. When a
quota is enabled, it is enabled for all clients of the file system and turned on
automatically at mount.

7.1.1 Configuring Disk
Quotas

Enabling Quotas

 If you have re-complied your Linux kernel, please be certain that
CONFIG_QUOTA and CONFIG_QUOTACTL are enabled (quota is enabled in
all the Linux 2.6 kernels supplied by CFS)

 Rebuild your XML configuration by adding the --quota quoton=[u|g] option to the
MDS and OST setup:
${LMC} –add mds –node ft1 –mds mds-l -fstype ldiskfs –dev \
$MDSDEV –failover –quota quotaon=ug
${LMC} –add ost –node oss-0 –lov lov-l –ost ost-0 –fstype \
ldiskfs –dev /dev/sda1 –failover –mountfsoptions extents, \
mballoc –quota quotaon=ug

 Re-write the configuration log on the MDS with lconf –write_conf <XML>

 Load the lquota module in the proper order (prior to the MDC, LOV or OSC
modules). Add the following lines to /etc/modprobe.conf on both server and client
nodes:
install mdc /sbin/modprobe lquota; /sbin/modprobe \
–ignore-install mdc
install lov /sbin/modprobe lquota; /sbin/modprobe \
–ignore-install lov
install osc /sbin/modprobe lquota; /sbin/modprobe \
–ignore-install osc

 Restart Lustre (remember, you should always stop Lustre prior to --write_conf)

100 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 7. Configuring Quotas

 Mount the Lustre file system on the client and verify that the lquota module has
loaded properly by using the lsmod command

 The mount command for Lustre no longer recognizes the usrquota and grpquota
options, please remove them from your /etc/fstab if they were specified
previously

 When quota is enabled on the file system, it is automatically enabled for all
clients of the file system

NOTE: Lustre with Linux Kernel 2.4 will not support quotas.

7.1.2 Creating Quota Files
and Quota Administration

Once each quota-enabled file system is remounted, it will be capable of working with
disk quotas. However, the file system itself is not yet ready to support quotas. The
next step is to run the lfs command with the quotacheck option:

#lfs quotacheck -ug /mnt/lustre

The quota will be turned on by default after quotacheck completes. The options that
can be used are as follows:

• u — to check the user disk quota information

• g — to check the group disk quota information

The lfs command now includes these other command options for working with
quotas:

 quotaon ― announces to the system that disk quotas should be enabled on one
or more file systems. The file system quota files must be present in the root
directory of the specified file system

 quotaoff ― announces to the system that the specified file systems should have
all the disk quotas turned off

 setquota ― used to specify the quota limits and tune the grace period. By default
the grace period is one week.

Usage: setquota [-u | -g] <name> <block-softlimit> <block-
hardlimit> <inode-softlimit> <inode-hardlimit> <filesystem>

 setquota -t [-u | -g] <block-grace> <inode-grace> <filesystem>
lfs > setquota -u bob 307200 309200 1000 1100 /mnt/lustre

Description: sets limits for a user "bob". The block hard limit is
around 3GB and the inode hard limit is 1100. Please note: This
example uses very tiny limits.

 Quota displays the quota allocated and consumed for each
Lustre device. This example shows the result of the previous
setquota:

lfs > quota -u bob /mnt/lustre
Disk quotas for user bob (uid 502):
 Filesystem blocks quota limit grace files quota \
limit grace

Cluster File Systems, Inc. 101

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 7. Configuring Quotas

 /mnt/lustre 0 307200 309200 0 1000 \
1100
 mds-l_UUID 0 0 10240 0 0 \
200
 ost-alpha_UUID 0 0 10240
 ost-beta_UUID 0 0 10240
 ost-gam_UUID 0 0 10240

 Quotachown sets or changes the file owner and the group on OSTs of the
specified file system.

$ lfs quotachown –I /mnt/lustre

7.1.3 Quota Allocation
The Linux kernel sets a default quota size of 1MB. Lustre handles quota allocation in
a different manner. A quota must be set properly or users may experience
unnecessary failures. The file system block quota is divided up among the OSTs
within the file system. Each OST requests an allocation which is increased up to the
quota limit. The quota allocation is then quantized to reduce the number of quota-
related request traffic. By default, Lustre will allocate 100MB per OST. This means
the minimum quota that can be assigned is 100 MB multiplied by the number of
OSTs in your file system. If you attempt to assign a smaller quota, users maybe
unable to create files. The default is established at file system creation time, but can
be tuned via /proc values (detailed below). The inode quota is also allocated in a
quantized manner on the MDS.

The setquota example above was run on a file system created with the following
lmc quota options:

--quota quotaon=ug,bunit=10,iunit=200

This sets a much smaller granularity. We have specified that we will request new
quota in units of 10 MB and 200 inodes respectively. If we look at the example
again:

lfs > quota -u bob /mnt/lustre
Disk quotas for user bob (uid 502):
 Filesystem blocks quota limit grace files quota \
limit grace
 /mnt/lustre 0 307200 309200 0 1000 \
1100
 mds-l_UUID 0 0 10240 0 0 \
200
 ost-alpha_UUID 0 0 10240
 ost-beta_UUID 0 0 10240
 ost-gam_UUID 0 0 10240

We see that the 3GB quota requested is divided across the OSTs, with each OST
having an initial allocation of 10MB blocks. The MDS line shows the initial 200 inode
allocation.

It is very important to note that the block quota is consumed per OST. Much like

102 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 7. Configuring Quotas

free space, when the quota is consumed on one OST, clients may be unable to
create files regardless of the quota available on other OSTs.

More details:

Lustre quota allocation is controlled by two values ― quota_bunit_sz and
quota_iunit_sz ― referring to kilo bytes and inodes respectively. These values can
be accessed on the MDS as /proc/fs/lustre/mds/*/quota_* and on the OST as
/proc/fs/lustre/obdfilter/*/quota_*.

They can also be set as an option to lmc --quota. Changes will be required while
using the lconf command with the parameter write_conf. A command like lconf --
write_conf is to be used on the MDS. The /proc values are bounded by two other
variables quota_btune_sz and quota_itune_sz. By default, the *tune_sz variables
are set at 1/2 the *unit_sz variables, and you cannot set *tune_sz larger than
*unit_sz. You must set bunit_sz first if it is increasing by more than 2x, and btune_sz
first if it is decreasing by more than 2x.

The values set for the MDS must match the values set on the OSTs.

The parameter quota_bunit_sz displays bytes, however lfs setquota uses kilo bytes.
The parameter quota_bunit_sz must be a multiple of 1024. A proper minimum bkilo
byte size for lfs setquota can be calculated by:

Size in bkilo bytes = (quota_bunit_sz * (number of OSTS + 1)) / 1024.

We add one to the number of OSTs as the MDS also consumes bkilo bytes. As
inodes are only consumed on the MDS, the minimum inode size for lfs setquota is
equal to quota_iunit_sz.

NOTE: Setting the quota below this limit may prevent the user from all the file
creation.

Cluster File Systems, Inc. 103

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 8. RAID

CHAPTER II – 8. RAID

104 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 8. RAID

8.1 Considerations for
Backend Storage

Lustre's architecture allows it to use any kind of block device as backend storage.
The characteristics of such devices, particularly in the case of failures vary
significantly and have an impact on configuration choices.

This section gives a survey of the issues and recommendations.

8.1.1 Reliability
Given below is a quick calculation that leads to the conclusion that without any
further redundancy RAID5 is not acceptable for large clusters and RAID6 is a must.

Take a 1PB file system - that is 2000 disks of 500GB capacity. The MTF of a disk is
likely about 1000 days and repair time at 10% of disk bandwidth is close to 1 day
(500GB at 5MB/sec = 100,000 sec = 1 day). This means that the expected failure
rate is 2000 / 1000 = 2 disks per day.

If we have a RAID5 stripe that is ~10 wide, then during the 1 day of rebuilding the
chance that a second disk in the same array fails is about 9 / 1000 ~= 1/100. This
means that the in the expected period of 50 days a double failure in a RAID5 stripe
will lead to data loss.

So RAID6 or another double parity algorithm is really necessary for OST storage.
For the MDS we recommend RAID0+1 storage.

8.1.2 Selecting Storage for
the MDS and OSS

The MDS will do a large amount of small writes. For this reason we recommend
RAID1 storage. Building RAID1 Linux MD devices and striping over these devices
with LVM makes it easy to create an MDS file system of 1-2TB, for example, with 4
or 8 500GB disks.

Having disk monitoring software in place so that rebuilds happen without any delay
should be regarded as mandatory. We recommend backups of the meta-data file
systems. This can be done with LVM snapshots or using raw partition backups.

We also recommend using a kernel version of 2.6.15 or later with bitmap RAID
rebuild features. These reduce RAID recovery time from a rebuild to a quick
resynchronization.

8.1.3 Understanding
Double Failures with
Hardware and Software
RAID5

Software RAID does not offer the hard consistency guarantees of top-end enterprise
RAID arrays. Those guarantees state that the value of any block is exactly the
before or after value and that ordering of writes is preserved. With software RAID,
an interrupted write operation that spans multiple blocks can frequently leave a

Cluster File Systems, Inc. 105

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 8. RAID

stripe in an inconsistent state that is not restored to either the old or the new value.
Such interruptions are normally caused by an abrupt shutdown of the system.

If the array is functioning without disk failures, but experiencing sudden power down
events, such interrupted writes on journal file systems can affect file data and data in
the journal. Meta data itself is re-written from the journal during recovery and will be
correct. Because the journal uses a single block to indicate a complete transaction
has committed after other journal writes have completed, the journal remains valid.
File data can be corrupted when overwriting file data, but this is a known problem
with incomplete writes and caches anyway. Hence recovery of the disk file systems
with software RAID is similar to recovery without software RAID. Moreover, using
Lustre servers with disk file systems does not change these guarantees.

Problems can arise if after an abrupt shutdown a disk fails on restart. In this case
even single block writes provide no guarantee that, for example, the journal will not
be corrupted.

Hence:

1. IF A POWERDOWN IS FOLLOWED BY A DISK FAILURE, THE DISK FILE
SYSTEM NEEDS A FILE SYSTEM CHECK.

2. IF A RAID ARRAY DOES NOT GUARANTEE before/after SEMANTICS, the
same requirement holds.

We believe this requirement is present for most arrays that are used with Lustre,
including the successful and popular DDN arrays.

CFS will release a modification to the disk file system that eliminates this
requirement for a check with a feature called "journal checksums". With RAID6 this
check is not required with a single disk failure, but is required with a double failure
upon reboot after an abrupt interruption of the system.

8.1.4 Performance
considerations

CFS is currently improving the Linux software RAID code to preserve large I/O
which the disk subsystems can do very efficiently. With the existing RAID code
software RAID performs equally with all stride sizes, but we expect that fairly large
stride sizes will prove advantageous when these fixes are implemented.

8.1.5 Formatting
To format a software RAID file system, use the stride_size option while formatting.

106 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 8. RAID

8.2 Disk Performance
Measurement

Below are some tips and insights for disk performance measurement. Some of this
information is specific to RAID arrays and/or the Linux RAID implementation.

1. Performance is limited by the slowest disk.

Benchmark all disks individually. We have frequently encountered situations where
drive performance was not consistent for all devices in the array.

2. Verify drive ordering and identification.

For example, on a test system with a Marvell driver, the disk ordering is not
preserved between boots but the controller ordering is. Therefore, we had to
perform the sgp_dd survey and create arrays without rebooting.

3. Disks and arrays are very sensitive to request size.

To identify the most ideal request size for a given disk, benchmark the disk with
different record sizes ranging from 4 KB to 1-2 MB.

4. By default, the maximum size of a request is quite small.

To properly handle IO request sizes greater than 256 KB, the current Linux kernel
either needs a driver patch or some changes in the block layer defaults, namely
MAX_SECTORS, MAX_PHYS_SEGMENTS and MAX_HW_SEGMENTS. CFS
kernels contain this patch. See blkdev_tunables-2.6-suse.patch in the CFS source.

5. I/O scheduler

Try different I/O schedulers because their behavior varies with storage and load.
CFS recommends the deadline or noop schedulers. Benchmark them all and
choose the best one for your setup. For further information on I/O schedulers, visit
the following URLs:

http://www.linuxjournal.com/article/6931

http://www.redhat.com/magazine/008jun05/features/schedulers/

6. Use the proper block device with sgp_dd (sgX versus sdX)
size 1048576K rsz 128 crg 8 thr 32 read 20.02 MB/s
size 1048576K rsz 128 crg 8 thr 32 read 56.72 MB/s

Both the above outputs were achieved on the same disk with the same parameters
for sgp_dd. The only difference is that in the first case /dev/sda was used; while in
the second case /dev/sg0 was used. sgX is a special interface that bypasses the
block layer and the I/O scheduler, but sends the SCSI commands directly to a drive.
sdX is a regular block device, and the requests go through the block layer and the
I/O scheduler. The numbers do not change on testing with different I/O schedulers.

Cluster File Systems, Inc. 107

http://www.redhat.com/magazine/008jun05/features/schedulers/
http://www.linuxjournal.com/article/6931

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 8. RAID

NOTE: The sg device cannot be used by Lustre as it is not a block device – the
sg device is used for performance measurement only.

7. Requests with partial-stripe write impair RAID5.

Remember that RAID 5 in many cases will do a read-modify-write cycle, which is not
performant.

Try to avoid synchronized writes. Probably subsequent writes would make the stripe
full and no reads will be needed. Try to configure RAID5 and the application in such
a manner that most of the writes will be full-stripe and stripe-aligned.

8. NR_STRIPES in RAID5 (Linux kernel parameter)

This is the size of the internal cache that RAID5 uses for all the operations. If many
processes are doing I/O, we suggest you to increase this number. In newer kernels,
you can tune it by a module parameter.

9. Do not put an ext3 journal onto RAID5.

As journal is written linearly and synchronously, in most cases writes will not fill
whole stripes. In this case, RAID5 will have to read parities.

10. Suggested MD device setups for maximum performance:

MDT

 RAID1 with internal journal and 2 disks from different controllers

 If you require larger MDTs, create 2 equal-sized RAID0 arrays from multiple
disks. Create a RAID1 array from these 2 arrays. Using RAID10 directly requires
a newer mdadm (the tool that administers software RAID on Linux) than the one
shipped with RHEL 4. You can also use LVM instead of RAID0, but this has not
been tested.

OST

 File system: RAID5 with 6 disks, each from a different controller.

 External journal: RAID1 with 2 partitions of 400MB (or more), each from disks on
different controllers.
$ --mkfsoptions "-j -J device=/dev/mdX"

To enable an external journal, you can use the above options in the lmc script
used to create your XML. mdX is the external journal device.

Before running --reformat, setup the journal device (/dev/mdX) by running:

$ 'mke2fs -O journal_dev -b 4096 /dev/mdX'

 You can create a root file system, swap, and other system partitions on a RAID1
array with partitions on any 2 remaining disks. The remaining space on the OST
journal disk could be used for this.

CFS has not tested RAID1 of swap.

11. rsz in sgp_dd:

108 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 8. RAID

It must be equal to the multiplication of <chunksize> and (disks-1).

You also should pass stripe=N, and extents or mballoc as a mountfs option for OSS.
Here N = <chunksize> * (disks-1) / pagesize.

12. Run fsck on power failure or disk failure (RAID arrays).

 You must run fsck on an array in the event of a power failure and failure of a disk
in the array due to potential write consistency issues.

 You can automate this in rc.sysinit by detecting degraded arrays.

8.2.1 Sample Graphs

8.2.1.1 Graphs for Write
Performance:

Cluster File Systems, Inc. 109

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 8. RAID

Figure 2.9.1: Write - RAID0, 64K chunks, 6 spindles

Figure 2.9.2: Write - RAID5, 64K chunks, 6 spindles

8.2.1.2 Graphs for Read
Performance:

110 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 8. RAID

Figure 2.9.3: Read - RAID0, 64K chunks, 6 spindles

Figure 2.9.4: Read – RAID5, 64 K chunks, 6 spindle

Cluster File Systems, Inc. 111

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 9. Bonding

CHAPTER II – 9. BONDING

112 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 9. Bonding

9.1 Network Bonding

Bonding is a method of aggregating multiple physical links into a single logical link.
This technology is also known as trunking, port trunking and link aggregation. We
will use the term bonding.

Several different types of bonding are supported in Linux. All these types are
referred to as “modes,” and use the bonding kernel module.

Modes 0 to 3 provide support for load balancing and fault tolerance by using multiple
interfaces. Mode 4 aggregates a group of interfaces into a single virtual interface
where all members of the group share the same speed and duplex settings. This
mode is described under IEEE spec 802.3ad, and it is referred to as either “mode 4”
or “802.3ad.”

(802.3ad refers to mode 4 only. The detail is contained in Clause 43 of the IEEE 8 -
the larger 802.3 specification. Consult IEEE for more information.)

Cluster File Systems, Inc. 113

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 9. Bonding

9.2 Requirements

The most basic requirement for successful bonding is that both endpoints of the
connection must support bonding. In a normal case, the non-server endpoint is a
switch. (Two systems connected via crossover cables can also use bonding.) Any
switch used must explicitly support 802.3ad Dynamic Link Aggregation.

The kernel must also support bonding. All supported Lustre kernels have this
support. The network driver for the interfaces to be bonded must have the ethtool
support. The ethtool support is necessary for determination of the slave speed and
duplex settings. All recent network drivers implement it.

To verify that your interface supports ethtool:
$ which ethtool
$ ethtool eth0
Settings for eth0:
Supported ports: [MII]
Supported link modes: 10baseT/Half 10baseT/Full \
100baseT/Half100baseT/Full1000baseT/Half1000baseT/Full
Supports auto-negotiation: Yes
(ethtool will return an error if your card is not supported.)

To quickly check whether your kernel supports bonding:
$ grep ifenslave /sbin/ifup
$ which ifenslave

NOTE: Bonding and ethtool have been available since 2000. All Lustre-
supported kernels include this functionality.

114 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 9. Bonding

9.3 Bonding Module
Parameters

Bonding Module Parameters control various aspects of bonding.

Outgoing traffic is mapped across the slave interfaces according to the transmit
hash policy. For Lustre, we recommend setting the xmit_hash_policy option to the
layer3+4 option for bonding. This policy uses upper layer protocol information if
available to generate the hash. This allows traffic to a particular network peer to
span multiple slaves, although a single connection does not span multiple slaves. :

$ xmit_hash_policy=layer3+4

The miimon option enables users to monitor the link status. (The parameter is a time
interval in milliseconds.) It makes the failure of an interface transparent to avoid
serious network degradation during link failures. 100 milliseconds is a reasonable
default. Increase the timeout for a busy network.

$ miimon=100

Cluster File Systems, Inc. 115

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 9. Bonding

9.4 Setup

Follow the process below to setup bonding:

Create a virtual 'bond' interface.

Assign an IP address to the 'bond' interface.

Attach one or more slave interfaces to the bond interface. Typically the MAC
address of the first slave interface will become the MAC address of the bond.

Setup the bond interface and its options in /etc/modprobe.conf. Start the slave
interfaces by your normal network method.

NOTE: You must modprobe the bonding module for each bonded interface. If
you wish to create bond0 and bond1, two entries in modprobe.conf are
required.

Our examples are from Red Hat systems, and use /etc/sysconfig/networking-
scripts/ifcfg-* for setup. The OSDL reference site given below includes detailed
instructions for other configuration methods, instructions for using DHCP with
bonding, and other setup details. We strongly recommend using this site.

http://linux-net.osdl.org/index.php/Bonding

Check /proc/net/bonding to determine status on bonding. There should be a file
there for each bond interface. Check the interface state with ethtool or ifconfig.
ifconfig lists the first bonded interface as “bond0.”

9.4.1 Examples
Let us see an example of Modprobe.conf for bonding ethernet interfaces eth1 and
eth2 to bond0:

install bond0 /sbin/modprobe -a eth1 eth2 && /sbin/modprobe
bonding \
miimon=100 mode=802.3ad xmit_hash_policy=layer3+4
alias bond0 bonding

ifcfg-bond0
DEVICE=bond0
BOOTPROTO=static
IPADDR=###.###.##.##
(Assign here the IP of the bonded interface.)
NETMASK=255.255.255.0
ONBOOT=yes

ifcfg-eth1 (eth2 is a duplicate)
DEVICE=eth1 # Change to match device
MASTER=bond0
SLAVE=yes

116 Cluster File Systems, Inc.

http://linux-net.osdl.org/index.php/Bonding

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 9. Bonding

BOOTPROTO=none
ONBOOT=yes
TYPE=Ethernet

From linux-net.osdl.org:
For example, the content of /proc/net/bonding/bond0 after the \
driver is loaded with parameters of mode=0 and miimon=1000 is \
generally as follows:
 Ethernet Channel Bonding Driver: 2.6.1 (October 29, 2004)
 Bonding Mode: load balancing (round-robin)
 Currently Active Slave: eth0
 MII Status: up
 MII Polling Interval (ms): 1000
 Up Delay (ms): 0
 Down Delay (ms): 0

 Slave Interface: eth1
 MII Status: up
 Link Failure Count: 1

 Slave Interface: eth0
 MII Status: up
 Link Failure Count: 1

In the example below, the bond0 interface is the master (MASTER) while eth0 and
eth1 are slaves (SLAVE).

NOTE: All the slaves of bond0 have the same MAC address (Hwaddr) – bond0.
All modes except TLB and ALB have this MAC address. TLB and ALB require a
unique MAC address for each slave.

 $ /sbin/ifconfig
bond0 Link encap:Ethernet Hwaddr 00:C0:F0:1F:37:B4
 inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 \
Mask:255.255.252.0
 UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
 RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0
 TX packets:3286647 errors:1 dropped:0 overruns:1
carrier:0
 collisions:0 txqueuelen:0

 eth0 Link encap:Ethernet Hwaddr 00:C0:F0:1F:37:B4

Cluster File Systems, Inc. 117

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 9. Bonding

 inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 \
Mask:255.255.252.0
 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
 RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1643167 errors:1 dropped:0 overruns:1
carrier:0
 collisions:0 txqueuelen:100
 Interrupt:10 Base address:0x1080

 eth1 Link encap:Ethernet Hwaddr 00:C0:F0:1F:37:B4
 inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 \
Mask:255.255.252.0
 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
 RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1643480 errors:0 dropped:0 overruns:0
carrier:0
 collisions:0 txqueuelen:100
 Interrupt:9 Base address:0x1400

118 Cluster File Systems, Inc.

Lustre in a nutshell Part II. Lustre Administration
Chapter II – 9. Bonding

9.5 Lustre
Configuration

Lustre uses the IP address of the bonded interfaces and requires no special
configuration. It treats the bonded interface as a regular TCP/IP interface. If
necessary, specify “bond0” using the Lustre networks parameter:

options lnet networks=tcp(bond0)

Cluster File Systems, Inc. 119

Part II. Lustre Administration Lustre in a nutshell
Chapter II – 9. Bonding

9.6 References

Below are some references that we recommend -

 In the Linux kernel source tree, see

Documentation/networking/bonding.txt

 http://linux-ip.net/html/ether-bonding.html

 http://www.sourceforge.net/projects/bonding

This is the bonding sourceforge site.

 http://linux-net.osdl.org/index.php/Bonding

This is the most exhaustive reference and is highly recommended. It includes
explanations of more complicated setups, including the use of DHCP with bonding.

120 Cluster File Systems, Inc.

http://linux-net.osdl.org/index.php/Bonding
http://www.sourceforge.net/projects/bonding
http://linux-ip.net/html/ether-bonding.html

PART III. LUSTRE TUNING, MONITORING
AND TROUBLESHOOTING

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 1. Lustre I/O Kit

CHAPTER III – 1. LUSTRE I/O KIT

122 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 1. Lustre I/O Kit

1.1 Prerequisites

The Lustre I/O kit is a collection of benchmark tools for a cluster with the Lustre file
system. Currently only an object block device survey is included, but in the future
the kit may be extended to include a block device and file system survey. The I/O kit
can be downloaded from:

https://downloads.clusterfs.com/customer/lustre-iokit/

Prerequisites for the I/O kit:

 python2.2 or newer, available at /usr/bin/python2

 the "logging" module from python2.3

 password-free remote access to nodes in the system (Normally obtained via ssh
or rsh)

 Lustre file system software

 sg3_utils for the sgp_dd utility

The kit can be used to validate the performance of the various hardware and
software layers in the cluster and also as a way of finding and troubleshooting
input/output issues.

It is very important to establish performance from the “bottom up” perspective.
Firstly, the performance of a single raw device should be verified. Once this is
completed, you should then verify that performance is stable within a larger number
of devices. Frequently, while troubleshooting such performance issues, we find that
array performance with all LUNs loaded does not always match the performance of
a single LUN when tested in isolation. After the raw performance has been
established, the other software layers can be added and tested in an incremental
manner.

The kit contains three tests. The first surveys basic performance of the device and
bypasses the kernel block device layers, buffer cache and file system. The
subsequent tests survey progressively higher layers of the Lustre stack. Typically
with these tests, Lustre should deliver 85-90% of the raw device performance.

Cluster File Systems, Inc. 123

https://downloads.clusterfs.com/customer/lustre-iokit/

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 1. Lustre I/O Kit

1.2 Running the I/O
Kit Tests

As mentioned above, the I/O kit bundle contains three testing tools:

 sgpdd survey

 obdfilter survey

 ost survey

1.2.1 sgpdd_survey
This is the tool for testing the bare metal performance, while bypassing as much of
the kernel as we can. It does not require Lustre software, but does require the
sgp_dd package. This survey may be used to characterize the performance of a
SCSI device by simulating an OST serving multiple stripe files. The data gathered
by this survey can help set expectations for the performance of a Lustre OST
exporting the device.

The script uses sgp_dd to carry out raw sequential disk input/output. It runs with
variable numbers of sgp_dd threads to show how performance varies with different
request queue depths.

The script spawns variable numbers of sgp_dd instances, each reading or writing a
separate area of the disk to demonstrate performance variance within a number of
concurrent stripe files.

The script must be customized according to the particular device being tested and
also according to the location where it should keep its working files. Customization
variables are described explicitly at the start of the script.

When the script runs it creates a number of working files and a pair of result files. All
files start with the prefix given by the script variable ${rslt}.

${rslt}_<date/time>.summary same as stdout
${rslt}_<date/time>_* tmp files
${rslt}_<date/time>.detail collected tmp files for post-mortem

The summary file and stdout contain lines like:
total_size 8388608K rsz 1024 thr 1 crg 1 180.45 MB/s 1 x 180.50 \
=/ 180.50 MB/s

The number immediately before the first MB/s is the bandwidth computed by
measuring total data and elapsed time. The remaining numbers are a check on the
bandwidths reported by the individual sgp_dd instances.

If there are so many threads that sgp_dd is unlikely to be able to allocate
input/output buffers, "ENOMEM" is printed.

If all the sgp_dd instances do not successfully report a bandwidth number, "failed" is
printed.

NOTE: This test overwrites the device being tested and will result in the LOSS
OF ALL DATA on that device. Exercise caution when selecting the device to be
tested.

124 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 1. Lustre I/O Kit

1.2.2 obdfilter_survey
This survey script processes sequential input/output with varying numbers of
threads and objects (files) by using lctl::test_brw to drive the echo_client connected
to local or remote obdfilter instances, or remote obdecho instances. It can be used
to characterize the performance of the Lustre components below.

1. The stripe F/S

Here the script directly exercises one or more instances of obdfilter. The script may
be running on one or more nodes, for example, when the nodes are all attached to
the same multi-ported disk subsystem.

You need to tell the script all the names of the obdfilter instances, which should
already be up and running. If some are on different nodes, you also need to specify
their host names, for example, node1:ost1. All the obdfilter instances are driven
directly. The script automatically loads the obdecho module if required and creates
one instance of echo_client for each obdfilter instance.

2. The network

Here the script drives one or more instances of obdecho via instances of echo_client
running on one or more nodes. You need to tell the script all the names of the
echo_client instances, which should already be up and running. If some are on
different nodes, you also need to specify their host names, for example,
node1:ECHO_node1.

3. The stripe F/S over the network

Here the script drives one or more instances of obdfilter via instances of echo_client
running on one or more nodes. As with above, you need to tell the script all the
names of the echo_client instances, which should already be up and running. Note
that the script is not scalable to hundreds of nodes since it is only intended to
measure individual servers, not the scalability of the system as a whole.

Running the script

The script must be customized according to the components being tested and
also according to the location where it should keep its working files.
Customization variables are described clearly at the start of the script.

Running the script against a local disk

 1 Create a Lustre configuration shell script and XML using your normal methods.
You do not need to specify an MDS or LOV, but you do need to list all OSTs
that you wish to test.

 2 On all OSS machines, use:

$ lconf --refomat <XML file>

Remember, write tests are destructive. This test should be run prior to startup of
your actual Lustre file system. If you do this, you will not need to reformat to

Cluster File Systems, Inc. 125

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 1. Lustre I/O Kit

restart Lustre. However, if the test is terminated before completion, you may have
to remove objects from the disk.

 3 Determine the obdfilter instance names on all the clients. They appear as the
4th column of lctl dl. For example:

$ pdsh -w oss[01-02] lctl dl |grep obdfilter |sort
oss01: 0 UP obdfilter oss01-sdb oss01-sdb_UUID 3
oss01: 2 UP obdfilter oss01-sdd oss01-sdd_UUID 3
oss02: 0 UP obdfilter oss02-sdi oss02-sdi_UUID 3

Here the obdfilter instance names are oss01-sdb, oss01-sdd, oss02-sdi. Since
you are driving obdfilter instances directly, set the shell array variable ost_names
to the names of the obdfilter instances and leave client_names undefined.

For example:

ost_names_str='oss01:oss01-sdb oss01:oss01-sdd oss02:oss02-sdi' \
./obdfilter-survey

Running the script against a network

If you are driving obdfilter or obdecho instances over the network, you must
instantiate the echo_clients yourself using lmc/lconf. Set the shell array variable
client_names to the names of the echo_client instances and leave ost_names
undefined.

You can optionally prefix any name in ost_names or client_names with the host
name that it is running on, for example, remote_node:ost4. If you are running
remote nodes, you need to ensure the following:

• custom_remote_shell() works on your cluster

• all pathnames you specify in the script are mounted on the node you start
the survey from and on all the remote nodes

• obdfilter-survey must be installed on the clients at the same location as on
the master node

 1 First, bring up obdecho instances on the servers and echo_client instances on
the clients and run the included echo.sh on a node that has Lustre installed.
Shell variables:

• SERVERS: set this to a list of server host names, or hostname of the
current node will be used. This may be the wrong interface, so be sure to
check it.

NOTE: echo.sh could probably be smarter about this.

• NETS: set this if you are using a network type other than TCP.

For example:

SERVERS=oss01-eth2 sh echo.sh

 2 On the servers, start the obdecho server and verify that it is up:

$ lconf --node (hostname)/(path)/echo.xml
$ lctl dl

126 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 1. Lustre I/O Kit

 0 UP obdecho ost_oss01.local ost_oss01.local_UUID 3
 1 UP ost OSS OSS_UUID 3

 3 On the clients, start the other side of the echo connection:

$ lconf --node client /(path)/echo.xml
$ lctl dl
 0 UP osc OSC_xfer01.local_ost_oss01.local_ECHO_client \
6bc9b_ECHO_client_2a8a2cb3dd 5
 1 UP echo_client ECHO_client 6bc9b_ECHO_client_2a8a2cb3dd 3

 4 Verify connectivity from a client:

$ lctl ping SERVER_NID

 5 Run the script on the master node, specifying the client names in an
environment variable.

For example:

$ client_names_str='xfer01:ECHO_client xfer02:ECHO_client
xfer03:ECHO_client xfer04:ECHO_client xfer05:ECHO_client
xfer06:ECHO_client xfer07:ECHO_client xfer08:ECHO_client
xfer09:ECHO_client xfer10:ECHO_client xfer11:ECHO_client
xfer12:ECHO_client' ./obdfilter-survey

 6 When done, cleanup echo_client/obdecho instances

• on clients:

$ lconf --cleanup --node client /(path)/echo.xml

• on server(s):

$ lconf --cleanup --node (hostname)/(path)/echo.xml

 7 When aborting, run killall vmstat on clients:

pdsh -w (clients) killall vmstat

Use lctl device_list to verify the obdfilter/echo_client instance names. For
example, when the script runs, it creates a number of working files and a pair of
result files. All files start with the prefix given by ${rslt}.

${rslt}.summary same as stdout
${rslt}.script_* per-host test script files
${rslt}.detail_tmp* per-ost result files
${rslt}.detail collected result files for
 post-mortem

The script iterates over the given numbers of threads and objects performing all
the specified tests and checking that all test processes completed successfully.

Note that the script does not clean up properly if it is aborted or if it encounters an
unrecoverable error. In this case, manual cleanup may be required, possibly
including killing any running instances of lctl (local or remote), removing
echo_client instances created by the script and unloading obdecho.

Cluster File Systems, Inc. 127

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 1. Lustre I/O Kit

Script output

The summary file and stdout contain lines like:

ost 8 sz 67108864K rsz 1024 obj 8 thr 8 write 613.54 \
[64.00, 82.00]

Where:

ost 8 is the total number of OSTs under test

sz 67108864K is the total amount of data read or written (in KB)

rsz 1024 is the record size (size of each echo_client input/output)

obj 8 is the total number of objects over all OSTs

thr 8 is the total number of threads over all OSTs and objects

write is the test name. If more tests have been specified they all appear on the
same line

613.54 is the aggregate bandwidth over all OSTs measured by dividing the total
number of MB by the elapsed time

[64.00, 82.00] are the minimum and maximum instantaneous bandwidths seen on
any individual OST.

Note that although the numbers of threads and objects are specified per-OST in
the customization section of the script, results are reported aggregated over all
OSTs.

Visualizing results

It is useful to import the summary data (its fixed width) into Excel (or any graphing
package) and graph the bandwidth against the number of threads for varying
numbers of concurrent regions. This shows how the OSS performs for a given
number of concurrently accessed objects (files) with varying numbers of
inputs/outputs in flight.

It is also useful to record average disk input/output sizes during each test. These
numbers help find pathologies in the system when the file system block allocator
or the block device elevator fragment I/O requests.

The included obparse.pl script is an example of processing the output files to a
.csv format.

1.2.3 ost_survey
This is a shell script that uses lfs setstripe to perform input/output against a single
OST. It will write a file (currently using dd) to each OST in the Lustre file system,
comparing read and write speeds. It is used to detect misbehaving disk subsystems.
Note that we have frequently discovered wide performance variations across all
LUNs in a cluster.

To run the script, supply a file size in KB and the Lustre mount point.

For example:
$./ost-survey.sh 10 /mnt/lustre

128 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 1. Lustre I/O Kit

Average read Speed: 6.73
Average write Speed: 5.41
read - Worst OST indx 0 5.84 MB/s
write - Worst OST indx 0 3.77 MB/s
read - Best OST indx 1 7.38 MB/s
write - Best OST indx 1 6.31 MB/s
3 OST devices found
Ost index 0 Read speed 5.84 Write speed 3.77
Ost index 0 Read time 0.17 Write time 0.27
Ost index 1 Read speed 7.38 Write speed 6.31
Ost index 1 Read time 0.14 Write time 0.16
Ost index 2 Read speed 6.98 Write speed 6.16
Ost index 2 Read time 0.14 Write time 0.16

Cluster File Systems, Inc. 129

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 2. LustreProc

CHAPTER III – 2. LUSTREPROC

130 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 2. LustreProc

2.1 Introduction

The proc file system acts as an interface to internal data structures in the kernel. It
can be used to obtain information about the system and to change certain kernel
parameters at runtime (sysctl).

The Lustre file system provides several proc file system variables that control
aspects of Lustre performance and provide information.

The proc variables are classified based on the subsystem they affect.

2.1.1 /proc Entries for
Lustre

2.1.1.1 Recovery

/proc/sys/lustre/upcall

This will contain the path of the recovery upcall or DEFAULT for the normal case
where there is no upcall. Certain states will place information here, including

• FAILED_IMPORT – tgt_uuid obd_uuid net_uuid – which indicates failure of
an upcall. The UUID information identifies target, obd name and network.

• RECOVERY_OVER tgt_uuid – the upcall called on the server when the
recovery period has ended. The UUID is the target that was in recovery
mode. For example, syslog message:

“May 25 13:35:46 d2_q_0 kernel: Lustre: \
12162:0:(recover.c:77:ptlrpc_run_recovery_over_upcall()) Invoked \
upcall DEFAULT RECOVERY_OVER ost-alpha_UUID”

/proc/sys/lnet/upcall

• LBUG src_file line_number function – which is called when an LBUG
occurs.

The script paths can be configured with lmc and/or lconf or by modifying the
corresponding proc entries. Setting an upcall to "DEFAULT" means that the
recovery will be handled within the kernel by reconnecting to the same device.

2.1.1.2 Lustre timeouts/
debugging

/proc/sys/lustre/timeout

This is the time period for which a client will wait on a server to complete an RPC
(default 100s). Servers will wait half of this time for a normal client RPC to complete
and a quarter of this time for a single bulk request (read or write of up to 1MB) to
complete. The client will ping recoverable targets (MDS and OSTs) at one quarter of
the timeout and the server will wait one and a half times the timeout before evicting
a client for being "stale."

Cluster File Systems, Inc. 131

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 2. LustreProc

/proc/sys/lustre/ldlm_timeout

This is the time period for which a server will wait for a client to reply to an initial
AST (lock cancellation request) where default is 20s for an OST and 6s for an MDS.
If the client replies to the AST, the server will give it a normal timeout (halft of the
client timeout) to flush any dirty data and release the lock.

/proc/sys/lustre/fail_loc

This is the internal debugging failure hook.

See lustre/include/linux/obd_support.h for the definitions of individual failure
locations. The default value is zero.

sysctl -w lustre.fail_loc=0x80000122 # drop a single reply

/proc/sys/lustre/dump_on_timeout

This triggers dumps of the Lustre debug log when timeouts occur.

132 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 2. LustreProc

 2.2 Input/output

/proc/fs/lustre/llite/fs0/max_read_ahead_mb

This file contains the size of the client per-file read-ahead (default 40 MB). Setting
this to zero will disable readahead.

/proc/fs/lustre/llite/fs0/max_cache_mb

This is the maximum amount of inactive data cached by the client (default 3/4 of
RAM).

2.2.1 Client Input/output
RPC Stream Tunables

The Lustre engine will always attempt to pack an optimal amount of data into each
input/output RPC and will attempt to keep a consistent number of issued RPCs in
progress at a time. Lustre exposes several tuning variables to adjust behaviour
according to network conditions and cluster size. Each OSC has its own tree of
these tunables. For example:

$ ls -d /proc/fs/lustre/osc/OSC_client_ost1_MNT_client_2 \
/localhost
/proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost
/proc/fs/lustre/osc/OSC_uml0_ost2_MNT_localhost
/proc/fs/lustre/osc/OSC_uml0_ost3_MNT_localhost
$ ls /proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost
blocksize filesfree max_dirty_mb \
ost_server_uuid stats

... and so on

The files related to tuning the RPC stream are as follows:

/proc/fs/lustre/osc/<object name>/max_dirty_mb

This controls how many megabytes of dirty data can be written and queued up in the
OSC. POSIX file writes that are cached contribute to this count. When the limit is
reached additional writes will stall until previously cached writes are written to the
server. This may be changed by writing a single ASCII integer to the file. Only
values between zero and 512 are allowed. If zero is given, no writes will be cached,
but unless you use large writes (1MB or more) performance will suffer noticably.

/proc/fs/lustre/osc/<object name>/cur_dirty_bytes

This is a read-only value that returns the current amount of bytes written and cached
on this OSC.

/proc/fs/lustre/osc/<object name>/max_pages_per_rpc

This value represents the maximum number of pages that will undergo input/output
in a single RPC to the OST. The minimum is a single page and the maximum for this

Cluster File Systems, Inc. 133

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 2. LustreProc

setting is platform depedent (256 for i386/x86_64, possibly less for ia64/PPC with
larger PAGE_SIZE), though generally amounts to a total of one megabyte in the
RPC.

/proc/fs/lustre/osc/<object name>/max_rpcs_in_flight

This value represents the maximum number of concurrent RPCs that the OSC will
issue at a time to its OST. If the OSC tries to initiate an RPC but finds that it already
has the same number of RPCs outstanding, it will wait to issue further RPCs until
some complete. The minimum setting is one and maximum 32.

The value for max_dirty_mb is recommended to be 4 * max_pages_per_rpc *
max_rpcs_in_flight in order to maximize performance.

NOTE: The <object name> will vary depending on the specific Lustre
configuration. See the sample output from the commands for examples of
<object name>.

2.2.2 Watching the Client
RPC Stream

In the same directory is a file that gives a histogram of the make-up of previous
RPCs.

cat /proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost/rpc_stats
snapshot_time: 1067551484:37103 (secs:usecs)
RPCs in flight: 0
pending write pages: 0
pending read pages: 0

other RPCs in flight when a new RPC is sent:
0: 0
1: 0
2: 0
3: 0
4: 0
5: 0
6: 0
7: 0
8: 0
9: 0
10: 0
11: 0
12: 0

134 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 2. LustreProc

13: 0
14: 0
15: 0

pages in each RPC:
0: 0
1: 0
2: 0
3: 0
4: 0
5: 0
6: 0
7: 0
8: 0
9: 0
10: 0
11: 0
12: 0
13: 0
14: 0
15: 0

RPCs in flight

This represents the number of RPCs that are issued by the OSC but are not
complete at the time of the snapshot. It should always be less than or equal to
max_rpcs_in_flight.

pending {read,write} pages

These fields show the number of pages that have been queued for Iinput/output in
the OSC.

other RPCs in flight when a new RPC is sent

When an RPC is sent, it records the number of other RPCs that were pending in this
table. When the first RPC is sent, the 0: row will be incremented. If the first RPC is
sent while another is pending the 1: row will be incremented and so on. The number
of RPCs that are pending as each RPC *completes* is not tabulated. This table is a
good way of visualizing the concurrency of the RPC stream. Ideally you will see a
large clump around the max_rpcs_in_flight value which shows that the network is
being kept busy.

Cluster File Systems, Inc. 135

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 2. LustreProc

pages in each RPC

As an RPC is sent, the number of pages it is made of is recorded in order in this
table. A single page RPC increments the 0: row, 128 pages the 7: row and so on.

These histograms can be cleared by writing any value into the rpc_stats file.

2.2.3 Watching the OST
Block Input/output Stream

Similarly, there is a "brw_stats" histogram in the obdfilter directory which shows you
the statistics for number of input/output requests sent to the disk, their size and
whether they are contiguous on the disk or not.

cat /proc/fs/lustre/obdfilter/OST_localhost/brw_stats
snapshot_time: 1089922302:248138 (secs:usecs)

 read write
pages per brw brws % cum % | rpcs % cum %
1: 0 0 0 | 1 0 0
2: 0 0 0 | 0 0 0
4: 0 0 0 | 0 0 0
8: 0 0 0 | 0 0 0
16: 0 0 0 | 0 0 0
32: 0 0 0 | 0 0 0
64: 0 0 0 | 0 0 0
128: 0 0 0 | 140 99 100

 read write
discont pages rpcs % cum % | rpcs % cum %
0: 0 0 0 | 141 100 100

 read write
discont blocks rpcs % cum % | rpcs % cum %
0: 0 0 0 | 123 87 87
1: 0 0 0 | 18 12 100

pages per brw = number of pages per RPC request, which should match aggregate
client rpc_stats

discont pages = number of discontinuities in the logical file offset of each page in a
single RPC

discont blocks = number of discontinuities in the physical block allocation in the file
system for a single RPC

136 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 2. LustreProc

2.2.4 mballoc History
/proc/fs/ldiskfs/loop0/mb_history

Each mballoc-enabled partition will have this file.

Sample output:
pid inode goal result found grps cr merge tail broken
1593 25052 1/12289/255 1/12289/255 1 0 0 M 0
0
1591 25052 1/12544/256 1/12544/256 1 0 0 M 0
0
1592 25052 1/12800/256 1/12800/256 1 0 0 M
256 512
1590 25052 1/13056/256 1/13056/256 1 0 0 M 0
0
1593 25052 1/13312/256 1/13312/256 1 0 0 M
256 1024
1591 25052 1/13568/256 1/13568/256 1 0 0 M 0
0
1592 25052 1/13824/256 1/13824/256 1 0 0 M
256 512
1590 25052 1/14080/256 1/14080/256 1 0 0 M 0
0
1593 25052 1/14336/256 1/14336/256 1 0 0 M
256 2048
1592 25052 1/14592/256 1/14592/256 1 0 0 M 0

Fields:

pid = Process that made the allocation

inode = inode number allocated blocks

goal = inital request that came to mballoc (group/block-in-group/number-of-blocks)

result = what mballoc actually found for the request

found = number of free chunks mballoc found and measured before the final
decision

grps = number of groups mballoc scanned to satisfy the request

cr = stage at which mballoc found the result:

• 0 – the best in terms of resource allocation. The request was 1MB or larger
and was satisfied directly via the kernel buddy allocator

• 1 – regular stage (good at resource consumption)

• 2 – fs is quite fragmented (not that bad at resource consumption)

• 3 – fs is very fragmented (worst at resource consumption)

Cluster File Systems, Inc. 137

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 2. LustreProc

merge = whether the request hit the goal. This is good as extents code can now
merge new blocks to existing extent, eliminating the need for extents tree growth

tail = number of blocks left free after the allocation breaks large free chunks

broken = how large the broken chunk was

Most customers are probably interested in found/cr. If cr is zero or one and found
is less than 100, then mballoc is doing quite well.

Also, number-of-blocks-in-request (third number in the goal triple) can tell the
number of blocks requested by the obdfilter. If the obdfilter is doing a lot of small
requests (just few blocks), then either the client is processing input/output to a lot of
small files, or something may be wrong with the client (because it is better if client
sends large input/output requests). This can be investigated with the OSC rpc_stats
or OST brw_stats mentioned above.

Number of groups scanned (grps column) should be small. If it reaches few dozens
often either your disk file system is pretty fragmented or mballoc is doing something
wrong in the group selection part.

138 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 2. LustreProc

2.3 Locking

/proc/fs/lustre/ldlm/ldlm/namespaces/<OSC name|MDC name>
/lru_size

This variable determines how many locks can be queued up on the client in an LRU
queue. The default value of LRU size is 100. Increasing this on a large number of
client nodes is not recommended, though servers have been tested with up to
150,000 total locks (num_clients * lru_size). Increasing it for a small number of
clients (for example, login nodes with a large working set of files due to interactive
use) can speed up Lustre dramatically. Recommended values are in the
neighbourhood of 2500 MDC locks and 1000 locks per OSC.

The following command can be used to clear the LRU on a single client, and as a
result flush client cache, without changing the LRU size value:

$ echo clear > /proc/fs/lustre/ldlm/ldlm/namespaces/<OSC \
name|MDC name>/lru_size

If you shrink the LRU size below the number of existing unused locks, the locks are
canceled immediately. Use echo "clear" to cancel all locks without changing the
value.

Cluster File Systems, Inc. 139

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 2. LustreProc

2.4 Debug Support

/proc/sys/lnet/debug

Setting this to zero will completely turn-off debug logs for all the debug types. While
setting it to -1 will turn on full debugging (see D_* definitions in
lnet/include/linux/libcfs.h).

/proc/sys/lnet/subsystem_debug

This controls the debug logs for subsystems (see S_* definitions).

/proc/sys/lnet/debug_path

This indicates the location where debugging symbols should be stored for gdb. The
default is set to /r/tmp/lustre-log-localhost.localdomain.

These values can also be set via sysctl -w lnet.debug={value}.

NOTE: Above entries exist only when Lustre has already been loaded.

Lustre uses the set debug level after it is loaded on a particular node. You can set
the debug level by adding the following to the node entry config shell script:

--ptldebug <level>

2.4.1 RPC Information for
Other OBD Devices

Some OBD devices maintain a count of the number of RPC events that they
process. Sometimes these events are more specific to operations of the device, like
llite, than actual raw RPC counts.

$ find /proc/fs/lustre/ -name stats
/proc/fs/lustre/llite/fs0/stats
/proc/fs/lustre/mdt/MDT/mds_readpage/stats
/proc/fs/lustre/mdt/MDT/mds_setattr/stats
/proc/fs/lustre/mdt/MDT/mds/stats
/proc/fs/lustre/osc/OSC_uml0_ost3_MNT_localhost/stats
/proc/fs/lustre/osc/OSC_uml0_ost2_MNT_localhost/stats
/proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost/stats
/proc/fs/lustre/osc/OSC_uml0_ost3_mds1/stats
/proc/fs/lustre/osc/OSC_uml0_ost2_mds1/stats
/proc/fs/lustre/osc/OSC_uml0_ost1_mds1/stats
/proc/fs/lustre/obdfilter/ost2/stats
/proc/fs/lustre/obdfilter/ost3/stats
/proc/fs/lustre/obdfilter/ost1/stats
/proc/fs/lustre/ost/OSS/ost_create/stats

140 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 2. LustreProc

/proc/fs/lustre/ost/OSS/ost/stats
/proc/fs/lustre/ldlm/ldlm/ldlm_canceld/stats
/proc/fs/lustre/ldlm/ldlm/ldlm_cbd/stats

The OST .../stats files can be used to track the performance of RPCs that the OST
gets from all clients. It is possible to get a periodic dump of values from these files,
for instance every 10s, that show the RPC rates (similar to iostat) by using the
"llstat.pl" tool like:

$ llstat.pl /proc/fs/lustre/ost/OSS/ost/stats 10
/proc/fs/lustre/ost/OSS/ost/stats @ 1126198063.790389
Name Cur.Count Cur.Rate #Events Unit \
last min avg max stddev
req_waittime 12 0 1522 [usec] \
19800.50 68 1135.52 242393 10297.09
req_qdepth 12 0 1522 [reqs] \
0.58 0 0.15 3 0.45
req_active 12 0 1522 [reqs] \
1.08 1 1.01 2 0.09
reqbuf_avail 12 0 1522 [bufs] \
63.67 63 63.93 64 0.26
ost_setattr 0 0 2 [usec] \
0.00 240 257.50 275 24.75
ost_read 0 0 220 [usec] \
0.00 530 1262.77 74463 4972.71
ost_write 0 0 230 [usec] \
0.00 1438 2200.02 28189 2342.42
ost_create 2 0 24 [usec] \
274.00 72 7322.46 35521 12654.60
ost_destroy 400 18 1047 [usec] \
736.09 626 1134.41 30260 1560.68
ost_get_info 0 0 2 [usec] \
0.00 71 101.50 132 43.13
ost_connect 2 0 26 [usec] \
1395.50 1170 5037.04 27153 7231.62
ost_set_info 2 0 24 [usec] \
297.50 108 300.38 1162 208.49
ldlm_enqueue 0 0 474 [usec] \
0.00 194 351.57 1911 154.21
obd_ping 4 0 294 [usec] \
151.50 62 175.97 600 49.36

Where:

Cur.Count = the number of events of each type sent in the last interval (10s in this
case)

Cur.Rate = the number of events per second in the last interval

#Events = the total number of such events since the system was started

Unit = the unit of measurement for that statistic (microseconds, requests, buffers)

Cluster File Systems, Inc. 141

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 2. LustreProc

last = the average rate of these events (in units/event) for the last interval during
which they arrived. For instance, in the above mentioned case of ost_destroy it took
an average of 736 microseconds per destroy for the 400 object destroys in the
previous 10s

min = the minimum rate (in units/event) since the service started

avg = the average rate

max = the maximum rate

stddev = the standard deviation (not measured in all the cases)

The events common to all services are:

req_waittime ― the amount of time a request waited in the queue before being
handled by an available server thread

req_qdepth ― the number of requests waiting to be handled in the queue for this
service

req_active ― the number of requests currently being handled

reqbuf_avail ― the number of unsolicited lnet request buffers for this service

Some service specific events of interest are:

ldlm_enqueue ― the time it takes to enqueue a lock (this includes file open on the
MDS)

mds_reint ― the time it takes to process an MDS modification record (includes
create, mkdir, unlink, rename, setattr)

142 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 3. Lustre Tuning

CHAPTER III – 3. LUSTRE TUNING

Cluster File Systems, Inc. 143

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 3. Lustre Tuning

3.1 Module Options

Many options in Lustre are set by means of kernel module parameters. These
parameters are contained in the “modprobe.conf” file (On SuSE, this may be
“modprobe.conf.local”).

3.1.1 OST Threads
The ost_num_threads option allows the number of OST service threads to be
specified at module load time on the OSS nodes:

options ost ost_num_threads={N}

An OSS can have a maximum of 36 service threads. Prior to Lustre 1.4.5, the
default number of OSS service threads on an OSS depended on the server size.
Similarly, with Lustre 1.4.6, the number of OST threads is a function of the server
capacity (RAM + CPUs). For a 2GB 2-CPU system this works out to be 64 OST
service threads. For larger servers this might be as high as 512 threads. Giving a
specific thread count via the module parameter ost_num_threads= overrides the
default calculation.

Increasing the size of the thread pool may help when:

 several OSTs are exported from a single OSS

 the back-end storage is running synchronously

 input/output completions are taking excessive time.

In such cases, a larger number of input/output threads allows the kernel and storage
to aggregate many writes together for more efficient disk input/output. The OST
thread pool is shared ― each thread allocates approximately 1.5 MB (maximum
RPC size + 0.5 MB) for internal input/output buffers.

However, do note that memory consumption should be considered when increasing
the thread pool size.

3.1.2 MDS Threads
In Lustre 1.4.7 there is a similar parameter for the number of MDS service threads:

options mds mds_num_threads={N}

At this time, no testing has been done as to what the optimal number of MDS
threads are. The default number varies based on the server size up to a maximum
of 32. The maximum number of threads (MDS_MAX_THREADS) is 512.

3.1.3 LNET Tunables
Transmit and receive buffer size:

Also new with Lustre 1.4.7, ksocklnd now has separate parameters for the transmit
and receive buffers.

options ksocklnd tx_buffer_size=0 rx_buffer_size=0

If these parameters are left at the default (0) the system will automatically tune the

144 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 3. Lustre Tuning

transmit and receive buffer size. In almost every case, the defaults will produce the
best performance. Do not attempt to tune this unless you are a network expert!

irq_affinity

This parameter is on by default. In the normal case on an SMP system, we would
like our network traffic to remain local to a single CPU. This helps to keep the
processor cache warm, and minimizes the impact of context switches. This is
especially helpful when an SMP system has more than one network interface, and
ideal when the number of interfaces equals the number of CPUs.

If you have an SMP platform with a single fast interface such as 10GB Ethernet and
more than two CPUs, you may see performance improve by turning this parameter
off, as always test to compare the impact.

Cluster File Systems, Inc. 145

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 3. Lustre Tuning

3.2 DDN Tuning

This section provides a guideline to configure DDN storage arrays for use with
Lustre.

3.2.1 Settings

3.2.1.1 Segment Size

The cache segment size noticeably affects input/output performance. You should
set the cache segment size differently on the MDT (which does small, random
input/output) and on the OST (which does large, contiguous input/output). The
optimum values we have found in customer testing are 64KB for the MDT and 1MB
for the OST.

The necessary DDN client commands are given below.

For MDT LUN:
$ cache size=64
size is in KB, 64, 128, 256, 512, 1024, and 2048. Default 128

For OST LUN:
$ cache size=1024

3.2.1.2 maxcmds

In a particular case, changing this value from the default two to four has improved
the write performance by as much as 30%. This works only with SATA-based disks
and when only one controller of the pair is actually accessing the shared LUNs.

However, this recommendation comes with a warning. DDN support do not
recommend changing this setting from the default. By increasing the value to five,
the same set up experienced some serious problems.

The necessary DDN client command is given below, where the default value is two.
$ disk maxcmds=3

3.2.1.3 Write-back Cache

Some customers run with the write-back cache turned on, because it significantly
improves performance. They are willing to take the risk that when there is a DDN
controller crash and they need to run e2fsck, it will take them less time than the
performance hit from running with the write-back cache turned off.

Other customers run with the write-back cache off for increased data security.
However, some of these customers experience performance problems with the
small writes during journal flush. In this mode it is highly beneficial to also increase
the number of OST service threads "ost_num_threads=512" in /etc/modprobe.conf,
if the OST has enough RAM (about 1.5MB/thread is preallocated for I/O buffers).

146 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 3. Lustre Tuning

More input/output threads allow more input/output requests to be in flight waiting for
the disk to complete the synchronous write.

This is a decision that you need to make yourself ― there is a trade off between
improved performance and running the slight risk of data loss and downtime in the
case of a hardware/software problem on the DDN. Note there is no risk from an
OSS/MDS node crashing, only if the DDN itself fails.

3.2.1.4 Further Tuning Tips

Some tips we have drawn from testing at a large installation include:

 Use the full device instead of a partition (sda vs sda1). When using the full
device, Lustre will write nice aligned 1MB chunks to disk. Partitioning the disk
can destroy this alignment and will noticeably impact performance.

 Separate the EXT3 OST into 2 LUNs ― a small LUN for the EXT3 journal and a
big one for the "data"

 Since Lustre 1.0.4, we supply EXT3 mkfs options when we create the OST like -j
-J and so on in the following manner (where /dev/sdj has been formatted before
as a journal)
$ {LMC} --add mds --node io1 --mds iap-mds –dev /dev/sdi \
--mkfsoptions "-j -J device=/dev/sdj" --failover --group iap-mds

Very important: We have proved that we need to create one OST per TIER
especially in write through (see the illustration below). This is of concern if you have
16 tiers. You should create 16 OSTs consisting of one tier each instead of eight
made of two tiers each.

You are not obliged to lock in cache the small LUNs.

For example ― one OST per tier
LUN Label Owner Status Capacity Block Tiers Tier list
 (Mbytes) Size

0 1 Ready 102400 512 1 1
1 1 Ready 102400 512 1 2
2 1 Ready 102400 512 1 3
3 1 Ready 102400 512 1 4
4 2 Ready [GHS] 102400 4096 1 5
5 2 Ready [GHS] 102400 4096 1 6
6 2 Critical 102400 512 1 7
7 2 Critical 102400 4096 1 8
10 1 Cache Locked 64 512 1 1
11 1 Cache Locked 64 512 1 2
12 1 Cache Locked 64 512 1 3
13 1 Cache Locked 64 512 1 4
14 2 Ready [GHS] 64 512 1 5

Cluster File Systems, Inc. 147

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 3. Lustre Tuning

15 2 Ready [GHS] 64 512 1 6
16 2 Critical 64 512 1 7
17 2 Critical 64 512 1 8

System verify extent: 16MB

System verify delay: 30

148 Cluster File Systems, Inc.

Lustre in a nutshell Part III. Lustre Tuning, Monitoring and Troubleshooting
Chapter III – 4. Lustre Troubleshooting and Tips

CHAPTER III – 4. LUSTRE TROUBLESHOOTING AND
TIPS

Cluster File Systems, Inc. 149

Part III. Lustre Tuning, Monitoring and Troubleshooting Lustre in a nutshell
Chapter III – 4. Lustre Troubleshooting and Tips

4.1 Tips

If you change the host name of a server, Lustre may not be able to start properly.
Here is how you fix the Lustre configuration to fix the issue.

Update the UUID in last_rcvd to match a changed host name.

NOTE: The following procedure should only be performed when Lustre is NOT
running. Ensure that Lustre has been completely stopped (by executing the
command lconf -d) before attempting the following procedure.

For each device to be reconfigured, perform the following steps:

In the example we are assuming that <device> is the name of the device to be
reconfigured (For instance, /dev/sdb), and <NEW_NAME> is the new name of the
OST or MDT.

1. Mount the OST or MDT device:
mount -tldiskfs /dev/<device> /mnt/tmp

2. Make a backup of last_rcvd:
cp -a /mnt/tmp/last_rcvd /tmp/last_recvd.<device>.backup

3. Check the contents of the current last_rcvd:
cat /mnt/tmp/last_rcvd

4. Update last_rcvd with the correct UUID (Note the "-n" and “# conv=notrunc”
options):

echo -n "<NEW_NAME>_UUID" | dd of=/mnt/tmp/last_rcvd conv=notrunc

5. Verify that the new last_rcvd is correct:
cat /mnt/tmp/last_rcvd

6. Unmount the device:
umount /mnt/tmp

150 Cluster File Systems, Inc.

PART IV. LUSTRE FOR USERS

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 1. Free Space and Quotas

CHAPTER IV – 1. FREE SPACE AND QUOTAS

152 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 1. Free Space and Quotas

1.1 Querying File
System Space

The command lfs df is used to determine the disk space available on a file system.
It displays the amount of available disk space on the mounted Lustre file system and
shows space consumption per-OST. If multiple Lustre file systems are mounted, a
PATH may be specified, but is not required.

Options Description
-h --human-readable print sizes in human readable format

(for instance, 1K 234M 2G)

-i, --inodes Lists inodes instead of block usage

Examples
fc3:~$ lfs df
UUID 1K-blocks Used Available Use% \
Mounted on
mds-p_UUID 4399856 528200 3871656 12 \
/mnt/lustre[MDT:0]
ost-a_UUID 153834852 55804744 98030108 36 \
/mnt/lustre[OST:0]
ost-b_UUID 153834852 55927804 97907048 36 \
/mnt/lustre[OST:1]

filesystem summary: 307669704 111732548 195937156 36 \
/mnt/lustre
fc3:~$ lfs df -h
UUID 1K-blocks Used Available Use% \
Mounted on
mds-p_UUID 4.2M 515.8K 3.7M 12 \
/mnt/lustre[MDT:0]
ost-a_UUID 146.7M 53.2M 93.5M 36 \
/mnt/lustre[OST:0]
ost-b_UUID 146.7M 53.3M 93.4M 36 \
/mnt/lustre[OST:1]

filesystem summary: 293.4M 106.6M 186.9M 36 \
/mnt/lustre
fc3:~$ lfs df -i
UUID Inodes IUsed Ifree IUse% \
Mounted on
mds-p_UUID 1257360 272869 984491 21 \
/mnt/lustre[MDT:0]
ost-a_UUID 19546112 257430 19288682 1 \

Cluster File Systems, Inc. 153

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 1. Free Space and Quotas

/mnt/lustre[OST:0]
ost-b_UUID 19546112 257430 19288682 1 \
/mnt/lustre[OST:1]

filesystem summary: 1257360 272869 984491 21 \
/mnt/lustre

154 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 1. Free Space and Quotas

1.2 Using Quota

The lfs quota command displays disk usage and quotas. Only user quotas are
displayed by default or with the -u flag.

A root user may use the -u flag with the optional user parameter to view the limits of
other users. Users without the root user authority can view the limits of groups (of
which they are members) by using the -g flag with the optional group parameter.

NOTE: If a particular user has no files in a file system on which they have a
quota, the command will show quota: none for that user. The user's actual
quota is displayed when the user has files in the file system.

Examples

To display your quotas as a user “bob,” enter:
$ lfs quota -u /mnt/lustre

The above example will display the disk usage and limits for the user "bob."

To display quotas as the root user for user “bob,” enter:
$lfs quota -u bob /mnt/lustre

The system can also show the below information about the disk usage by “bob.”

To display your group's quota as “tom”:
$ lfs -g tom /mnt/lustre

To display the group's quota of “tom”:
$lfs quota -g tom /mnt/lustre

Cluster File Systems, Inc. 155

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 2. Striping and Other I/O Options

CHAPTER IV – 2. STRIPING AND OTHER I/O
OPTIONS

156 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 2. Striping and Other I/O Options

2.1 File Striping

Lustre stores files of one or more objects on object storage targets (OSTs). When a
file is comprised of more than one object, Lustre will stripe the file data across them
in a round-robin fashion. The number of stripes, the size of each stripe and the
servers chosen are all configurable.

One of the most frequently asked Lustre questions is “How should I stripe my files,
and what is a good default?” The short answer is that it depends on your needs. A
good rule of thumb is to stripe over as few objects as will meet those needs and no
more.

2.1.1 Advantages of
Striping

There are two reasons to create files of multiple stripes: bandwidth and size.

There are many applications which require high-bandwidth access to a single file –
more bandwidth than can be provided by a single OSS – for example, scientific
applications which write to a single file from hundreds of nodes or a binary
executable which is loaded by many nodes when an application starts.

In cases such as these you want to stripe your file over as many OSSs as it takes to
achieve the required peak aggregate bandwidth for that file. In our experience, the
requirement is “as quickly as possible,” which usually means all OSSs.

NOTE: This assumes that your application is using enough client nodes, and
can read/write data fast enough, to take advantage of that much OSS
bandwidth. The largest useful stripe count is bounded by the input/output rate
of your clients/jobs divided by the performance per OSS.

The second reason to stripe is when a single object storage target (OST) does not
have enough free space to hold the entire file.

2.1.2 Disadvantages of
Striping

There are two disadvantages to striping which should deter you from choosing a
default policy which stripes over all OSTs unless you really need it: increased
overhead and increased risk.

Increased overhead comes in the form of extra network operations during common
operations such as stat and unlink, and more locks. Even when these operations
can be performed in parallel, there is a big difference between doing one network
operation and doing one hundred.

Increased overhead also comes in the form of server concurrency. Consider a
cluster with 100 clients and 100 OSSs, each with one OST. If each file has exactly
one object and the load is distributed evenly, there is no concurrency and the disks
on each server can manage sequential input/output. If each file has 100 objects,
then the clients will all compete with each other for the attention of the servers and

Cluster File Systems, Inc. 157

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 2. Striping and Other I/O Options

the disks on each node will be seeking in 100 different directions. In this case, there
is needless concurrency.

Increased risk is evident when you consider again the example of striping each file
across all servers. In this case, if any one OSS catches on fire, a small part of every
file will be lost. By comparison, if every file has exactly one stripe, you will lose fewer
files, but you will lose them in their entirety. Most users would rather lose some of
their files entirely than all of their files partially.

2.1.3 Stripe Size
Choosing a stripe size is a small balancing act but there are reasonable defaults.
The stripe size must be a multiple of the page size. For safety, Lustre tools enforce
a multiple of 16 KB (the page size on IA-64), so that users on platforms with smaller
pages do not accidentally create files which might cause problems for IA-64 clients.

Although you could create files with a stripe size of 16 KB, this would be a poor
choice. Practically, the smallest recommended stripe size is 512 KB because Lustre
tries to batch input/output into 512 KB chunks over the network. This is a good
amount of data to transfer at once. Choosing a smaller stripe size may hinder the
batching.

Generally, a good stripe size for sequential input/output using high-speed networks
is between 1 MB and 4 MB. Stripe sizes larger than 4 MB will not parallelize as
effectively because Lustre tries to keep the amount of dirty cached data below 4 MB
per server with the default configuration.

Writes which cross an object boundary are slightly less efficient than writes which go
entirely to one server. Depending on your application's write patterns, you can assist
it by choosing the stripe size with that in mind. If the file is written in a very
consistent and aligned way, you can do it a favor by making the stripe size a
multiple of the write() size.

The choice of stripe size has no effect on a single-stripe file.

158 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 2. Striping and Other I/O Options

2.2 Displaying
Striping Information
with lfs getstripe

Individual files and directories can be examined with lfs getstripe:
lfs getstripe <filename>

lfs will print the index and UUID for each OST in the file system along with the OST
index and object ID for each stripe in the file. For directories, the default settings for
files created in that directory will be printed.

A whole tree of files can also be inspected with lfs find:
lfs find [--recursive | -r] <file or directory> ...

Cluster File Systems, Inc. 159

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 2. Striping and Other I/O Options

2.3 lfs setstripe –
Setting Striping
Patterns

New files with a specific stripe configuration can be created with lfs setstripe:
lfs setstripe <filename> <stripe-size> <starting-ost> <stripe-\
count>

If you pass a stripe-size of 0, the file system default stripe size will be used.
Otherwise, the stripe-size must be a multiple of 16 KB.

If you pass a starting-ost of -1, a random first OST will be chosen. Otherwise the file
will start on the specified OST index (starting at zero).

If you pass a stripe-count of 0, the file system default number of OSTs will be used.
A stripe-count of -1 means that all available OSTs should be used.

NOTE: If you pass a starting-ost of '0' and a stripe-count of 1, all files will be
written to OST #0, until space is exhausted. This is probably not your intention.
If you wish to adjust stripe-count only and keep the other parameters at their
default, use this syntax:
lfs setstripe 0 -1 <stripe_count>

2.3.1 Changing Striping for
a Subdirectory

lfs setstripe works on directories to set a default striping configuration for files
created within that directory. The usage is the same as for lfs setstripe for a regular
file, except that the directory must exist prior to setting the default striping
configuration. If a file is created in a directory with a default stripe configuration
(without otherwise specifying the striping) Lustre will use those striping parameters
instead of the file system default for the new file.

To change the striping pattern for a subdirectory, create a directory with desired
striping pattern as described above. The subdirectories inherit the striping pattern of
the parent directory.

2.3.2 Using a Specific
Striping Pattern for a
Single File

lfs setstripe will create a file with a given stripe pattern.

lfs setstripe will fail if the file already exists.

160 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 2. Striping and Other I/O Options

2.4 Performing Direct
Input/output

Starting with 1.4.7, Lustre supports the O_DIRECT flag to open.

Applications using the read() and write() calls must supply buffers aligned on a page
boundary (usually 4k). If the alignment is not correct the call will return -EINVAL.
Direct Input/output may help performance in cases where the client is doing a large
amount of Input/output and is CPU-bound (CPU utilization 100%).

2.4.1 Making File System
Objects Immutable

An immutable file or directory is one that cannot be modified, renamed or removed.
To do this:

chattr +i <file>

chattr –i removes the flag

Cluster File Systems, Inc. 161

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 2. Striping and Other I/O Options

2.5 Other Input/output
Options

2.5.1 MDS Space Utilization
Lustre comprises of large inodes, where each inode is at least 512 bytes by default.
Lustre also needs sufficient space left for other metadata like journals (up to
400MB), bitmaps and directories. There are also a few regular files that Lustre uses
to maintain cluster consistency. To be on the safer side we recommend you plan for
4KB per inode on the MDS.

If you use the -i option for mke2fs and if you are specifying some absolute number
of inodes using -N {num inodes}, newer e2fsprogs will reduce the group size. This
will allow an increased number of inodes beyond one inode per 1024 bytes. Every
time you create a file on a Lustre file system, you might notice that one inode on the
corresponding MDS (as well as one inode on the OST itself) is used. The minimum
bytes per inode for ext3 are 1024 and the maximum block size is 4096. Thus the
maximum ratio of inodes per block is four.

The file system on an MDS and that on an OST are independent of each other.
Hence, the formatting parameters for the two need not be same. The size of the
MDS file system solely depends on how many inodes you want in the total Lustre
file system. It is not the size of the aggregate OST space. You can have a much
higher maximum number of bytes per inode in the file system up to 128MB per eight
inodes. This is useful for OSTs if you have a very large average file size.

As a result, the only important factor when calculating the MDS size is the average
size of files to be stored in the file system. If the average file size is, for instance,
5MB and you have 100TB of usable OST space then you need at least (100 * 1024
* 1024 / 5) = 20 million inodes (though it is recommended to have twice the
minimum, that is 50 million inodes). That means 4KB per inode space is the default.
This works out to only 80GB of space for the MDS.

On the other hand, if you had a very small average file size, for example 4KB,
iLustre is not very efficient. This is because you consume as much space on the
MDS as you are consuming on the OSTs. This is not a very common configuration
for Lustre. With a 2TB MDS you could potentially have 1KB per inode. It is not
possible to have an inode of less than 512 bytes. So 2B inodes would need 2B *
4KB = 8TB of usable OST space. Depending on your needs, you could instead just
do this with a single ext3 file system instead of Lustre.

NOTE: In the Lustre file system, inodes are consumed and not the space.

2.5.2 End to End Client
Checksums

To guard against data corruption, a Lustre client can perform end to end data
checksums. This must be enabled on the individual client nodes. If the checksum is
bad, the client will not have an IO error. The bad checksum will be reported

162 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 2. Striping and Other I/O Options

immediately as a syslog message. Both client and OST will log messages at
intervals showing that checksums are being validated. A /proc file controls the
checksum behavior. The file is:

/proc/fs/lustre/llite/fs0/checksum_pages

To enable checksums on a client:
echo 1 > /proc/fs/lustre/llite/fs0/checksum_pages

Cluster File Systems, Inc. 163

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 3. Lustre Security

CHAPTER IV – 3. LUSTRE SECURITY

164 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 3. Lustre Security

3.1 Using Access
Control Lists

An ACL, or access control list, is a set of data that informs an operating system
about the permissions, or access rights, that each user or group has to a specific
system object, such as a directory or file. Each object has a unique security attribute
that identifies which users have access to it. The ACL is a list of each object and
user access privileges such as read, write or execute.

3.1.1 How do ACLs work?
Implementing ACLs varies between operating systems. Systems that support the
POSIX (Portable Operating System Interface) family of standards share a simple yet
powerful file system permission model, which should be well-known to the
Linux/Unix administrator. ACLs add finer-grained permissions to this model, allowing
for more complicated permission schemes. For a detailed explanation of ACLs on
Linux, we recommend the SuSE Labs article, “Posix Access Control Lists on Linux”
found on-line here:

http://www.suse.de/~agruen/acl/linux-acls/online/

CFS has implemented ACLs according to this model. Lustre supports the standard
Linux ACL tools, setfacl, getfacl, and the historical chacl, normally installed with
the acl package.

3.1.2 Lustre ACLs
Lustre versions 1.4.6 and above support POSIX ACLs. When using a Lustre client of
version 1.4.5 or below with an MDS of version 1.4.6, or vice versa, the user space
program generates an error “Operation not supported” during ACL operations.

The MDS needs to be configured in order to enable ACLs. This can be enabled
when creating your configuration with --mountsoptions:

lmc -m –add mds –node ft2 –mds mds-l –fstype ldiskfs –dev \
/dev/sdc –-mountfsoptions=acl

Or, you can enable at run time by using the --acl option with lconf:
lconf -–acl config.xml

ACLs on the client are enabled at mount time when ACLs are enabled on the MDS.
You do not need to change the client configuration, and the “acl” string will not
appear in the client /etc/mtab. The client acl mount option is no longer needed. If a
client is mounted with that option, this message will appear in the MDS syslog:

...MDS requires ACL support but client does not

The message is harmless but indicates a configuration issue, which should be
corrected.

If ACLs are not enabled on the MDS, any attempts to reference an ACL on a client
will return an “Operation not supported” error.

Cluster File Systems, Inc. 165

http://www.suse.de/~agruen/acl/linux-acls/online/

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 3. Lustre Security

3.1.3 Examples
These examples are taken directly from the POSIX paper referenced above. ACLs
on a Lustre file system work exactly like ACLs on any Linux file system. They are
manipulated with the standard tools in the standard manner. Here we create a
directory and allow a specific user access.

[cliffw@q_3 lustre]$ umask 027
[cliffw@q_3 lustre]$ mkdir baz
[cliffw@q_3 lustre]$ ls -ld baz
drwxr-x--- 2 cliffw cliffw 4096 Sep 26 13:39 baz
[cliffw@q_3 lustre]$ getfacl baz
file: baz
owner: cliffw
group: cliffw
user::rwx
group::r-x
other::---

[cliffw@q_3 lustre]$ setfacl -m user:monkey:rwx baz
[cliffw@q_3 lustre]$ ls -ld baz
drwxrwx---+ 2 cliffw cliffw 4096 Sep 26 13:39 baz
[cliffw@q_3 lustre]$ getfacl --omit-header baz
user::rwx
user:monkey:rwx
group::r-x
mask::rwx
other::---

166 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 4. Other Lustre Operating Tips

CHAPTER IV – 4. OTHER LUSTRE OPERATING TIPS

Cluster File Systems, Inc. 167

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 4. Other Lustre Operating Tips

4.1 Expanding the File
System by Adding
OSTs

With the current version of Lustre, it is possible for OSTs to fill in an unbalanced
fashion when the stripe count is less than the number of OSTs. This is not an ideal
situation and there are several items on our development road map to address this
issue.

The current scenario

Once an OST is full, the application trying to write new data to the OST will receive
an -ENOSPC error. This results in the unfortunate confusing behavior of allowing
writes for some files (or even some parts of a striped file) while denying writes for
others. This is not an issue for newly-created files, as Lustre will avoid placing new
files on full OSTs.

The system will be quite out of balance if empty OSTs are then added to the system.
Lustre does not yet have an on-line data migration function so you must re-balance
your data manually.

Instructions for adding OSTs to existing Lustre file systems

Step 1: Stop any existing Lustre clients and servers.

Step 2: Modify or re-create the Lustre XML configuration (using lmc as usual). You
can do this before you stop your servers as long as you save a copy of the old XML.

Add the "lmc --add ost" commands to your lmc script. It is very important that the
new OSTs are added only after all of the current OSTs in your lmc script. If you
disturb the order of OSTs, data on the current file system may be lost!

Step 3: Run "lconf --write_conf" on the MDS.

This compiles the XML into a binary configuration log that is stored in the MDS. This
log is processed by clients at mount-time, to allow them to mount without needing
lconf or the XML. If you skip this step, your clients will use the old configuration with
unpredictable results.

Step 4: Format the new OSTs.

You may do this manually:
mke2fs -j -J size=400 -I 256 -i 16384 /dev/DEVICE

Or, you may do it using lconf:
lconf –reformat –service <new_ost_name> <lustre XML config>

Do this for each new OST. Then you may start the remaining OSTs, the MDS and
mount clients.

Step 5: Migrate the data.

The file system will be quite unbalanced when new empty OSTs are added. New file
creations will be automatically balanced. If this is a scratch file system or files are
pruned at a regular interval no further work may be needed. Files existing prior to
the expansion can be rebalanced with an in-place copy, which can be done with a
simple script.

The basic method is to copy existing files to a temporary file, then mv the temp file
over the old one. Naturally, this should not be attempted with files which are

168 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 4. Other Lustre Operating Tips

currently being written to by users or applications. This operation will redistribute the
stripes over the entire set of OSTs. A sample script for this migration is attached.

A very clever migration script would:

• examine the current distribution of data

• calculate how much data should move from each full OST to the empty
ones

• search for files on a given full OST (using "lfs getstripe")

• force the new destination OST (using “lfs setstripe”)

• copy only enough files to address the imbalance.

If an enterprising Lustre administrator wants to explore this approach further, per-
OST disk-usage statistics can be found under /proc/fs/lustre/osc/*.

Future development

In a short term, Lustre may include a runtime option that will create proportionally
more new files on OSTs with more room available. Although this would not help if
you need to write new data to an existing file on a completely full OST, it will help to
keep a system from getting too far out of balance in the first place, and help bring it
back into balance more quickly.

The problem is best solved with a proper on-line data migrator, which can safely
migrate files being actively modified. This is a very involved task, which may not be
completed in the coming year.

Example Script:

#!/bin/bash
set -x

A script to copy and check files
To guard against corruption, the file is chksum'd
before and after the operation.
You must supply a temporary directory for the operation.

CKSUM=${CKSUM:-md5sum}
MVDIR=$1

if [$# -ne 1]; then
 echo "Usage: $0 <dir to copy>"
 exit 1
fi

Cluster File Systems, Inc. 169

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 4. Other Lustre Operating Tips

cd $MVDIR

for i in `find . -print`
do
 # if directory, skip
 if [-d $i]; then
 echo "dir $i"
 else
 # Check for write permission
 if [! -w $i]; then
 echo "No write permission for $i,
skipping"
 continue
 fi

 OLDCHK=$($CKSUM $i | awk '{print $1}')
 NEWNAME=$(mktemp $i.tmp.XXXXXX)
 cp $i $NEWNAME
 RES=$?
 if [$RES -ne 0];then
 echo "$i copy error - exiting"
 rm -f $NEWNAME
 exit 1
 fi
 NEWCHK=$($CKSUM $NEWNAME | awk '{print $1}')
 if [$OLDCHK != $NEWCHK]; then
 echo "$NEWNAME bad checksum - $i not
moved, exiting"
 rm -f $NEWNAME
 exit 1
 else
 mv $NEWNAME $i
 if [$RES -ne 0];then
 echo "$i move error - exiting"
 rm -f $NEWNAME
 exit 1
 fi
 fi

170 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 4. Other Lustre Operating Tips

 fi
done

Cluster File Systems, Inc. 171

Part IV. Lustre for Users Lustre in a nutshell
Chapter IV – 4. Other Lustre Operating Tips

A simple data
migration script

#!/bin/bash
set -x

A script to copy and check files
To guard against corruption, the file is chksum'd
before and after the operation.
You must supply a temporary directory for the operation.

CKSUM=${CKSUM:-md5sum}
MVDIR=$1

if [$# -ne 1]; then
echo "Usage: $0 <dir to copy>"
exit 1

fi

cd $MVDIR

for i in `find . -print`
do

if directory, skip
if [-d $i]; then

echo "dir $i"
else
Check for write permission

if [! -w $i]; then
echo "No write permission for $i, skipping"
continue

fi

OLDCHK=$($CKSUM $i | awk '{print $1}')

172 Cluster File Systems, Inc.

Lustre in a nutshell Part IV. Lustre for Users
Chapter IV – 4. Other Lustre Operating Tips

NEWNAME=$(mktemp $i.tmp.XXXXXX)
cp $i $NEWNAME
RES=$?
if [$RES -ne 0];then

echo "$i copy error - exiting"
rm -f $NEWNAME
exit 1

fi
NEWCHK=$($CKSUM $NEWNAME | awk '{print $1}')
if [$OLDCHK != $NEWCHK]; then

echo "$NEWNAME bad checksum - $i not moved, \
exiting"

rm -f $NEWNAME
exit 1

else
mv $NEWNAME $i
if [$RES -ne 0];then

echo "$i move error - exiting"
rm -f $NEWNAME
exit 1

fi
fi

fi
done

Cluster File Systems, Inc. 173

PART V. REFERENCE

Part V. Reference Lustre in a nutshell
Chapter V – 1. User Utilities (man1)

CHAPTER V – 1. USER UTILITIES (MAN1)

176 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 1. User Utilities (man1)

1.1 lfs

lfs is a Lustre client file system utility that is used to display striping information for
file and directories, set striping policy for files and directories, search for files with
specific attributes (after the Unix “find” command) and to create or set quotas.

1.1.1 Synopsis
lfs
lfs df [-i] [-h] [path]
lfs find [–quiet|-q] [–verbose|-v] [–recursive|-r] <dir/file>
lfs find [–atime|-A N] [–mtime|-M N] [–ctime|-C N] [–maxdepth|-D \ N] [–print0|-
P]
lfs getstripe [–obd|-O <uuid>] [–quiet|-q] [–verbose|-v] \
[–recursive|-r] <dir/file>
lfs setstripe <filename|dirname> <stripe_size> <start_ost> \
<stripe_count>
lfs setstripe -d <dirname>
lfs quotachown [-i] <filesystem>
lfs quotacheck [-ugf] <filesystem>
lfs quotaon [-ugf] <filesystem>
lfs quotaoff [-ug] <filesystem>
lfs setquota [-u|-g] <name> <block-softlimit> <block-hardlimit> \
<inode-softlimit> <inode-hardlimit> <filesystem>
lfs quota [-o obd_uiid] [-u | -g] <name> <filesystem>
lfs check <mds| osts| servers>
[–print|-p] [–obd|-O <uuid>] <dir/file>
lfs help

NOTE: For the above example <filesystem> refers to the mount point of the
Lustre file system (Default: /mnt/lustre).

1.1.2 Description
This utility is used to create a new file with a specific striping pattern, determine the
default striping pattern, gather the extended attributes (object numbers and location)
for a specific file and for setting Lustre quota. It can be invoked interactively without
any arguments or in a non-interactive mode.

You can issue the following commands to invoke lfs in an interactive mode.
$ lfs
lfs> help

Cluster File Systems, Inc. 177

Part V. Reference Lustre in a nutshell
Chapter V – 1. User Utilities (man1)

To get a complete listing of available commands, type “help” on the lfs prompt. To
get basic help on meaning and syntax of a command, type “help command.” The tab
key activates command completion. Command history is available via the up and
down arrows.

Here are the sub-commands available:

setstripe:

• creates a new file with a specific striping pattern

• sets the default striping pattern on an existing directory

• deletes the default striping pattern from an existing directory.

getstripe:

• lists the striping pattern for a given file name or files in a given directory

• lists the striping pattern recursively for all files in a directory tree

• lists the files that have objects on a specific OST.

Find: (old usage)

• lists the extended attributes for a given filename or files in a directory

• lists the extended attributes recursively for all files in a directory tree

• lists the files that have objects on a specific OST.

Please note, we have replaced this use of the lfs command by “lfs getstripe.” “lfs
find” now matches the traditional UNIX “find.” It will search the directory tree rooted
at the given dir/file name for the files that match the given parameters.

Find: (New usage)

--atime (the file was last accessed N*24 hours ago), checks if the file was last
accessed, changed, modified N days ago, that is within the interval (N+1,N]
days. The number can be specified as +N and -N, for more than and less than
N days ago respectively

-- ctime (the status of the file was last changed N*24 hours ago)

--mtime (the data in the file was last modified N*24 hours ago)

--obd (the file has an object on a specific OST)

--maxdepth allows the find command to descend at most N levels of the
directory tree

[--print0|-P] [--print|-p] prints the full file name on the standard output, followed
by a null character or a newline respectively.

If one of the options below is specified, lfind works in the so-called “old” mode.
This mode is obsolete; use “lfs getstripe” instead. Both “lfs getstripe” and “lfs
find” in the “old” mode have the following options:

[--quiet|-q] [--verbose|-v] [--recursive|-r]

NOTE: lfind in the “new” mode can run on a non-Lustre file system, and can
cross all the Lustre/non-Lustre and vice versa mount points correctly.

df: reports file system disk space usage or inode usage for each MDS / OST.

178 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 1. User Utilities (man1)

quotachown: changes the owner or group of a file on the specified file system.

quotacheck: scans the specified file system for disk usage and creates or updates
quota files.

quotaon: turns file system quotas on.

quotaoff: turns file system quotas off.

setquota: sets file system quotas.

quota: displays the disk usage and limits.

check: displays the status of MDS or OSTs (as specified in the command), or all the
servers (MDS and OSTs).

osts: lists all the OSTs for the file system.

help: provides brief help on various arguments.

exit/quit: quits the interactive lfs session.

1.1.3 Examples
To create a file striped on one OST:

lfs setstripe /mnt/lustre/file1 131072 0 1

To create a default striping pattern on an existing directory for all the new files
created therein:

$ lfs setstripe /mnt/lustre/dir 131072 0 1

To delete the default striping pattern on a directory:
$ lfs setstripe -d /mnt/lustre/dir

(New files will use the default striping pattern created therein.)

stripe size: if you pass a stripe-size of 0, the file system default stripe size will be
used. Otherwise the stripe-size must be a multiple of 16 KB.

stripe start: if you pass a starting-ost of -1, a random first OST will be chosen.
Otherwise the file will start on the specified OST index (starting at 0).

stripe count: if you pass a stripe-count of 0, the file system default number of OSTs
will be used. A stripe-count of -1 means that all available OSTs should be used.

Note on defaults: The default stripe_size is 0, the default stripe start is -1 – do not
confuse them! If you set the stripe start to 0 all new file creations will occur on OST
0 which is seldom a good idea.

Below is an example of setting and getting stripes:
$ lfs > setstripe lustre.iso 0 -1 0
$ lfs > getstripe lustre.iso
 OBDS:
 0: ost1_UUID ACTIVE
 1: ost2_UUID_2 ACTIVE
 ./lustre
 obdidx objid objid group
 1 4 0x4 0

Cluster File Systems, Inc. 179

Part V. Reference Lustre in a nutshell
Chapter V – 1. User Utilities (man1)

To list the extended attributes of a given file:
$ lfs find /mnt/lustre/foo1
 OBDS:
 O: OST_localhost_UUID
/mnt/lustre/foo1
obdidx objid objid group
 0 1 0x1 0

To list the extended attributes of all files in a given directory:
$ lfs find /mnt/lustre/

To recursively list the extended attributes of all the files in a given directory tree:
$ lfs find -r /mnt/lustre/

To list all the files that have objects on a specific OST:
$ lfs find -r --obd OST2-UUID /mnt/lustre/

To change the file owner and group:
$ lfs quotachown -i /mnt/lustre

To check the quota for a user and a group:
$ lfs quotacheck -ug /mnt/lustre

To turn on the quotas for a user and a group:
$ lfs quotaon -ug /mnt/lustre

To turn off the quotas for a user and a group:
$ lfs quotaoff -ug /mnt/lustre

To set the quotas for a user as 1GB block quota and 10,000 file quota:
$ lfs setquota -u {username} 0 1000000 0 10000 /mnt/lustre

To change the owner or group:
$ quotachown -i /mnt/lustre

To ignore the error if the file does not exist.

For example,
$ lfs quotachown -i {file|directory} /mnt/lustre

To check the disk space in inodes available on individual MDS and OST:

180 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 1. User Utilities (man1)

$ lfs df -i /mnt/lustre

UUID Inodes Used Free Use% Mounted on
mds-1_UUID 53265600 28266 53237334 0 /mnt/lustre[MDT:0]

ost-1_UUID 244056064 1349 244054715 0 /mnt/lustre[OST:0]

ost-2_UUID 244056064 884 244055180 0 /mnt/lustre[OST:1]

To check the disk space in size available on individual MDS and OST:
$ lfs df -h /mnt/lustre

UUID 1K-blocks Used Available Use% Mounted on
mds-1_UUID 203.5M 12.1M 191.5M 5 /mnt/lustre[MDT:0]

ost-1_UUID 1.8G 384.7M 1.4G 20 /mnt/lustre[OST:0]

ost-2_UUID 1.8G 343.0M 1.5G 18 /mnt/lustre[OST:1]

ost-3_UUID 1.8G 332.2M 1.5G 18 /mnt/lustre[OST:2]

To list the quotas of a user:
$ lfs quota -u {username} /mnt/lustre

To check the status of all the servers – MDS and OSTs:
$ lfs check servers
OSC_localhost.localdomain_OST_localhost_mds1 active.
OSC_localhost.localdomain_OST_localhost_MNT_localhost active.
MDC_localhost.localdomain_mds1_MNT_localhost active.

To check the status of all the servers – MDSs:
$ lfs check mds

To check the status of all the servers – OSTs:
$ lfs check ost

To list all the OSTs:
$ lfs osts
 OBDS:
 O: OST_localhost_UUID

To list the logs of particular types:
$ lfs catinfo {keyword} [node name]

Keywords are one of the followings: config, deletions.

Node name must be provided when using the keyword config.

Cluster File Systems, Inc. 181

Part V. Reference Lustre in a nutshell
Chapter V – 1. User Utilities (man1)

For instance,
$ lfs catinfo {config|dele*tions}{mdsnode|ostnode}

To join the files:
 $ join <filename_A> <filename_B>

182 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 2. Lustre Programming Interfaces (man3)

CHAPTER V – 2. LUSTRE PROGRAMMING INTERFACES
(MAN3)

Cluster File Systems, Inc. 183

Part V. Reference Lustre in a nutshell
Chapter V – 2. Lustre Programming Interfaces (man3)

2.1 Introduction

This chapter describes the public programming interfaces for controlling various
aspects of Lustre from userspace. These interfaces are generally not guaranteed to
remain unchanged over time, although we will make an effort to notify the user
community well in advance of major changes.

184 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 2. Lustre Programming Interfaces (man3)

2.2 User/Group Cache
Upcall

2.2.1 Name
Use /proc/fs/lustre/mds/mds-service/group_upcall to look up a given user’s
group membership.

2.2.2 Description
The group upcall file contains the path to an executable that, when properly
installed, is invoked to resolve a numeric UID to a group membership list. This utility
should complete the mds_grp_downcall_data data structure (below) and write it to
the /proc/fs/lustre/mds/mds-service/group_info pseudo-file.

See lustre/utils/l_getgroups.c in the Lustre source distribution for an example
upcall program.

2.2.3 Parameters
The name of the MDS service.

The numeric UID.

2.2.4 Data structures
#include <lustre/lustre_user.h>
#define MDS_GRP_DOWNCALL_MAGIC 0x6d6dd620
struct mds_grp_downcall_data {
 __u32 mgd_magic;
 __u32 mgd_err;
 __u32 mgd_uid;
 __u32 mgd_gid;
 __u32 mgd_ngroups;
 __u32 mgd_groups[0];
};

Cluster File Systems, Inc. 185

Part V. Reference Lustre in a nutshell
Chapter V – 3. Config Files and Module Parameters (man5)

CHAPTER V – 3. CONFIG FILES AND MODULE
PARAMETERS (MAN5)

186 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 3. Config Files and Module Parameters (man5)

3.1 Introduction

LNET network hardware and routing are now configured via module parameters.
Parameters should be specified in the /etc/modprobe.conf file, for example:

alias lustre llite
options lnet networks=tcp0,elan0

The above option specifies that this node should use all the available tcp and elan
interfaces.

Module parameters are read when the module is first loaded. Type-specific LND
(Lustre Network Device) modules (for instance, ksocklnd) are loaded automatically
by the lnet module when LNET starts (typically upon modprobe ptlrpc).

Under Linux 2.6, the LNET configuration parameters can be viewed under
/sys/module/; generic and acceptor parameters under lnet and LND-specific
parameters under the name of the corresponding LND.

Under Linux 2.4, sysfs is not available, but the LND-specific parameters are
accessible via equivalent paths under /proc.

Important: All old (pre v1.4.6) Lustre configuration lines should be removed from the
module configuration files, to be replaced with the following. Make sure that
CONFIG_KMOD is set in your linux.config so that LNET can load the following
modules it needs. The basic module files are:

 modprobe.conf (Linux 2.6)
alias lustre llite
options lnet networks=tcp0,elan0

 modules.conf (Linux 2.4)
alias lustre llite
options lnet networks=tcp0,elan0

For the following parameters default option settings are shown in parenthesis.
Changes to parameters marked with a W affect running systems. (Unmarked
parameters can only be set when LNET loads for the first time.) Changes to
parameters marked with a Wc only have effect when connections are established
(existing connections are not affected by these changes.)

Cluster File Systems, Inc. 187

Part V. Reference Lustre in a nutshell
Chapter V – 3. Config Files and Module Parameters (man5)

3.2 Module Options

 8 With routed or other multi-network configurations, use ip2nets rather than
networks so that all nodes can use the same configuration.

 9 For a routed network, use the same “routes” configuration everywhere. Nodes
specified as routers automatically enable forwarding and any routes that are not
relevant to a particular node are ignored. Keeping a common configuration
guarantees that all nodes will have consistent routing tables.

 10 A separate modprobe.conf.lnet included from modprobe.conf makes distributing
the configuration much easier.

 11 If you set “config_on_load=1” LNET starts up at modprobe time, rather than
waiting for Lustre to start. This ensures routers start working at module load time.
However, in this case lconf --cleanup will not stop LNET, you must run lctl --net
stop on these nodes.

 12 Remember lctl ping – it is a very handy way to check your LNET configuration.

3.2.1 LNET Options

3.2.1.1 Network Topology

The network topology module parameters determine which networks a node should
join, whether it should route between these networks and how it communicates with
non-local networks.

Here is a list of various networks and the supported software stacks:

Network Software Stack
openib OpenIB gen1 / Mellanox Gold

iib Silverstorm (Infinicon)

vib Voltaire

o2ib OpenIB gen2

cib Cisco

NOTE: Lustre will ignore the loopback interface (lo0). But Lustre will use any IP
addresses aliased to the loopback by default. When in doubt, specify networks
explicitly.

ip2nets ("") is a string that lists globally available networks, each with a set of IP
address ranges. LNET determines the locally available networks from this list by
matching the IP address ranges with the local IP’s of a node. The purpose of this
option is to be able to use the same modules.conf file across a variety of nodes on
different networks. The string has the following syntax...

<ip2nets> :== <net-match> [<comment>] { <net-sep> <net-match> }

188 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 3. Config Files and Module Parameters (man5)

<net-match> :== [<w>] <net-spec> <w> <ip-range> { <w> <ip-range> }

[<w>]

<net-spec> :== <network> ["(" <interface-list> ")"]

<network> :== <nettype> [<number>]

<nettype> :== "tcp" | "elan" | "openib" | ...

<iface-list> :== <interface> ["," <iface-list>]

<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>

<r-expr> :== <number> | "*" | "[" <r-list> "]"

<r-list> :== <range> ["," <r-list>]

<range> :== <number> ["-" <number> ["/" <number>]]

<comment :== "#" { <non-net-sep-chars> }

<net-sep> :== ";" | "\n"

<w> :== <whitespace-chars> { <whitespace-chars> }

The <net-spec> contains enough information to identify the network uniquely and
load an appropriate LND. The LND determines the missing "address-within-network"
part of the NID based on the interfaces it can use.

The optional <iface-list> specifies which hardware interface the network can use. If
omitted, all the interfaces are used. LNDs that do not support the <iface-list> syntax
cannot be configured to use particular interfaces and just use what is there. Only a
single instance of these LNDs can exist on a node at any time, and the <iface-list>
must be omitted.

The <net-match> entries are scanned in the order declared to see if one of the
node's IP addresses matches one of the <ip-range> expressions. If there is a match,
the <net-spec> specifies the network to instantiate. Note that it is the first match for
a particular network that counts. This can be used to simplify the match expression
for the general case by placing it after the special cases. For example..

ip2nets="tcp(eth1,eth2) 134.32.1.[4-10/2]; tcp(eth1) *.*.*.*"

4 nodes on the 134.32.1.* network have 2 interfaces (134.32.1.{4,6,8,10}) but all the
rest have 1.

ip2nets="vib 192.168.0.*; tcp(eth2) 192.168.0.[1,7,4,12]"

This describes an IB cluster on 192.168.0.*. 4 of these nodes also have IP
interfaces; these 4 could be used as routers.

Note that match-all expressions (For instance, *.*.*.*) effectively mask all other <net-
match> entries specified after them. Hence, they should be used with caution.

Here is a more complicated situation, see below for an explanation of the route
parameter. We have:

• Two TCP subnets

• One Elan subnet

• One machine set up as a router, with both TCP and Elan interfaces

• We have IP over Elan configured, but IP will only be used to label the nodes.
options lnet ip2nets=”tcp 198.129.135.* 192.128.88.98; \
 elan 198.128.88.98 198.129.135.3;” \
 routes=”tcp 1022@elan # Elan NID of router;\
 elan 198.128.88.98@tcp # TCP NID of router “

Cluster File Systems, Inc. 189

Part V. Reference Lustre in a nutshell
Chapter V – 3. Config Files and Module Parameters (man5)

3.2.1.2 networks ("tcp")

This is an alternative to "ip2nets" which can be used to specify the networks to be
instantiated explicitly. The syntax is a simple comma separated list of <net-spec>s
(see above). The default is only used if neither “ip2nets” nor “networks” is specified.

3.2.1.3 routes (“”)

This is a string that lists networks and the NIDs of routers that forward to them.

It has the following syntax (<w> is one or more whitespace characters):

<routes> :== <route>{ ; <route> }

<route> :== [<net>[<w><hopcount>]<w><nid>{<w><nid>}

So a node on the network tcp1 that needs to go through a router to get to the elan
network

options lnet networks=tcp1 routes="elan 1 192.168.2.2@tcp1”

The hopcount is used to help choose the best path between multiply-routed
configurations.

A simple but powerful expansion syntax is provided, both for target networks and
router NIDs as follows...

<expansion> :== "[" <entry> { "," <entry> } "]"

<entry> :== <numeric range> | <non-numeric item>

<numeric range> :== <number> ["-" <number> ["/" <number>]]

The expansion is a list enclosed in square brackets. Numeric items in the list may be
a single number, a contiguous range of numbers, or a strided range of numbers. For
example, routes="elan 192.168.1.[22-24]@tcp" says that network elan0 is adjacent
(hopcount defaults to 1); and is accessible via 3 routers on the tcp0 network
(192.168.1.22@tcp, 192.168.1.23@tcp and 192.168.1.24@tcp).

routes="[tcp,vib] 2 [8-14/2]@elan" says that 2 networks (tcp0 and vib0) are
accessible through 4 routers (8@elan, 10@elan, 12@elan and 14@elan). The
hopcount of 2 means that traffic to both these networks will be traversed 2 routers -
first one of the routers specified in this entry, then one more.

Duplicate entries, entries that route to a local network, and entries that specify
routers on a non-local network are ignored.

Equivalent entries are resolved in favor of the route with the shorter hopcount. The
hopcount, if omitted, defaults to 1 (that is, the remote network is adjacent).

 It is an error to specify routes to the same destination with routers on different local
networks.

If the target network string contains no expansions, the hopcount defaults to 1 and
may be omitted (that is, the remote network is adjacent). In practice, this is true for
most multi-network configurations. It is an error to specify an inconsistent hop count
for a given target network. This is why an explicit hopcount is required if the target
network string specifies more than one network.

3.2.1.4 forwarding ("")

This is a string that can be set either to "enabled" or "disabled" for explicit control of
whether this node should act as a router, forwarding communications between all
local networks.

190 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 3. Config Files and Module Parameters (man5)

A standalone router can be started by simply starting LNET (“modprobe ptlrpc”) with
appropriate network topology options

Acceptor

The acceptor is a TCP/IP service that some LNDs use to establish communications.
If a local network requires it and it has not been disabled, the acceptor listens on a
single port for connection requests that it redirects to the appropriate local network.
The acceptor is part of the LNET module and configured by the following

accept

accept ("secure") is a string that can be set to any of the following values.

 secure - accept connections only from reserved TCP ports (< 1023).

all - accept connections from any TCP port. Note: this is required for libLustre
clients to allow connections on non-privledged ports.

none - do not run the acceptor

accept_port

accept_port (988) is the port number on which the acceptor should listen for
connection requests. All nodes in a site configuration that require an acceptor must
use the same port.

accept_backlog

accept_backlog (127) is the maximum length that the queue of pending connections
may grow to (see listen(2)).

accept_timeout

accept_timeout (5,W) is the maximum time in seconds the acceptor is allowed to
block while communicating with a peer.

accept_proto_version

accept_proto_version is the version of the acceptor protocol that should be used by
outgoing connection requests. It defaults to the most recent acceptor protocol
version, but it may be set to the previous version to allows the node to initiate
connections with nodes that only understand that version of the acceptor protocol.
The acceptor can, with some restrictions, handle either version (i.e. it can accept
connections from both 'old' and 'new' peers). For the current version of the acceptor
protocol (version 1), the acceptor is compatible with old peers if it is only required by
a single local network.

3.2.2 SOCKLND Kernel
TCP/IP LND

The socklnd is connection-based and uses the acceptor to establish
communications via sockets with its peers.

It supports multiple instances and load balances dynamically over multiple
interfaces. If no interfaces are specified by the ip2nets or networks module
parameter, all non-loopback IP interfaces are used. The address-within-network is
determined by the address of the first IP interface an instance of the socklnd
encounters.

Consider a node on the “edge” of an Infiniband network, with a low bandwidth
management ethernet (eth0), IP over IB configured (ipoib0), and a pair of GigE NICs
(eth1,eth2) providing off-cluster connectivity. This node should be configured with

Cluster File Systems, Inc. 191

Part V. Reference Lustre in a nutshell
Chapter V – 3. Config Files and Module Parameters (man5)

"networks=vib,tcp(eth1,eth2)” to ensure that the socklnd ignores the management
ethernet and IPoIB.

timeout (50,W) is the time in seconds that communications may be stalled before
the LND will complete them with failure.

nconnds (4) sets the number of connection daemons.

min_reconnectms (1000,W) is the minimum connection retry interval in
milliseconds. This sets the time that must elapse before the first retry after a failed
connection attempt. As connections attempts fail, this time is doubled on each
successive retry up to a maximum of 'max_reconnectms'.

max_reconnectms (60000,W) is the maximum connection retry interval in
milliseconds.

eager_ack (0 on linux, 1 on darwin,W) is a boolean that determines whether the
socklnd should attempt to flush sends on message boundaries.

typed_conns (1,Wc) is a boolean that determines whether the socklnd should use
different sockets for different types of message. When clear, all communication with
a particular peer takes place on the same socket. Otherwise separate sockets are
used for bulk sends, bulk receives and everything else.

min_bulk (1024,W) determines when a message is considered "bulk".

buffer_size (8388608,Wc) sets the socket buffer size. Note that changes to this
parameter may be rendered ineffective by other system-imposed limits (e.g.
/proc/sys/net/core/wmem_max etc).

nagle (0,Wc) is a boolean that determines if nagle should be enabled. It should
never be set in production systems.

keepalive_idle (30,Wc) is the time in seconds that a socket can remain idle before
a keepalive probe is sent. 0 disables keepalives

keepalive_intvl (2,Wc) is the time in seconds to repeat unanswered keepalive
probes. 0 disables keepalives.

keepalive_count (10,Wc) is the number of unanswered keepalive probes before
pronouncing socket (hence peer) death.

irq_affinity (1,Wc) is a boolean that determines whether to enable IRQ affinity.
When set, the socklnd attempts to maximize performance by handling device
interrupts and data movement for particular (hardware) interfaces on particular
CPUs. This option is not available on all platforms.

zc_min_frag (2048,W) determines the minimum message fragment that should be
considered for zero-copy sends. Increasing it above the platform's PAGE_SIZE will
disable all zero copy sends. This option is not available on all platforms.

3.2.3 QSW LND
The qswlnd is connectionless, therefore it does not need the acceptor.

It is limited to a single instance, which uses all Elan "rails" that are present and load
balances dynamically over them.

The address-with-network is the node's Elan ID. A specific interface cannot be
selected in the "networks" module parameter.

tx_maxcontig (1024) is a integer that specifies the maximum message payload in
bytes to copy into a pre-mapped transmit buffer.

ntxmsgs (8) is the number of "normal" message descriptors for locally initiated

192 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 3. Config Files and Module Parameters (man5)

communications that may block for memory (callers block when this pool is
exhaused).

nnblk_txmsg (512 with a 4K page size, 256 otherwise) is the number of "reserved"
message descriptors for communications that may not block for memory. This pool
must be sized large enough so that it is never exhausted.

nrxmsg_small (256) is the number of "small" receive buffers to post (typically
everything apart from bulk data).

ep_envelopes_small (2048) is the number of message envelopes to reserve for the
"small" receive buffer queue. This determines a breakpoint in the number of
concurrent senders. Below this number, communication attempts are queued, but
above this number, the pre-allocated envelope queue will fill, causing senders to
back off and retry. This can have the unfortunate side effect of starving arbitrary
senders, who continually find the envelope queue is full when they retry. This
parameter should therefore be increased if envelope queue overflow is suspected.

nrxmsg_large (64) is the number of "large" receive buffers to post (typically for
routed bulk data).

ep_envelopes_large (256) is the number of message envelopes to reserve for the
"large" receive buffer queue. See "ep_envelopes_small" above for a further
description of message envelopes.

optimized_puts (32768,W) is the smallest non-routed PUT that will be RDMA-ed.

optimized_gets (1,W) is the smallest non-routed GET that will be RDMA-ed.

3.2.4 RapidArray LND
The ralnd is connection-based and uses the acceptor to establish connections with
its peers.

It is limited to a single instance, which uses all (both) RapidArray devices present. It
load balances over them using the XOR of the source and destination NIDs to
determine which device to use for any communication.

The address-within-network is determined by the address of the single IP interface
that may be specified by the "networks" module parameter. If this is omitted, the first
non-loopback IP interface that is up is used instead.

n_connd (4) sets the number of connection daemons.

min_reconnect_interval (1,W) is the minimum connection retry interval in seconds.
This sets the time that must elapse before the first retry after a failed connection
attempt. As connections attempts fail, this time is doubled on each successive retry
up to a maximum of 'max_reconnect_interval'.

max_reconnect_interval (60,W) is the maximum connection retry interval in
seconds.

timeout (30,W) is the time in seconds that communications may be stalled before
the LND will complete them with failure

ntx (64) is the number of "normal" message descriptors for locally initiated
communications that may block for memory (callers block when this pool is
exhaused).

ntx_nblk (256) is the number of "reserved" message descriptors for
communications that may not block for memory. This pool must be sized large
enough so that it is never exhausted.

fma_cq_size (8192) is the number of entries in the RapidArray FMA completion

Cluster File Systems, Inc. 193

Part V. Reference Lustre in a nutshell
Chapter V – 3. Config Files and Module Parameters (man5)

queue to allocate. It should be increased if the ralnd starts to issue warnings that the
FMA CQ has overflowed. This is only a performance issue.

max_immediate (2048,W) is the size in bytes of the smallest message that will be
RDMA-ed, rather than being included as immediate data in an FMA. All messages
over 6912 bytes must be RDMA-ed (FMA limit).

3.2.5 VIB LND
The vib lnd is connection based, establishing reliable queue-pairs over Infiniband
with its peers. It does not use the acceptor for this.

It is limited to a single instance, which uses a single HCA that can be specified via
the "networks" module parameter. It this is omitted, it uses the first HCA in numerical
order it can open.

The address-within-network is determined by the IPoIB interface corresponding to
the HCA used.

service_number (0x11b9a2) is the fixed IB service number on which the LND
listens for incoming connection requests. Note that all instances of the viblnd on the
same network must have the same setting for this parameter.

arp_retries (3,W) is the number of times the LND will retry ARP while it establishes
communications with a peer.

min_reconnect_interval (1,W) is the minimum connection retry interval in seconds.
This sets the time that must elapse before the first retry after a failed connection
attempt. As connections attempts fail, this time is doubled on each successive retry
up to a maximum of 'max_reconnect_interval'.

max_reconnect_interval (60,W) is the maximum connection retry interval in
seconds.

timeout (50,W) is the time in seconds that communications may be stalled before
the LND will complete them with failure.

ntx (32) is the number of "normal" message descriptors for locally initiated
communications that may block for memory (callers block when this pool is
exhaused).

ntx_nblk (256) is the number of "reserved" message descriptors for
communications that may not block for memory. This pool must be sized large
enough so that it is never exhausted.

concurrent_peers (1152) is the maximum number of queue pairs, and therefore the
maximum number of peers that the instance of the LND may communicate with.

hca_basename ("InfiniHost") is used to construct HCA device names by appending
the device number.

ipif_basename ("ipoib") is used to construct IPoIB interface names by appending
the same device number as is used to generate the HCA device name.

local_ack_timeout (0x12,Wc) is a low-level QP parameter. It should not be
changed from the default unless advised.

retry_cnt (7,Wc) is a low-level QP parameter. It should not be changed from the
default unless advised.

rnr_cnt (6,Wc) is a low-level QP parameter. It should not be changed from the
default unless advised.

194 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 3. Config Files and Module Parameters (man5)

rnr_nak_timer (0x10,Wc) is a low-level QP parameter. It should not be changed
from the default unless advised.

fmr_remaps (1000) controls how often FMR mappings may be reused before they
must be unmapped. It should not be changed from the default unless advised.

cksum (0,W) is a boolean that determines whether messages (NB not RDMAs)
should be checksummed. This is a diagnostic feature that should not be enabled
normally.

3.2.6 OpenIB LND
The openib lnd is connection based and uses the acceptor to establish reliable
queue-pairs over infiniband with its peers.

It is limited to a single instance that uses only IB device '0'.

The address-within-network is determined by the address of the single IP interface
that may be specified by the "networks" module parameter. If this is omitted, the first
non-loopback IP interface that is up, is used instead. It uses the acceptor to
establish connections with its peers.

n_connd (4) sets the number of connection daemons. The default is 4.

min_reconnect_interval (1,W) is the minimum connection retry interval in seconds.
This sets the time that must elapse before the first retry after a failed connection
attempt. As connections attempts fail, this time is doubled on each successive retry
up to a maximum of 'max_reconnect_interval'.

max_reconnect_interval (60,W) is the maximum connection retry interval in
seconds.

timeout (50,W) is the time in seconds that communications may be stalled before
the LND will complete them with failure.

ntx (64) is the number of "normal" message descriptors for locally initiated
communications that may block for memory (callers block when this pool is
exhausted).

ntx_nblk (256) is the number of "reserved" message descriptors for
communications that may not block for memory. This pool must be sized large
enough so that it is never exhausted.

concurrent_peers (1024) is the maximum number of queue pairs, and therefore the
maximum number of peers that the instance of the LND may communicate with.

cksum (0,W) is a boolean that determines whether messages (NB not RDMAs)
should be checksummed. This is a diagnostic feature that should not be enabled
normally.

3.2.7 Portals LND (Linux)
The ptllnd can be used as a interface layer to communicate with Sandia Portals
networking devices. This version is intended to work on the Cray XT3 Linux nodes
using Cray Portals as a network transport.

Message Buffers - When ptllnd starts up, it allocates and posts sufficient message
buffers to allow all expected peers (set by 'concurrent_peers') to send 1 message
unsolicited. The first message a peer actually sends is a (so-called) "HELLO"
message, which is used to negotiate how much additional buffering to set up;

Cluster File Systems, Inc. 195

Part V. Reference Lustre in a nutshell
Chapter V – 3. Config Files and Module Parameters (man5)

typically 8 messages. So if 10000 peers actually exist, we will post enough buffers
for 80000 messages.

The maximum message size is set by the max_msg_size module parameter (default
512). This parameter sets the bulk transfer breakpoint. Below this breakpoint,
payload data is sent in the message itself, and above this breakpoint, a buffer
descriptor is sent and the receiver gets the actual payload.

The buffer size is set by the rxb_npages module parameter (default 1). The default
conservatively avoids allocation problems due to kernel memory fragmentation.
However increasing this to 2 is probably not risky.

The ptllnd also keeps an additional rxb_nspare buffers (default 8) posted to account
for full buffers being handled.

Assuming a 4K page size, with 10000 peers, 1258 buffers can be expected to be
posted at startup, rising to a max of 10008 as peers actually connected. This could
be reduced by a factor of 4 by doubling rxb_npages halving max_msg_size.

ME/MD queue length - The ptllnd uses a single portal set by the portal module
parameter (default 9) for both message and bulk buffers. Message buffers are
always attached with PTL_INS_AFTER and match anything sent with "message"
matchbits. Bulk buffers are always attached with PTL_INS_BEFORE and match
only specific matchbits for that particular bulk transfer.

This scheme assumes that the majority of ME/MDs posted are for "message"
buffers, and that the overhead of searching through the preceding "bulk" buffers is
acceptable. Since the number of "bulk" buffers posted at any time is also dependent
on the bulk transfer breakpoint set by max_msg_size, this seems like an issue worth
measuring at scale.

TX descriptors - The ptllnd has a pool of so-called "tx descriptors", which it uses
not only for outgoing messages, but also to hold state for bulk transfers requested
by incoming messages. This pool should therefore scale with the total number of
peers.

To enable the building of the Portals LND (ptllnd.ko) configure with the following
option:

./configure --with-portals=<path-to-portals-headers>

ntx (256) The total number of message descriptors

concurrent_peers (1152) The maximum number of concurrent peers. Peers
attempting to connect beyond the maximum will not be allowd.

peer_hash_table_size (101) The number of hash table slots for the peers. This
number should scale with concurrent_peers. The size of the peer hash table is set
by the module parameter peer_hash_table_size which defaults 101. This number
should be prime to ensure the peer hash table is populated evenly. Increasing this to
1001 for~10000 peers is advisable.

cksum (0) Set to non-zero to enable message (not RDMA) checksums for outgoing
packets. Incoming packets will always be checksumed if necssary, independnt of
this value.

timeout (50) The amount of time a request can linger in a peers active queue,
before the peer is considered dead. Units: seconds.

portal (9) The portal ID to use for the ptllnd traffic.

rxb_npages (64 * #cpus) The number of pages in a RX Buffer.

credits (128) The maximum total number of concurrent sends that are outstanding
at any given instant.

196 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 3. Config Files and Module Parameters (man5)

peercredits (8) The maximum number of concurrent sends that are outstanding to a
single peer at any given instant.

max_msg_size (512) The maximum immedate message size. This MUST be the
same on all nodes in a cluster. A peer connecting with a diffrent max_msg_size will
be rejected.

Portals LND (Catamount)

The ptllnd can be used as a interface layer to communicate with Sandia Portals
networking devices. This version is intended to work on the Cray XT3 Catamount
nodes using Cray Portals as a network transport.

To enable the building of the Portals LND configure with the following option:

./configure --with-portals=<path-to-portals-headers>

The following environment variables can be set to configure the PTLLND’s behavior.

PTLLND_PORTAL (9) The portal ID to use for the ptllnd traffic.

PTLLND_PID (9) The virtual pid on which to contact servers.

PTLLND_PEERCREDITS (8) The maximum number of concurrent sends that are
outstanding to a single peer at any given instant.

PTLLND_MAX_MESSAGE_SIZE (512) The maximum messages size. This MUST
be the same on all nodes in a cluster.

PTLLND_MAX_MSGS_PER_BUFFER (64) The number of messages in a receive
buffer. Receive buffer will be allocated of size
PTLLND_MAX_MSGS_PER_BUFFER times PTLLND_MAX_MESSAGE_SIZE.

PTLND_MSG_SPARE (256) Additional receive buffers posted to portals.

PTLLND_PEER_HASH_SIZE (101) The number of hash table slots for the peers.

PTLLND_EQ_SIZE (1024) The size of the Portals event queue (that is, maximum
number of events in the queue).

Cluster File Systems, Inc. 197

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

CHAPTER V – 4. SYSTEM CONFIGURATION UTILITIES
(MAN8)

198 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

4.1 lmc

lmc (Lustre configuration maker) is invoked for generating configuration data files
(.xml).

4.1.1 Synopsis
lmc [options] --add <objecttype> [args]

4.1.2 Description
When invoked, lmc adds configuration data to config files (.xml). This data is
regarding all the components of a Lustre cluster, like MDSs, mount-points, OSTs,
LOVs and others. A single configuration file would be generated for the entire
cluster. In the lmc command line interface, each of these components is associated
with the objecttype.

The objecttype can be anyone of the following - net, MDS, LOV, OST, mtpt, route,
echo_client, or cobd. Every objecttype refers to a collection of related configuration
entities.

Following options can be used to generate the configuration data associated with all
the objecttypes in a Lustre cluster:

-v, --verbose Prints system commands as they run

-m, --merge Appends to the specified config file

-o, --output Writes xml configuration into given output file (Overwrites the existing
one)

-i, --input Takes input from a specified file

--batch Used to execute the LMC command in batch mode

Node related options:

--add node Adds a new node in the cluster configuration

--node {nodename} Creates a new node with the given name if not already
present

--timeout <num> Timeout before going into recovery

--lustre_upcall <path> Sets the location of both the upcall scripts (Lustre and
lnet) used by the client for recovery

--portals_upcall <path> Specifies the location of the Portals upcall scripts
used by the client for recovery (deprecated)

--upcall <path> Specifies the location of both the upcall scripts (Lustre and
LNET) used by the client for recovery (deprecated)

--group_upcall <path> Specifies the location of the group upcall scripts used
by the MDS for determining supplementary group membership

--ptldebug <debug_level> Sets the lnet debug level

Cluster File Systems, Inc. 199

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

--subsystem <subsystem_name> Specifies the Lustre subsystems, which
have debug output recorded in the log

Network related options:

--add net Adds a network device descriptor for the given node

--node {node name} Creates a new node with the given name if not already
present. This is also used to specify a specific node for other elements.

--nettype <type> This can be tcp, elan, or gm

--nid <nid> The network id, for instance, ElanID or IP address as used by lnet.
If NID is “*”, then the local address of the interface with specified nettype will be
substituted when the node is configured with lconf. An NID with “*” should be
used only for generic client configurations.

--cluster_id <id> Specifies the cluster ID

--hostaddr <addr> Specifies the host address, which will be transfered to the
real host address by lconf

--router Optional flag to mark this node as a router

--port [port] Optional argument to indicate the tcp port. The default is 988.

--tcpbuf <size> Optional argument. The default TCP buffer size is 1MB.

--irq_affinity 0 or 1 Optional argument. Default is 0.

--nid_exchange 0 or 1 Optional argument as some of the OSTs might not
have the required support. This is turned off by default, value of 1 will turn it
ON.

MDS related options:

--add mds Specifies the MDS configuration

--node <node name> Name of the node on which the MDS resides

--mds <mds_name> Host name of the MDS

--mdsuuid <uuid> Specifies MDS UUID

--dev <pathname> Path of the device on the local system. If the device is a
file, then a loop device is created and used as a block device.

--backdev <pathname> Path of the device for backing storage on the local
system

--size <size> Optional argument indicating the size (in KB) of the device to be
created (used typically for loop devices)

--node {nodename} Adds an MDS to the specified node. This requires a --
node argument, and it should not be a profile node.

--fstype ldiskfs|ext3 Optional argument used to specify the file system type.
Default is ext3. For 2.6 kernels, the ldiskfs file system must be used.

--inode_size <size> Specifies new inode size for underlying ext3 file system.
Must be a power of 2 between 128 and 4096. The default inode size is selected
based on the default number of stripes specified for the file system.

--group_upcall <pathname> The group upcall program used to resolve a user
as a secondary group. The default value is NONE, which means that the MDS
will use whatever supplementary group is passed from the client. The supplied

200 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

upcall is /usr/sbin/l_getgroups, which gets groups from the MDS as /etc/group
file based on the client-supplied UID.

--mkfsoptions <options> Optional argument to mkfs

--mountfsoptions <options> Optional argument to mountfs. Mount options
will be passed by this argument. For example, extents are to be enabled by
adding ",extents" to the option
--mountfsoptions. Also, the option "asyncdel" can be added to it.

--journal_size <size> Optional argument to specify the journal size for the ext3
file system. The size should be in the units expected by mkfs. For ext3, it
should be in MB. If this option is not used, the ext3 file system will be
configured with the default journal size.

LOV related options:

--add lov Creates an LOV with the specified parameters. The mds_name must
already exist in the descriptor.

--lov <name> Common name for the LOV

--mds <name> Host name for the MDS

 --stripe_sz <size> Specifies the stripe size in bytes. Data exactly equal to this
size is written in each stripe before starting to write in the next stripe. Default is
1048576.

--stripe_cnt <count> A value of 0 for this means Lustre is using the currently
optimal number of stripes. Default is 1 stripe per file.

--stripe_pattern <pattern> Only Pattern 0 (RAID 0) is supported currently

OST related options:

--add os Creates an OBD, OST, and OSC. The OST and OBD are created on the
specified node.

--ost <name> Assigns a name to the OST

--node <nodename> Node on which the OST service is running. It must not be
a profile node.

--failout Disables failover support on the OST

--failover Enables failover support on the OST

--dev <pathname> Path of the device on the local system. If the device is a
file, then a loop device is created and used as a block device.

--size [size] Optional argument indicating the size (in KB) of the device to be
created (used typically for loop devices)

--obdtype <Obdfilter | obdecho> Specifies the type of the OSD

--lov <name> Name of the LOV to which this OSC will be attached. This is an
optional argument.

--ostuuid UUID Specifies the UUID of the OST device

--fstype <extN | ext3> Optional argument used to specify the file system type.
Default is ext3.

--inode_size <size> Specifies the new inode size for underlying ext3 file
system

Cluster File Systems, Inc. 201

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

--mkfsoptions <options> Specifies additional options for the mkfs command
line.

--mountfsoptions <options> Specifies additional options for mountfs
command line. Mount options will be passed by this argument. For example,
extents are to be enabled by adding ",extents" to the option --mountfsoptions.
Also, the option "asyncdel" can be added to it.

--journal_size <size> Optional argument to specify the journal size for the ext3
file system. The size should be in the units expected by mkfs. For ext3, it
should be in MB. If this option is not used, the ext3 file system will be
configured with the default journal size.

Mountpoint related options:

--add mtpt Creates a mount-point on the specified node. Either an LOV name or an
OSC name can be used.

--node {nodename} Node that will use the mountpoint

--path /mnt/path The mountpoint that can be used to mount Lustre file system.
Default is /mnt/lustre.

--ost ost_name or --lov lov_name The OST or LOV name as specified earlier
in the configuration

Route related options:

--add route Creates a static route through a gateway to a specific NID or a range of
NIDs

--node {nodename} The node on which the route can be added

--router Optional flag to mark a node as the router

--gw nid The NID of the gateway. It must be a local interface or a peer.

--gateway_cluster_id id Specifies the id of the cluster, to which the gateway
belongs

--target_cluster_id id Specifies the id of the cluster, to which the target of the
route belongs

--lo nid The low value NID for a range route

--hi nid The high value NID for a range route

--add echo The client used exclusively for testing purpose

4.1.3 Examples
$ lmc --node adev3 --add net --nid adev3 –cluster_id 0x1000 \
--nettype tcp --hostaddr adev3-eth0 --port 988

$ lmc --node adev3 --add net --nid adev3 –cluster_id 0x2000 \
--nettype tcp --hostaddr adev3-eth1 --port 989

These commands are used to add a Lustre node to the specified Lustre cluster
through a network interface. In this example, Lustre node adev3 has been added to
2 Lustre clusters separately through 2 network interface cards: adev3-eth0 and
adev3-eth1. The cluster_ids of these 2 Lustres are 0x1000 and 0x2000. adev3

202 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

would listen to the respective specified port(s) to prepare for possible connection
requests from nodes in these two clusters.

$ lmc --node adev3 --add route --nettype tcp --gw 5 \
--gateway_cluster_id 0x1000 –target_cluster_id 0x1000 --lo 4 \
--hi 7

This command is used to add a route entry for a Lustre node. Here Lustre node
adev3 is added with a new route entry. This enables the Lustre node to send
packets to Lustre nodes having the NIDs from 4 to 7 with the help of Lustre gateway
node having the NID 5. Besides, Lustre gateway node is in the cluster of id 0x1000
and target of the route belongs to the cluster of the same id 0x1000. The network in
this route path is a tcp network.

NOTE: When using --mountfsoptions {extents|mballoc|asyncdel}, please
remember the following:
-extents and mballoc are recommended only for 2.6 kernel and are used only
for OSTs.
-asyncdel is recommended for 2.4 kernel and is not supported on 2.6 kernel.
One can use --mountfsoptions {extents|mballoc} on existing file systems. The
Lustre servers need to be restarted before using this command so that the new
options become effective.
asyncdel is used on 2.4 kernel to delete files in a separate thread. Using this
option quickly releases inode semaphore of the parent directory in order to
perform the other operations. Otherwise, deleting large files may take more
time. For 2.6 kernel, this is not such a big issue because the parameter extents
can increase the speed of deletion.

Cluster File Systems, Inc. 203

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

4.2 lconf

lconf is a Lustre utility that is used for configuring, starting and stopping a Lustre file
system.

4.2.1 Synopsis
lconf [OPTIONS] <XML-config file>

4.2.2 Description
This utility configures a node by using the configuration data given in the <XML-
config-file>. For all the nodes in a cluster, there is one single configuration file. Thus,
this file should be distributed to all the nodes in the cluster or kept at a location
accessible to all the nodes. The options that can be used with lconf are explained
below. The XML file must be specified. When invoked with no options, lconf will
attempt to configure the resources owned by the node it is invoked on.

--abort_recovery Used to start Lustre when recovery is certain to fail (for example
when an OST is disabled). Can also be used to skip the recovery timeout period.

--acl Enables Access Control List support on the client.

--allow_unprivileged_port Allows connections from unprivileged ports.

--clientoptions Additional options for mounting a Lustre client – This is obsolete
now and is replaced by zeroconfig mounts.

--client_uuid The failed client (required for recovery).

--clumanager Generates a Red Hat Clumanager configuration file for this node.

--config The cluster configuration name used for LDAP query (depreciated).

--conn_uuid The failed connection (required for recovery).

-d --clenaup Stops Lustre and unconfigures a node. The same config and --node
argument used for configuration needs to be used for cleanup as well. This will
attempt to undo all of the configuration steps done by lconf, including unloading the
kernel modules.

--debug_path <path> Specifies the path for saving debug dumps. (Default is
/tmp/lustre-log.)

--dump <file> Dumps the kernel debug log to the specified file before lnet is
unloaded during clean up.

--failover Shuts down without saving state. This allows a node to give up service to
another node for failover purposes. This is not a clean shutdown.

-f --force Forces unmounting and/or obd detach during cleanup.

--gdb Creates a gdb module script before doing any Lustre configuration.

--gdb_script Full name of the gdb debug script. Default is /tmp/ogdb.

--group The group of devices to cleanup/ configure.

--group_upcall The group upcall program used to resolve a user as a secondary
group. The default value is NONE, which means that the MDS will use whatever

204 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

supplementary group is passed from the client. But this is limited to a single
supplementary group.

-h, --help Displays help

--inactive The UUID of the service to be ignored by the client which is mounting
Lustre. It allows the client to mount in presence of some inactive services (currently
OST only). Multiple UUIDs can be specified by repeating the option.

--lctl-dump Dumps all the ioctls to the specified file.

--ldapurl LDAP server URL (depreciated).

--lustre=<dir> The base directory of Lustre sources. This parameter causes lconf to
load modules from a source tree.

--lustre_upcall Sets the location of the Lustre upcall scripts used by the client for
recovery.

--make_service_scripts Creates per-service symlinks for use with clumanager HA
software.

--maxlevel Performs configuration of devices and services up to the given level.
When used in conjunction with cleanup, services are torn down up to a certain level.

Levels are approximately like:

10 – network

20 – device, ldlm

30 – OSD, MDD

40 – MDS, OST

70 – mountpoint, echo_client, OSC, MDC, LOV

--minlevel Specifies the minimum level of services to configure/ cleanup. Default is
0.

--mkfsoptions Specifies additional options for the mk*fs command line.

--mountfsoptions Specifies additional options for mountfs command line. Mount
options will be passed by this argument. For example, extents are to be enabled by
adding ",extents" to the option --mountfsoptions. Also, the option "asyncdel" can be
added to it.

--node Specifies a specific node to be configured. By default, lconf searches for
nodes with the local hostname and localhost. When --node is used, only node_name
is searched for. If a matching node is not found in the config, then lconf exits with an
error.

--noexec, -n Displays, but does not execute the steps to be performed by lconf. This
is useful for debugging a configuration, and when used with --node, it can be run on
any host.

--nomod Configures devices and services only. Does not load modules.

--nosetup Loads modules only. Does not configure devices or services.

--old_conf Starts up service even if config logs appear outdated.

--portals Specifies portals source directory. If this is a relative path, then it is
assumed to be relative to Lustre. (Deprecated.)

--portals_upcall Specifies the location of the Portals upcall scripts used by the
client for recovery. (Deprecated.)

--ptldebug Sets the LNET debug level.

Cluster File Systems, Inc. 205

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

--quota Enables quota support for client file system.

--rawprimary <arg> For clumanager, device of the primary quorum. Default is
/dev/raw/raw1.

--rawsecondary <arg> For clumanager, device of the secondary quorum. Default is
/dev/raw/raw2.

--record Writes config information on the MDS.

--record_device Recovers a device.

--record_log Specifies the name of a config record log.

--recover Specifies the MDS device name that records the config commands.

--reformat Reformats all the devices. This is essential when the file system is
brought up for first time.

--select Selects a particular node for a service

--service Shorthand for --group <arg> --select <arg>=<hostname>

--service_scripts <arg> For clumanager, directory containing per-service scripts.
Default is /etc/lustre/services.

--single_socket The socknal option. Uses only one socket instead of a bundle.

--subsystem Sets the lnet debug subsystem.

--tgt_uuid Specifies the failed target (required for recovery).

--timeout Sets the recovery timeout period.

--upcall Sets the location of both the upcall scripts (Lustre and lnet) used by the
client for recovery.

--user_xattr Enables user_xattr support on the MDS.

--verbose, -v Becomes verbose and shows actions performed during the
execution of a command

--write_conf Saves the whole client configuration information on the MDS

4.2.3 Examples
To invoke lconf on the OST node:

$ lconf -v --reformat --node ost config.xml
configuring for host: ['ost']
setting /proc/sys/net/core/rmem_max to at least 16777216
setting /proc/sys/net/core/wmem_max to at least 16777216
Service: network NET_ost_tcp NET_ost_tcp_UUID
loading module: libcfs srcdir None devdir libcfs
+ /sbin/modprobe libcfs
loading module: lnet srcdir None devdir lnet
+ /sbin/modprobe lnet
+ /sbin/modprobe lnet
loading module: ksocklnd srcdir None devdir klnds/socklnd

206 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

+ /sbin/modprobe ksocklnd
Service: ldlm ldlm ldlm_UUID
loading module: lvfs srcdir None devdir lvfs
+ /sbin/modprobe lvfs
loading module: obdclass srcdir None devdir obdclass
+ /sbin/modprobe obdclass
loading module: ptlrpc srcdir None devdir ptlrpc
+ /sbin/modprobe ptlrpc
Service: osd OSD_ost1_ost OSD_ost1_ost_UUID
loading module: ost srcdir None devdir ost
+ /sbin/modprobe ost
loading module: ldiskfs srcdir None devdir ldiskfs
+ /sbin/modprobe ldiskfs
loading module: fsfilt_ldiskfs srcdir None devdir lvfs
+ /sbin/modprobe fsfilt_ldiskfs
loading module: obdfilter srcdir None devdir obdfilter
+ /sbin/modprobe obdfilter
+ sysctl lnet/debug_path /tmp/lustre-log-ost
+ /usr/sbin/lctl modules > /tmp/ogdb-ost
Service: network NET_ost_tcp NET_ost_tcp_UUID
NETWORK: NET_ost_tcp NET_ost_tcp_UUID tcp ost
Service: ldlm ldlm ldlm_UUID
Service: osd OSD_ost1_ost OSD_ost1_ost_UUID
OSD: ost1 ost1_UUID obdfilter /lustre/filedevice/ost 100000 \
ldiskfs no 0 0
+ losetup /dev/loop0
+ losetup /dev/loop1
+ losetup /dev/loop2
+ losetup /dev/loop3
+ losetup /dev/loop4
+ losetup /dev/loop5
+ losetup /dev/loop6
+ losetup /dev/loop7
+ dd if=/dev/zero bs=1k count=0 seek=100000 \
of=/lustre/filedevice/ost
+ mkfs.ext2 -j -b 4096 -F /lustre/filedevice/ost 25000
+ tune2fs -O dir_index /lustre/filedevice/ost
+ losetup /dev/loop0
+ losetup /dev/loop0 /lustre/filedevice/ost

Cluster File Systems, Inc. 207

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

+ dumpe2fs -f -h /dev/loop0
no external journal found for /dev/loop0
OST mount options: errors=remount-ro
+ /usr/sbin/lctl
 attach obdfilter ost1 ost1_UUID
 quit
+ /usr/sbin/lctl
 cfg_device ost1
 setup /dev/loop0 ldiskfs f errors=remount-ro
 quit
+ /usr/sbin/lctl
 attach ost OSS OSS_UUID
 quit
+ /usr/sbin/lctl
 cfg_device OSS
 setup
 quit

To invoke lconf on the client node:
$ lconf --node client config.xml

To set the required debug levels:
$ lconf --ptldebug ~(LNET | mballoc | trace)

To turn-on specific debug types:
$ conf --ptldebug ldlm|ha

A subset of failed OSTs can be ignored during Lustre mount on the clients by using
the option below. Here OST1 and OST2 have failed and need to be ignored.

$ lconf --inactive OST_ost1_UUID –inactive OST_ost2_UUID \
config.xml

To configure a node (the options in the square brackets are optional):
$ lconf --node {nodename} [--service name]] [--reformat [--force \
[--failover]] [--reformat] [--mountfsoptions={options}] config.xml

NOTE: When using --mountfsoptions {extents|mballoc|asyncdel}, please
remember the following:
-extents and mballoc are recommended only for 2.6 kernel and are used only
for OSTs.
-asyncdel is recommended for 2.4 kernel and is not supported on 2.6 kernel.
One can use --mountfsoptions {extents|mballoc} on existing file systems. The
Lustre servers need to be restarted before using this command so that the new
options become effective.
asyncdel is used on 2.4 kernel to delete files in a separate thread. Using this
option quickly releases inode semaphore of the parent directory in order to
perform the other operations. Otherwise, deleting large files may take more

208 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

time. For 2.6 kernel, this is not such a big issue because the parameter extents
can increase the speed of deletion.

Cluster File Systems, Inc. 209

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

4.3 lctl

lctl is a Lustre utility used for Low level configurations of Lustre file system.

4.3.1 Synopsis
lctl
lctl --device <devno> <command [args]>
lctl --threads <numthreads> <verbose> <devno> <command [args]>

4.3.2 Description
lctl can be invoked in interactive mode by issuing the commands given below.

$ lctl
lctl> help

The most common commands in lctl are in matching pairs - like device and attach,
detach and setup, cleanup and connect, disconnect and help and quit. To get a
complete listing of available commands, type help on the lctl prompt. To get basic
help on meaning and syntax of a command, type help command. Command
completion is activated with the TAB key, and command history is available via the
“UP” and “DOWN” arrow keys.

For non-interactive single threaded use, one uses the second invocation, which runs
command after connecting to the device.

Network related options:

--net <tcp/elan/myrinet> The network type to be used for the operation

network <tcp/elans/myrinet> Indicates what kind of network is applicable for the
configuration commands that follow

interface_list Displays the interface entries

add_interface Adds an interface entry

del_interface [ip] Deletes an interface entry

peer_list Displays the peer entries

add_peer <nid> <host> <port> Adds a peer entry

del_peer [<nid>] [<host>] [ks] Removes a peer entry

conn_list Displays all the connected remote NIDs

connect [[<hostname> <port>] | <elan id>] Establishes connection to a remote
network id given by the hostname/ port combination, or the elan id

disconnect <nid> Disconnects from a remote NID

active_tx Displays active transmits, and is used only for elan network type

mynid [nid] Informs the socknal of the local NID. It defaults to hostname for tcp
networks, and is automatically setup for elan/ myranet networks

shownid Displays the local NID

210 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

add_uuid <uuid> <nid> Associates a given UUID with an NID

close_uuid <uuid> Disconnects a UUID

del_uuid <uuid> Deletes a UUID association

add_route <gateway> <target> [target] Adds an entry to the routing table for the
given target

del_route <target> Deletes an entry for a target from the routing table

set_route <gateway> <up/down> [<time>] Enables/ disables routes via the given
gateway in the protals routing table. <time> is used to specify when a gateway
should come back online.

route_list Displays the complete routing table

fail nid|_all_ [count] Fails/ restores communications. Omitting the count implies an
indefinite fail. A count of zero indicates that communication should be restored. A
non-zero count indicates the number of LNET messages to be dropped after which
the communication is restored. The argument "nid" is used to specify the gateway,
which is one peer of the communication.

show_route Displays the complete routing table, same output as route_list

ping nid [timeout] [pid] Checks LNET connectivity, outputs a list of NIDS on the
target machine

Device Selection:

newdev Creates a new device

device Selects the specified OBD device. All other commands depend on the
device being set.

cfg_device <$name> Sets the current device being configured to <$name>

device_list Shows all the devices

lustre_build_version Displays the Lustre build version

Device Configuration:

attach type [name [uuid]] Attaches a type to the current device (which is set using
the device command), and gives that device a name and a UUID. This allows us to
identify the device for later use, and to know the type of that device.

setup <args...> Types specific device setup commands. For obdfilter, a setup
command tells the driver which block device it should use for storage and what type
of file system is on that device.

cleanup Cleans up a previously setup device

detach Removes a driver (and its name and UUID) from the current device

lov_setconfig lov-uuid stripe-count default-stripe-size offset pattern UUID1
[UUID2...] Writes LOV configuration to an MDS device

lov_getconfig lov-uuid Reads LOV configuration from an MDS device. Returns
default-stripe-count, default-stripe-size, offset, pattern, and a list of OST UUID's.

record cfg-uuid-name Records the commands that follow in the log

endrecord Stops recording

Cluster File Systems, Inc. 211

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

parse config-uuid-name Parses the log of recorded commands for a config

dump_log config-uuid-name Displays the log of recorded commands for a config
to kernel debug log

clear_log config-name Deletes the current config log of recorded commands

Device Operations:

probe [timeout] Builds a connection handle to a device. This command is used to
suspend configuration until the lctl command ensures the availability of the MDS and
OSC services. This avoids mount failures in a rebooting cluster.

close Closes the connection handle

getattr <objid> Gets the attributes for an OST object <objid>

setattr <objid> <mode> Sets the mode attribute for an OST object <objid>

create [num [mode [verbose]]] Creates the specified number <num> of OST
objects with the given <mode>

destroy <num> Starting at <objid>, destroys <num> number of objects starting from
the object with object id <objid>

test_getattr <num> [verbose [[t]objid]] Does <num> getattrs on an OST object
<objid> (objectid+1 on each thread)

test_brw [t]<num> [write [verbose [npages [[t]objid]]]] Does <num> bulk read/
writes on an OST object <objid> (<npages> per I/O)

test_ldlm Performs the lock manager test

ldlm_regress_start %s [numthreads [refheld [numres [numext]]]] Starts the lock
manager stress test

ldlm_regress_stop Stops the lock manager stress test

dump_ldlm Dumps all the lock manager states. This is very useful for debugging.

activate Activates an import

deacttivate De-activates an import

recover <connection UUID>

lookup <directory> <file> Displays the information of the given file

notransno Disables the sending of committed transnumber updates

readonly Disables writes to the underlying device

abort_recovery Aborts recovery on the MDS device

mount_option Dumps mount options to a file

get_stripe Shows stripe information for an echo client object

set_stripe <objid>[width!count[@offset] [:id:id....] Sets stripe information for an
echo client

unset_stripe <objid> Unsets stripe information for an echo client object

del_mount_option profile Deletes a specified profile

set_timeout <secs> Sets the timeout (obd_timeout) for a server to wait before
failing recovery

212 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

set_lustre_upcall </full/path/to/upcall> Sets the lustre upcall (obd_lustre_upcall)
via the lustre.upcall sysctl.

llog_catlist Lists all the catalog logs on current device

llog_info <$logname|#oid#ogr#ogen> Displays the log header information

llog_print <$logname|#oid#ogr#ogen> [from] [to] Displays the log content
information. It displays all the records from index 1 by default.

llog_check <$logname|#oid#ogr#ogen> [from] [to] Checks the log content
information. It checks all the records from index 1 by default.

llog_cancel <catalog id|catalog name> <log id> <index> Cancels a record in the
log

llog_remove <catalog id|catalog name> <log id> Removes a log from the
catalog, erases it from the disk

Debug:

debug_daemon Debugs the daemon control and dumps to a file

debug_kernel [file] [raw] Gets the debug buffer and dumps to a file

debug_file <input> [output] Converts the kernel-dumped debug log from binary to
plain text format

clear Clears the kernel debug buffer

mark <text> Inserts marker text in the kernel debug buffer

filter <subsystem id/debug mask> Filters message type from the kernel debug
buffer

show <subsystem id/debug mask> Shows the specific type of messages

debug_list <subs/types> Lists all the subsystem and debug types

modules <path> Provides gdb-friendly module information

panic Forces the kernel to panic

lwt start/stop [file] Light-weight tracing

memhog <page count> [<gfp flags>] Memory pressure testing

Control:

help Shows a complete list of commands. help <command name> can be used to
get help on a specific command

exit Closes the lctl session

quit Closes the lctl session

Options:
(options that can be used to invoke lctl)

--device The device number to be used for the operation. The value of devno is an
integer, normally found by calling lctl name2dev on a device name.

--threads The numthreads variable is a strictly positive integer indicating the
number of threads to be started. The devno option is used as above.

Cluster File Systems, Inc. 213

Part V. Reference Lustre in a nutshell
Chapter V – 4. System Configuration Utilities (man8)

--ignore_errors | ignore_errors Ignores errors during the script processing

dump Saves ioctls to a file

4.3.3 Examples
attach

$ lctl
lctl > newdev
lctl > attach obdfilter OBDDEV OBDUUID
lctl > dl
0 UP lov lov1 bc454_lov1_234d7792e7 4
 1 UP osc OSC_client.spsoftware.com_ost1_MNT_client \
bc454_lov1_234d7792e7 4
 2 UP osc OSC_client.spsoftware.com_ost2_MNT_client \
bc454_lov1_234d7792e7 4
 3 UP mdc MDC_client.spsoftware.com_mds1_MNT_client \
f230f_MNT_client_6c33f72153 4
 4 AT obdfilter OBDDEV OBDUUID 1

connect
lctl > name2dev OSCDEV
2
lctl > device 2
lctl > connect

getattr
lctl > getattr 12
id: 12
grp: 0
atime: 1002663714
mtime: 1002663535
ctime: 1002663535
size: 10
blocks: 8
blksize: 4096
mode: 100644
uid: 0
gid: 0
flags: 0
obdflags: 0

214 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 4. System Configuration Utilities (man8)

nlink: 1
valid: ffffffff
inline:
obdmd:
lctl > disconnect
Finished (success)
setup
lctl > setup /dev/loop0 extN
lctl > quit

The example below shows how to use lctl for viewing the peers that are up:
$ lctl > network tcp up
$ lctl > peer_list
12345-ost.cfs.com@tcp [1]client.cfs.com-> ost.cfs.com:988 #3
12345-ost2.cfs.com@tcp [1]client.cfs.com-> ost2.cfs.com:988 #3
12345-mds.cfs.com@tcp [1]client.cfs.com-> mds.cfs.com:988 #3

To check connectivity to another node:
lctl ping d1_q_0
12345-0@lo
12345-10.67.73.160@tcp

Cluster File Systems, Inc. 215

Part V. Reference Lustre in a nutshell
Chapter V – 5. System Limits

CHAPTER V – 5. SYSTEM LIMITS

216 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 5. System Limits

5.1 Introduction

This section describes various limits on the size of files and file systems. These
limits are imposed either by the Lustre architecture or by the Linux VFS and VM
subsystems. In a few cases, the limit is defined within the code and could be
changed by re-compiling Lustre. In those cases, the limit chosen is supported by
CFS testing and may change in future releases.

5.1.1 Maximum Stripe
Count

The maximum number of stripe count is 160. This limit is a hard coded option and
reflects current tested performance limits. It may be increased in future releases.
Under normal circumstances, the stripe count is not affected by ACLs.

5.1.2 Maximum Stripe Size
For a 32-bit machine, the product of stripe size and stripe count (stripe_size *
stripe_count) must be less than 2^32. The ext3 limit of 2TB for a single file applies for
a 64-bit machine. (Lustre can support 160 stripes of 2TB each on a 64-bit system.)

5.1.3 Minimum Stripe Size
Due to the 64KB PAGE_SIZE on some 64-bit machines, the minimum stripe size is
set to 64 KB.

5.1.4 Maximum Number of
OSTs and MDSs

You can set the maximum number of OSTs by a compile option. The limit of 512
OSTs in Lustre 1.4.6 is raised to 1020 OSTs in Lustre 1.4.7. Rigorous testing is in
progress to move the limit to 4000 OSTs.

The maximum number of MDSs will be determined after accomplishing MDS
clustering.

5.1.5 Maximum Number of
Clients

The number of clients is currently limited to 65536 as defined in the code.

5.1.6 Maximum Size of a
File System

In 2.4 kernels, the Linux block layer limits the block devices like hard disks or RAID
arrays to 2TB. For i386 systems in 2.6 kernels, the block devices are limited to
16TB. Each OST or MDS can have a file system up to 2TB (The 2TB limit is

Cluster File Systems, Inc. 217

Part V. Reference Lustre in a nutshell
Chapter V – 5. System Limits

imposed by ext3 for 2.6 kernels). You can have multiple OST file systems on a
single node. The largest Lustre file system currently has 448 OSTs in a single file
system (running the 1.4.3 Lustre version). There is a compile-time limit of 512 OSTs
in a single file system, giving a single file system limit of 1PB.

Several production Lustre file systems have around 100 object storage servers in a
single file system. One production file system is in excess of 900TB (448 OSTs). All
these facts indicate that Lustre would scale just fine if more hardware were made
available. The 2TB limit on a file system will be soon removed to allow larger file
systems with fewer OST devices.

5.1.7 Maximum File Size
Individual files have a hard limit of nearly 16TB on 32-bit systems imposed by the
kernel memory subsystem. On 64-bit systems this limit does not exist. Hence, files
can be 64-bits in size. Lustre imposes an additional size limit of up to the number of
stripes, where each stripe is of 2TB. A single file can have a maximum of 160
stripes, which gives an upper single file limit of 320TB for 64-bit systems. The actual
amount of data that can be stored in a file depends upon the amount of free space
in each OST on which the file is striped.

5.1.8 Maximum Number of
Files or Subdirectories in a
Single Directory

Lustre uses the ext3 hashed directory code, which has a limit of about 25 million
files. On reaching this limit, the directory grows to more than 2GB depending on the
length of the filenames. The maximum number of subdirectories in the versions
before Lustre 1.2.6 is 32,000. You can have unlimited subdirectories in all the later
versions of Lustre due to a small ext3 format change.

In fact, Lustre is tested with ten million files in a single directory. On a properly-
configured dual-CPU MDS with 4 GB RAM, random lookups in such a directory are
possible at a rate of 5,000 files /second.

5.1.9 MDS Space
Consumption

A single MDS imposes an upper limit of 4 billion inodes. The default limit is slightly
less than the device size of 4KB. That means about 512MB inodes for a file system
with MDS of 2TB. This can be increased initially at the time of MDS file system
creation by specifying the "--mkfsoptions='-i 2048'" option on the "--add mds" config
line for the MDS.

For newer releases of e2fsprogs, you can specify '-i 1024' to create 1 inode for
every 1KB disk space. You can also specify '-N {num inodes}' to set a specific
number of inodes. Note that the inode size (-I) should not be larger than half the
inode ratio (-i). Otherwise mke2fs will spin trying to write more number of inodes
than the inodes that can fit into the device.

218 Cluster File Systems, Inc.

Lustre in a nutshell Part V. Reference
Chapter V – 5. System Limits

5.1.10 Maximum Length of
a Filename and Pathname

This limit is 255 bytes for a single filename, the same as in an ext3 file system. The
Linux VFS imposes a full pathname length of 4096 bytes.

Cluster File Systems, Inc. 219

APPENDIXES

Lustre in a nutshell Cluster File Systems, Inc.

Appendix I: Upgrading from 1.4.5

NOTE: This chapter is now historical and is useful for upgrading Lustre 1.4.5 to
Lustre 1.4.6 only. If you are running a newer version of Lustre, you should
ignore this information.

222

Lustre in a nutshell Cluster File Systems, Inc.

Portals and LNET
Interoperability

LNET uses the same wire protocols as Portals but has a different network
addressing scheme, that is Portals and LNET NIDs are different. In single-network
configurations, LNET can be configured to work with Portals NIDs so that it can
inter-operate with Portals and can allow a live cluster to be upgraded piecemeal.
This is controlled by the portals_compatibility module parameter which is described
below.

With Portals compatibility configured, old XML configuration files remain compatible
with LNET. The lconf configuration utility recognizes Portals NIDs and converts them
to LNET NIDs.

Old client configuration logs are also compatible with LNET. Lustre running over
LNET recognizes Portals NIDs and converts them to LNET NIDs, but issues a
warning. Once all the nodes have been upgraded to LNET, these configuration logs
can be rewritten to update them to LNET NIDs.

Portals Compatibility
Parameter

The following module parameter controls interoperability with Portals:

portals_compatibility=”strong”|”weak”|”none”

”Strong” is compatible with Portals and with LNET running in either ”strong” or
”weak” compatibility modes. As this is the only mode compatible with Portals, all the
LNET nodes in the cluster must set this until the last Portals node has been
upgraded.

”Weak” is not compatible with Portals, but is compatible with LNET running in any
mode.

”None” is not compatible with Portals or with LNET running in ”strong” compatibility
mode.

Upgrade a Cluster Using
Shut Down

Upgrading a system that can be completely shut down is fairly simple ― shut down
all the clients and servers, install an LNET release of Lustre everywhere, --write-conf
the MDS and restart everything. No portals_compatibility option is needed (the
default value is “none”).

When upgrading a cluster, you should install (rather than upgrade) the kernel and
lustre-module RPMs. This allows you to keep the older, tried and tested kernels
installed in case the new kernel fails to boot.

First upgrade the kernel using the following command:
$ rpm -ivh --oldpackage kernel-smp-2.6.9- \
22.0.2.EL_lustre.1.4.6.i686.rpm

Then upgrade the Lustre modules with the command:

223

Lustre in a nutshell Cluster File Systems, Inc.

$ rpm -ivh --oldpackage lustre-modules-lustre-modules-1.4.6- \
2.6.9_22.0.2.EL_lustre.1.4.6smp.i686.rpm

The lustre-modules RPM is kernel-specific, so if you have multiple kernels installed
you will need a lustre-modules RPM for each kernel. We recommend using --
oldpackage as sometimes RPM will report that an already installed RPM is newer,
even though it may not be.

You can only have one Lustre RPM installed at a time (the userspace tools, not the
lustre-modules RPM mentioned above), so you should upgrade this RPM with the
command:

$ rpm -Uvh lustre-1.4.6-2.6.9_22.0.2.EL_lustre.1.4.6smp.i686.rpm

Before rebooting into the new Lustre kernel, double check your bootloader (grub,
lilo) to make sure it will boot into the new kernel.

After installing packages

After you install certain updates, you may need to take additional steps. For
example, if you are upgrading to Lustre 1.4.6, you need to update your configuration
logs.

Occasionally it is necessary to update the configuration logs on the MDS.

Some examples of when this is needed, include:

 enabling recovery on OSTs

 changing the default striping pattern

 changing the network address of a server

 adding or removing servers

 upgrading to a newer version

After installing the packages follow these steps:

1. Shut down all the client and MDS nodes. This operation does not affect OSS
nodes, so they do not need to be shut down at this time.

2. On the MDS node, run the following command:
$ lconf --write_conf /path/to/lustre.xml

3. Start OSS nodes if they were not already running.

4. Start the meta-data server as usual.

5. Mount Lustre on clients.

Upgrading a Cluster “Live”
Live upgrade means you can update the clients and the servers at different times
instead of updating them simultaneously, and that if you are using failover, you can
fail the servers over to their partners and upgrade half the servers at a time. While
the servers are failed over to their partners, all I/O will wait. And as they are failed
back for takeover, I/O will wait again.

A Portals installation may be upgraded to LNET “live” in three phases as described
below. To maximize service availability, servers (MDS and OSS) should be failed
over to their backups while they are being upgraded and/or rebooted.

1. Shutdown the Lustre services on any node (servers or clients), using
failover backups if desired, for uninterrupted file system service. Remove
old Lustre releases from the node and upgrade to an LNET release of

224

Lustre in a nutshell Cluster File Systems, Inc.

Lustre by installing the appropriate release RPMs. Configure the LNET
options in modprobe.conf as appropriate for your network topology (note
that only basic network topologies will be supported through the live
upgrade process). Set ‘portals_compatibility=“strong”’ in the LNET
modprobe.conf options. The Lustre services or client may now be restarted
on this node. At this point the node will be speaking "old" Portals, but will
understand new LNET. This phase is only complete when all the nodes
have been upgraded to LNET.

2. Ensure phase one is complete (that is, all the nodes have been upgraded to
LNET). Now set ‘portals_compatibility=“weak”’ in the LNET modprobe.conf
options on all the nodes. The nodes may now be rebooted (and servers
failed over) in any order. As they are rebooted, the nodes will be speaking
LNET but will understand old Portals (which is still being spoken by the
"strong" nodes). This phase is only complete when all the nodes are either
down or running LNET in “weak” compatibility mode.

3. Ensure phase two is complete (that is, all nodes are either down or are
running LNET in “weak” compatibility mode). Now remove
‘portals_compatibility’ from the LNET modprobe.conf options on all the
nodes (it defaults to “none”). The nodes may now be rebooted (and servers
failed over) in any order. These nodes will now reject the old Portals
protocol. This phase is only complete when all the nodes are either down or
running LNET in the new mode.

Note that phase three must be complete before future upgrades are possible.
Similarly, phase three must be complete before the site configuration can be
updated to include multiple networks.

You may rewrite the client configuration logs after phase one has been completed to
avoid warnings about converting portals NIDs to LNET NIDs. As this requires an
MDS service outage, you may choose to complete the upgrade in one step at this
time by removing portals_compatibility from the LNET modprobe.conf options on all
the nodes and rebooting everywhere.

Upgrading from 1.4.5
To upgrade from 1.4.5 to 1.4.6 you need to download the latest RPM of Lustre 1.4.6.
If you want to upgrade Lustre live, you need to failover to another server.

As 1.4.5 Lustre modules have to be unloaded and then Lustre 1.4.6 modules need
to be loaded, a single node (Lustre without failover) cannot continue to run Lustre
during the upgrade.

Steps for upgrading Lustre live are as follows (given the node has a failover setup):

1. Download the latest RPM

2. Unload the Lustre module from node2 (failover node) using
$ lconf –cleanup –node node2 config.xml

3. Upgrade node2 to Lustre 1.4.6 as it is a backup node and will NOT currently
be running Lustre.

4. Configure node2 for Lustre 1.4.6 and failover node1. Once failed, Lustre will
be running from node2.

5. Unload the Lustre module from node1 (failed node) using
$ lconf –cleanup –node node1 config.xml

225

Lustre in a nutshell Cluster File Systems, Inc.

6. Upgrade node1 to Lustre 1.4.6 as currently it will NOT be running Lustre as
we had a failover.

7. Now you can failback to node1 once configured.

226

Lustre in a nutshell Cluster File Systems, Inc.

Feature List

Supported hardware
Networks
TCP...43

Elan...54

QSW...192

Myrinet..10

vib...10

ra...10

openib...10

Infinicon...10

user space tcp

user space portals

Utilities
lfs..177

lfs getstripe..178

lfs
setstripe:...178

lfs Find (lfind)...178

lfs check: (lfsck)...179

mount.lustre

mkfs.lustre

tunefs.lustre

lconf...204
lmc..199
lctl...210

Special System Call Behavior
disabling POSIX locking

group locks

227

Lustre in a nutshell Cluster File Systems, Inc.

Modules..188
LNET...188

Acceptor..191

accept..191

accept_port...191

accept_backlog...191

accept_timeout..191

accept_proto_version..191

config_on_load

networks..191

routes..190

ip2nets..52

Portals Compatibility...223

forwarding (obsolete)..190

implicit_loopback

small_router_buffers

large_router_buffers

tiny_router_buffer

SOCKLND..191

timeout..192

nconnds..192

min_reconnectms..192

max_reconnectms...192

eager_ack...192

typed_conns..192

min_bulk..192

nagle...192

keepalive_idle...192

keepalive_intvl...192

keepalive_count..192

irq_affinity..192

zc_min_frag...192

228

Lustre in a nutshell Cluster File Systems, Inc.

QSW LND...192
tx_maxcontig...192

ntxmsgs...192

nnblk_txmsg..193

nrxmsg_small..193

ep_envelopes_small...193

nrxmsg_large..193

ep_envelopes_large..193

optimized_puts..193

optimized_gets..193

RapidArray LND..193
n_connd..193

min_reconnect_interval...193

max_reconnect_interval..193

timeout..193

ntx...193

ntx_nblk...193

fma_cq_size..193

max_immediate...194

VIB LND..194
service_number...194

arp_retries...194

min_reconnect_interval...194

max_reconnect_interval..194

timeout..194

ntx...194

ntx_nblk...194

concurrent_peers..194

hca_basename..194

ipif_basename...194

local_ack_timeout...194

retry_cnt..194

rnr_cnt...194

rnr_nak_timer..195

229

Lustre in a nutshell Cluster File Systems, Inc.

fmr_remaps...195

cksum..195

OpenIB LND...195
n_connd..195

max_reconnect_interval..195

min_reconnect_interval...195

timeout..195

ntx...195

ntx_nblk...195

concurrent_peers..195

cksum..195

tcplnd

Portals LND...195
Portals LND (Catamount)..197

osxsocklnd

winsocklnd

Lustre API's

User/Group Cache Upcall...185

Striping ioctls

Direct Input/output...161

230

Lustre in a nutshell Cluster File Systems, Inc.

Task List

Key concepts
software

Clients...53

Object Storage Servers...5

data in /proc

User tasks
free space

Start Servers...53

change ACL

getstripe..178

setstripe:...178

Understand what striping accomplishes

Direct Input/output...161

flock

group locks

Administrator tasks
Build

Install

new

Upgrading from 1.4.5..225

Downgrade

Configure

change configure

change server IP

write_conf..206

migrate OST

add storage

grow disk

add os...201

add oss

231

Lustre in a nutshell Cluster File Systems, Inc.

add mds..200

Stop - start

mount / unmount (-force)

init.d/lustre scripts

failover by hand

get status

/proc

/var/log/messages

Tuning

Architect tasks
Networking

understand hardware options

naming: nid's networks

Multihomed Servers..52

routes..190

232

Lustre in a nutshell Cluster File Systems, Inc.

Glossary

A
ACL – Access Control List. An extended attribute associated with a file which contains authorization
directives.

Administrative OST failure – A configuration directive given to a cluster to declare that an OST has failed,
so that errors can be returned immediately.

C
CFS – Cluster File Systems, Inc., a US corporation founded in 2001 by Peter J. Braam to develop, maintain
and support Lustre.

CMD – Clustered meta-data, a collection of meta-data targets implementing a single file system namespace.

CMOBD – Cache Management OBD. A special device which will implement remote cache flushed and
migration among devices.

COBD – Caching OBD. A driver which makes decisions when to use a proxy or locally running cache and
when to go to a master server. Formerly this abbreviation was used for the word collaborative cache.

Collaborative Cache – A read cache instantiated on nodes that can be clients or dedicated systems, to
enable client to client data transfer, enabling enormous scalability benefits for mostly read-only situations. A
COBD cache is not currently implemented in Lustre.

Completion Callback – An RPC made by an OST or MDT to another system, usually a client, to indicate to
that system that a lock it had requested is now granted.

Configlog – An llog file used in a node or retrieved from a management server over the network with
configuration instructions for Lustre systems at startup time.

Configuration lock – A lock held by every node in the cluster to control configuration changes. When
callbacks are received the nodes quiesce their traffic, cancel the lock and await configuration changes after
which they reacquire the lock before resuming normal operation.

D
Default stripe pattern – Information in the LOV descriptor describing the default stripe count used for new
files in a file system. This can be amended by using a directory stripe descriptor or a per file stripe descriptor.

Direct I/O – A mechanism which can be used during read and write system calls. It bypasses the kernel I/O
cache to memory copy of data between kernel and application memory address spaces.

Directory stripe descriptor – An extended attribute describing the default stripe pattern for file underneath
that directory.

E
EA – See Extended Attribute.

Eviction – The process of eliminating server state for a client that is not returning to the cluster after a
timeout or server failures has occurred.

Export – The state held by a server for a client sufficient to recover all in flight operations transparently when

233

Lustre in a nutshell Cluster File Systems, Inc.

a single failure occurs.

Extended attribute – A small amount of data which can be retrieved through a name associated with a
particular inode. Examples of Extended Attributes are access control lists, striping information and crypto
keys.

Extent Lock – A lock used by the OSC to protect an extent in a storage object for concurrency control of
read, write, file size acquisition and truncation operations.

F
Failback – The failover process whereby the default active server regains control over the service.

Failout OST – An OST which when fails to answer client requests is not expected to recover. A failout OST
which has failed can be administratively failed, enabling clients to return errors when accessing data on the
failed OST without making network requests.

Failover – The process whereby a standby computer server system takes over for an active computers
server after a failure of the active node, typically gaining exclusive access to a shared storage device
between the two servers.

FID – A Lustre file identifier. A collection of integers which uniquely identify a file or object. The structure
contains a sequence, identity and version number.

Fileset –
FLDB – FID Location Database. This database maps a sequence of FID's to a server which is managing the
objects in the sequence.

Flight Group – A group or I/O transfer operations initiated in the OSC which is simultaneously going
between two endpoints. Tuning the flight group size correctly leads to a full pipe.

G
Glimpse callback – An RPC made by an OST or MDT to another system, usually a client, to indicate to that
system that an extent lock it is holding should be surrendered if it is not in use. If the lock is in use the
system should report the object size in the reply to the glimpse callback. Glimpses are introduced to optimize
the acquisition of file sizes.

GNS – Global Namespace

Group Lock –
Group upcall –
GSS API –

H
Htree – An indexing system for large directories used by ext3. Originally implemented by Daniel Phillips and
completed by CFS.

I
Import – The state held by a client to recover a transaction sequence fully after a server failure and restart.

Intent Lock – A special locking operation introduced by Lustre into the Linux kernel. An intent lock combines
a request for a lock with the full information to perform the operation(s) for which the lock was requested.
This offers the server the option of granting the lock or performing the operation and informing the client of
the result of the operation without granting a lock. The use of intent locks leads to even complicated meta-

234

Lustre in a nutshell Cluster File Systems, Inc.

data operations implemented with a single RPC from the client to the server.

IOV – IO vector. A buffer destined for transport across the network which contains a collection, aka as a
vector, of blocks with data.

J

Join File –

K
Kerberos – An authentication mechanism, optionally available in 1.6 versions of Lustre as a GSS backend.

L
LAID – Lustre RAID. A mechanism whereby the LOV can stripe I/O over a number of OST's with
redundancy. Expected in Lustre 2.0.

LBUG – A bug written into a log by Lustre indicating a serious failure of the system.

LDLM – Lustre Distributed Lock Manager

Lfind – A subcommand of lfs to find inodes associated with objects.

Lfs – A Lustre file system utility named after fs (AFS), cfs (Coda), ifs (Intermezzo).

Lfsck – Lustre File System Check - a distributed version of a disk file system checker. Lfsck normally does
not need to be run, except when file systems incurred damage through multiple disk failures and other forms
of damage that cannot be recovered with file system journal recovery.

liblustre – Lustre library, a user-mode Lustre client linked into a user program for Lustre fs access. liblustre
clients cache no data, don't need to give back locks on time, and can recover safely from an eviction. They
should not participate in recovery.

Llite – See Lustre Lite. The word is still in use inside the code and module names to indicate that code
elements are related to the Lustre file system.

Llog – A log file of entries used internally by Lustre. An llog is suitable for rapid transactional appending of
records and very cheap cancellation of records through a bitmap.

Llog Catalog – An llog with records that each point at an llog. Catalogs were introduced to give llogs almost
infinite size. Llogs have an originator which writes records and a replicator which cancels records, usually
through an RPC, when the records are not needed.

LMV – Logical meta-data volume, a driver to abstract in the Lustre client that it is working with a meta-data
cluster instead of a single meta-data server.

LND – Lustre Network Driver, a code module enabling LNET support over a particular transport, such as
TCP, various kinds of InfiniBand, Elan or Myrinet.

LNET – Lustre NETworking, a message passing network protocol capable of running and routing through
various physical layers. LNET forms the underpinning of LNETrpc.

Lnetrpc – An RPC protocol layered on LNET. This RPC protocol deal with stateful servers and has exactly-
once semantics, and built in support for recovery.

Load Balancing MDS – A cluster of MDS's that perform load balancing of the requests among the systems.

Lock Client – A module making lock RPC's to a lock server and handling revocations from the server.

Lock Server – A system managing locks on certain objects. It also issues lock callback requests calls while
servicing or completing lock requests for already locked objects.

235

Lustre in a nutshell Cluster File Systems, Inc.

LOV – Logical object volume. This is the object storage analog of a logical volume in a block device volume
management system such as LVM or EVMS. The logical object volume is primarily used to present a
collection of OST's as a single object device to the MDT and client file system drivers.

LOV descriptor – A set of configuration directives which describes which nodes are OSS systems in the
Lustre cluster, providing names for their OST's.

LOV Logical Object Volume – An OBD providing access to multiple OSC's and presenting the combined
result as a single device.

Lustre – The name of the project chosen by Peter Braam in 1999 for an object based storage architecture.
Now the name is commonly associated with the Lustre file system.

Lustre Client – An operating instance with a mounted Lustre file system.

Lustre File – A file in the Lustre file system. The implementation of a Lustre file is through an inode on a
meta-data server which contains references to storage object on OSS servers.

Lustre Lite – A preliminary version of Lustre developed for LLNL in 2002. With the release of Lustre 1.0 in
late 2003, Lustre Lite became obsolete.

Lvfs – A library providing an interface between Lustre OSD and MDD drivers and file systems, to avoid
introducing file system specific abstractions into the OSD and MDD drivers.

M
Mballoc – An advanced block allocation protocol introduced by CFS into the ext3 disk file system capable of
efficiently managing the allocation of large (typically 1MB) contiguous disk extents.

MDC – The meta-data client code module which interacts with the MDT using LNETrpc. Also an instance of
an object device operating on an MDT through the network protocol.

MDD – A meta-data device, currently implemented using the directory structure and extended attributes of
disk filesystems.

MDS – Meta-data Server, referring to a computer system or software package running the Lustre meta-data
services.

MDS Client – Same as MDC.

MDS Server – Same as MDS.

MDT – A meta-data target, a meta-data device made available through the Lustre meta-data network
protocol.

Meta-data Writeback Cache – Many local and network filesystems have a cache of file data which
applications have written but which has not yet been flushed to storage devices. A meta-data writeback
cache is a cache of meta-data updates (mkdir, create, setattr, other operations) which an application has
performed and which have not yet been flushed to a storage device or server. InterMezzo is one of the first
network filesystems to have a meta-data write back cache.

MGS – Management service. A software module managing startup configuration information and changes to
this information. Also the server node on which this system is running.

Mount object –
Mountconf – The configuration protocol for Lustre introduced in version 1.6 where formatting disk file
systems on servers with the mkfs.lustre program prepares them for automatic incorporation into a Lustre
cluster.

N
NAL – An older, obsolete term for LND.

NID – A network id, which encodes the type, network number and network address of a network interface on

236

Lustre in a nutshell Cluster File Systems, Inc.

a node for use by Lustre.

NIO API – A subset of the LNET RPC module implementing a library for sending large network requests,
moving buffers with RDMA.

O
OBD – Object device, the base class of layering software constructs that provides the Lustre functionality.

OBD API – See storage object API.

OBD type– Many modules can implement the Lustre object or meta-data API's. Examples of OBD types are
the LOV, the OSC and the OSD.

Obdfilter – An older name for the OSD device driver.

OBDFS Object Based File System – A now obsolete single node object filesystem storing data and meta-
data on object devices.

Object device – An instance of a object that exports the OBD API.

Object storage – A term referring to a storage device API or protocol involving storage objects. The two
most well known instances of object storage are the T10 iSCSI storage object protocol (XXX supply numbers
of standards here) and the Lustre object storage protocol. The Lustre protocol is a network implementation of
the Lustre object API. The principal difference between the Lustre and T10 protocols is that Lustre includes
locking and recovery control in the protocol and is not tied to a SCSI transport layer.

opencache – cache of open file handles. Performance enhancement for NFS

Orphan objects – Storage objects for which there is no Lustre file pointing anymore at these objects.
Orphan objects can arise from crashes and are automatically removed by an llog recovery. When a client
deletes a file, the MDT gives back a cookie for each stripe. The client then sends the cookie and tells the
OST to delete the stripe. The OST finally sends the cookie back to the MDT to cancel it.

Orphan handling – A component of the meta-data service which allows for recovery of open unlinked files
after a server crash. The implementation of this features retains open unlinked files as orphan objects until it
is clear that no clients are using them.

OSC Object Storage Client – The client unit talking to an OST (via an OSS).

OSD – Object Storage Device. This term is a generic term used in the industry for storage devices with a
more extended interface than block oriented devices such as disks. Lustre uses this name for a software
module implementing an object storage API in the kernel. Lustre also uses this name for an instance of an
object storage device created by that driver. The OSD device is layered on a file system, with methods that
mimic the creation, destroy and I/O operations on file inodes.

OSS – Object Storage Server. A system running an object storage service software stack.

OSS Object Storage Server – A server OBD providing access to local OST's.

OST – Object storage target, an object storage device made accessible through a network protocol. An OST
is typically tied to a unique OSD which in turn is tied to a formatted disk file system on the server containing
the storage objects.

P
Pdirops – A locking protocol introduced in the VFS by CFS to allow for concurrent operations on a single
directory inode.

pool – A group of OST's can be combined into a pool with unique access permissions and stripe
characteristics. Each OST is a member of only 1 pool, while an MDT can serve files from multiple pools. A
client accesses one pool on the the filesystem; the MDT stores files from/for that client only on that pool's
OST's

237

Lustre in a nutshell Cluster File Systems, Inc.

Portal – A concept used by LNET. LNET messages are sent to a portal on a NID. Portals can receive
packets when a memory descriptor is attached to the portal. Portals are implemented by as integers.

Examples of portals are the portals on which certain groups of object, meta-data, configuration and locking
requests and replies are received.

Ptlrpc – An older term for lnetrpc.

R
Raw operations – VFS operations introduced by Lustre to implement operations such as mkdir, rmdir, link,
rename with a single RPC to the server. Other file systems would typically use more operations. The
expense of the raw operation is omitting the update of client namespace caches after obtaining a successful
result.

Remote user handling –

Replay – The concept of re-executing a request on a server after a server shutdown where the server lost
information in its memory caches. The requests to be replayed are retained by clients until the server(s) have
confirmed that the data is persistent on disk. Only requests for which a client has received a reply are
replayed.

Resent request – Requests that have seen no reply can be re-sent after a server reboot.

Revocation Callback – An RPC made by an OST or MDT to another system, usually a client, to revoke a
granted lock.

Rollback – The notion that server state is in a crash lost because it was cached in memory and not yet
persistent on disk.

Root squash – A mechanism whereby the identity of a root user on a client system is mapped to a different
identity on the server to avoid root users on clients gaining broad permissions on servers. Typically at least
one client system should not be subject to root squash for management purposes.

routing – LNET can route between different networks and LNDs

RPC – Remote procedure call, a network encoding of a request.

S
Storage Object API – The API manipulating storage objects. This API is richer than that of block devices
and includes the creation and deletion of storage objects, reading and writing buffers from/to certain offsets,
setting attributes and other storage object meta-data.

Storage objects – A generic notion referring to data containers, similar or identical to file inodes.

Stride – A contiguous logical extent of a Lustre file written to a single object service target.

Stride size – The maximum size of a stride, typically 4MB.

Stripe count – The number of OST's holding objects for a RAID0 striped Lustre file.

Striping meta-data – The extended attribute associated with a file describing how its data is distributed over
storage objects. See also default stripe pattern, and directory striping meta-data.

T
T10 object protocol – An object storage protocol tied to the SCSI transport layer.

238

Lustre in a nutshell Cluster File Systems, Inc.

W
Wide striping – Using many OST's to store stripes of a single file to obtain maximum bandwidth to a single
file through parallel utilization of many OST's.

Z
zeroconf – Obsolete from 1.6. A method to start a client without an XML file. The mount command gets a
client startup llog from a specified MDS.

239

Lustre in a nutshell Cluster File Systems, Inc.

A L P H A B E T I C A L I N D E X

A

AIX... 45

API... 5

ATA... 45

B

block device .. 123

C

client........................... 3, 5, 34pp., 43pp., 52pp., 59

cluster....................................... 3, 9p., 34, 197, 202

Cray XT3 Linux.. 193

D

DDN.. 44, 47, 49p.

E

elan............................... 10, 36p., 52pp., 185, 187p.

Elan... 9p., 52pp., 190

ENOMEM.. 124

ESMF.. 45

ethernet.. 189p.

Ethernet... 10, 57

ext2.. 5

Ext3... 4

F

failout... 59

failover.............................. 4, 45pp., 49, 56pp., 61p.

file system... 5

FMR... 193

FreeBSD.. 57

fsstat.. 59

G

GFS... 45

gm... 10

H

HA software.. 56p.

HCA... 192

Heartbeat.. 56p.

hostname... 43, 53

HPC... 47, 49

I

I/O... 56, 123p.

I/O kit... 123

iib... 10

input/output.. 3, 49, 124

ipoib... 189, 192

J

journal file system... 4p.

L

LARGE HPC.. 47

lconf.............................. 36, 41, 43, 53p., 56p., 61p.

lctl... 35, 40, 54, 208, 212p.

lfs... 158, 175

lfs help... 175

lfs quotaon [-ugf] <filesystem>........................... 175

lfs setstripe -d <dirname>.................................. 175

LibLustre.. 34

lmc.. 36, 43pp., 50, 197

LMC.. 36, 43, 47, 53p.

LND...................................10, 37, 185, 187, 189pp.

lnet............................. 36p., 43, 52pp., 185p., 188p.

240

Lustre in a nutshell Cluster File Systems, Inc.

LNET......8, 10, 34, 36p., 40p., 43, 52p., 185p., 189

loopback.. 189, 191, 193

LOV... 45, 59, 197

LUN... 61

lustre................................. 36, 43, 48, 53p., 56, 183

Lustre....... 3pp., 8pp., 13, 34, 36, 40p., 44pp., 49p.,

56p., 123p., 182p., 197, 208

Lustre Lite.. 3, 5

lustre llite... 185

M

MDS................. 3p., 35p., 44pp., 53, 60p., 183, 197

modprobe.conf................................. 34, 37, 52, 185

mountconf.. 36

N

NAL... 5

NFS.. 5, 44p., 50

O

OBD... 5

object storage... 4p.

Object Storage Server... 5

Object Storage Target... 5

openib.. 10, 187

OSC... 212

OSS... 3, 5, 44pp., 49p.

OST.......................... 5p., 45pp., 58p., 61, 124, 197

P

portals.. 10

PowerMan... 57

Q

QP parameter... 192p.

QSW LND.. 190

R

ra... 10

RAID.. 45

ralnd... 191p.

RapidArray... 191

RDMA... 5, 191pp.

Remote DMA... 5

router.. 34, 40, 47p., 54

RPC... 57

S

Schema.. 9p.

Scp.. 45

SCSI.. 124

sgpdd... 124

SOCKLND... 189

Solaris... 57

SSH... 35

stdout... 124

STONITH.. 56p.

subnets.. 34

T

TB.. 45, 47, 49

TCP.. 9, 34, 37, 52pp., 189

V

vib.. 10

VIB LND.. 192

X

XFS... 4

XML... 8p., 36, 44pp., 50

XOR... 191

241

Lustre in a nutshell Cluster File Systems, Inc.

Z

Zconf... 48

zconf-mount... 35

Zeroconf... 44pp., 50

242

Lustre in a nutshell Cluster File Systems, Inc.

Version Log

Version No. Details of the changes made Author Date
1.1 1) Copyright Page: Changed copyright year

from 2004 to 2005, first draft to draft 1.1
2) On page 14: As Nathan requested, heading
changed to “upgrading a cluster live”
3) Bookmarks generated by OpenOffice
automatically, actually they are generated from
table of contents of OpenOffice file.

Eli Li 12/02/05

1.2 1) Cover and Copyright Page: Changed the
draft version from 1.1 to 1.2. Changed the date
from Dec. 2,2005 to Dec. 9, 2005.
2) Changed the color of all titles from red to
black as per the communication between Dr.
Braam and Mr. Bojanic.
3) Completed basic editing for Chapter I.
4) Incorporated some of the changes
suggested by Dr. Braam and Mr. Bojanic in
Chapter I and Chapter II-1.

SPSOFT 12/09/05

1.3 1) Reformatted as per the ORA_Template.
2) Incorporated Dr. Braam and Mr. Bojanic's
suggestions wherever possible.
3) Included Eli' ChangeLog and Updated mine.
4) Cover and Copyright page: Updated the date
and version.
5) Numbered all the chapters.
6) Generated the TOC.

SPSOFT 12/13/05

1.4 1) Cover Page and Copyright Page: Changed
the date and version
2) Drafted and Inserted Part 1 – Chapter 1 A
Cluster with Lustre as per ManualProject.mpp
3) ChangeLog: Updated the ChangeLog.

SPSOFT 12/16/05

1.5 Transformed in to the new format SPSOFT 12/19/05

1.6 1) Changed the version no. and date on Cover
Page and Copyright Page
2) Added the Parts 2-5 and their headings
making the skeleton complete
3) Added the contents under 1.2 Lustre Server
Nodes
4) Enhanced the format further for the complete
document and also for the Table of Contents
5) Created 5 diagrams in Visio and pasted
them at appropriate places
6) Inserted some of the contents from
LustreManual.pdf (developed by Eli) till page
20
7) Converted the ChangeLog page into the
VersionLog

SPSOFT 12/23/05

1.7 1) Inserted a new Cover Page
2) Changed the version no. and date on Cover
Page, Copyright Page and VersionLog
3) Deleted 2 previous versions and transformed

SPSOFT 12/28/05

243

Lustre in a nutshell Cluster File Systems, Inc.

Version No. Details of the changes made Author Date
version 1.4 into the latest format and prepared
a Master Document
4) Incorporated majority of the suggestions
from Dr. Braam-Mr. Bojanic conversation

1.8 1) Changed the version no. and date
2) Created a simpler template and format
3) Reformatted all the chapters in the new

template and format
4) Incorporated all the review comments

received from Cliff
5) Inserted all the new chapters created

by SPSOFT at appropriate places
6) Generated a new TOC

SPSOFT 01/31/06

1.9 1) Changed the version no. and date
2) Drafted new Task / Feature Lists
3) Introduced Glossary
4) Introduced various page styles to

reflect proper headers and footers
5) Created the master document in a new

way as directed in the Writer Manual.
6) Generated an alphabetical Index.

SPSOFT 02/10/06

1.10 1) Changed the version no. and date
2) Updated Task / Feature List
3) Changed the Glossary as given by

Peter
4) Changed the entries in TOC and

Bookmarks
5) Reformatted the Index

SPSOFT 02/13/06

1.11 1) Changed the version no. and date
2) Updated the glossary as resent by Dr.

Braam
3) Changed the attributes of the tables

and figures, and their titles for better
HTML generation

SPSOFT 02/20/06

1.12 1) Change the version no. and date
2) Changed Part I – Chapter 1 as per

Peter's instructions.
3) Replaced POSIX ACLs section in Part

IV – Chapter 1.
4) Changed the attributes of figures and

tables for better HTML generation
5) Updated the Task and Feature Lists as

the references to TOC changed
6) Updated the Index and TOC
7) Enhanced the styles of Headings for

better HTML generation

SPSOFT 02/23/06

1_4_6_manv
1_13

1) Changed the version
2) Mentioned about the registered

trademark on the Copyright page
3) Introduced 'About the Manaul' page
4) Moved the Version Log to the end
5) Reshuffled the contents and chapters

as instructed by Peter

SPSOFT 03/20/06

244

Lustre in a nutshell Cluster File Systems, Inc.

Version No. Details of the changes made Author Date
6) Edited the contents as instructed by

Peter
7) Increased the Task List and the

Feature List, and introduced Cross
references in both of them

8) Hyper-linked the TOC

Version 1.4.6.1-
man-v14

1) Changed the version and date
2) Improved the following chapters -

I. Chapter II – 4. Failover
II. Chapter III – 1. Lustre I/O Kit
III. Chapter IV – 2. Striping and I/O
IV. Chapter V – 1. User Utilities (man1)

3) Put the headers and footers in place
4) Incorporated Cameron Harr's

comments
5) Inserted the text regarding Trademarks

on the Copyright page
6) Changed the cover page

SPSOFT 03/24/06

Version 1.4.6.1-
man-v15

1) Changed the version and date
2) Improved following Chapters as per

Nathan's suggestions -
I. Chapter I-2 – Understanding Lustre
Networking
II. Chapter II-1 – Configuring Lustre
Network
III. Chapter II-2 – Configuring Lustre-
Examples
IV. Chapter II-3 – More Complicated
Configurations
V. Chapter II-4 – Failover

3) Reformatted the Task/Feature Lists to
have auto-generated Page Number
References

SPSOFT 03/28/06

Version 1.4.6.1-
man-v16

1) Changed the version and date
2) Inserted a new title called Portals LND

in the Chapter V – 3. Config Files and
Module Parameters

3) Reformatted the Feature List to have
the correct reference to Portals LND

SPSOFT 03/31/06

Version 1.4.6.1-
man-v17

1) Changed the version and date
2) Improved following chapters -

I. Chapter I-1 – A Cluster With Lustre
II. Chapter II-1 – Configuring Lustre
Network
III. Chapter II-5 – Configuring Quotas
IV. Chapter IV-3 – Lustre Security
V. Chapter V-1 – User Utilities
VI. Chapter V–3 – Config Files and
Module Parameters
VII. Chapter V-4 – System
Configuration Utilities

SPSOFT 04/07/06

Version 1.4.6.1-
man-v18

1) Changed the version and date
2) Introduced the chapter -

SPSOFT 04/14/06

245

Lustre in a nutshell Cluster File Systems, Inc.

Version No. Details of the changes made Author Date
Part2-chapter1-Prerequisites

3) Improved following chapters -
I. Chapter II-3 – More Complicated
Configurations
II. Chapter II-4 – Failover

Version 1.4.6.1-
man-v19

1) Changed the version and date
2) Introduced the chapter -

Part3-chapter2-LustreProc
3) Incorporated Tom Fenton's review

comments, which included corrections
of wrong or misleading content,
grammar or formatting mistakes, etc.

4) Updated the LMC commands in
Chapter V-4 System Configuration
Utilities

SPSOFT 04/21/06

Version 1.4.6.1-
man-v20

1) Changed the version and date
2) Changed the contents under Chapter

II-6 Configuring Quotas – '6.1.2
Remounting the File Systems' as per
the RT # 21218

3) Changed the Title of the Chapter IV-2 –
Striping and I/O to Chapter IV-2 –
'Striping and Other I/O Options' as per
the RT # 21219

4) Changed the contents under Chapter
II-1 – Prerequisites – '1.3.2 Building
Lustre' as per the RT # 21229

5) Added the information about how to
install Lustre RPMs while upgrading
Lustre Chapter II-7 – Upgrading from
1.4.5 in the section '7.1.2 Upgrade a
Cluster Using Shutdown' as per the RT
21229

6) Added Chapter II-8 – RAID as per the
RT # 21225

SPSOFT 04/28/06

Version 1.4.6.1-
man-v21

1) Changed the version and date
2) Included information on I/O, Locking

and Debug Support in Chapter III-2 –
LustreProc

3) Included 'Conventions for Command
Syntax' in the front matter

SPSOFT 05/05/06

Version 1.4.6.1-
man-v22

1) Changed the version and date
2) Corrected all the links that appear in

the manual
3) Converted the utility commands from

tabular format to textual format for ease
of generating man pages directly

4) Modified the section of fstab from
labels to MDS string in Chapter II-6 –
Configuring Quotas

5) Added more commands for stopping
LNET in Chapter II-2 – Configuring the
Lustre Network

SPSOFT 05/12/06

246

Lustre in a nutshell Cluster File Systems, Inc.

Version No. Details of the changes made Author Date
Version 1.4.6.1-
man-v23

1) Changed the version and date
2) Added Chapter III-3 – Lustre Tuning

SPSOFT 05/20/06

Version 1.4.6.1-
man-v24

1) Changed the version and date
2) Added Chapter IV-4 – Other Lustre

Operating Tips
3) Inserted four sample outputs in

Chapter V-1 User Utilities

SPSOFT 05/26/06

Version 1.4.6.1-
man-v25

1) Changed the version and date
2) Revised the chapters below as per

Cliff's instructions -
Chapter III – 2 – Lustre Proc
Chapter III – 3 – Lustre Tuning
Chapter IV – 4 – Other Lustre
Operating Tips

3) In Chapter II – 4 – More Complicated
Configurations, added notes on LNET
lines and –add net option

4) In Chapter V – 4 – System
Configuration Utilities, added notes
about mountfs option in LMC and
LCONF.

SPSOFT 06/02/06

Version 1.4.6.1-
man-v26

1) Changed the version and date
2) Edited the section on LCONF utility in

Chapter V – 4 – System Configuration
Utilities

3) Deleted the material on Proc elements
from Chapter III – 2 Lustre Proc and
created a new chapter in Part V –
Reference as Chapter V – 5 Lustre
Proc Elements

4) Added Chapter V – 6 Elevator
5) Updated Chapter II – 6 Configuring

Quotas

SPSOFT 06/12/06

Version 1.4.6.1-
man-v27

1) Changed the version and date
2) Deleted Chapter V – 6 Elevator and

introduced the information in Chapter II
– 1 Prerequisites as 1.4.3 Proper
Kernel I/O Elevator

3) Included the 'lfs df' command in the
Synopsis section of Chapter V – 1 User
Utilities

4) Edited the notes on 'asyncdel' in
Chapter V – 4 System Configuration
Utilities

5) Introduced information on Liblustre
Network parameters in 2.2.2 Module
Parameters under Chapter II – 2
Configuring Lustre Network

SPSOFT 06/16/06

Version 1.4.6.1-
man-v28

1) Changed the version and date
2) Removed 1.3.2 obd survey from

Chapter III – 1 Lustre I/O Kit
3) Added information of LNET_ROUTES

setting of Liblustre client in section

SPSOFT 06/23/06

247

Lustre in a nutshell Cluster File Systems, Inc.

Version No. Details of the changes made Author Date
2.2.2 Module Parameters of Chapter II
– 2 Configuring Lustre Network

4) Inserted the information on order of
LNET lines in modprobe.conf in section
4.1.1 Modprobe.conf of Chapter II – 4
More Complicated Configurations

Version 1.4.6.1-
man-v29

1) Changed the version and date
2) Changed the format of examples and

the reference of 'RHEL' to 'Red Hat
Enterprise Linux v3 Update 3' in
Chapter II – 1 Prerequisites – 1.4.3
Proper Kernel I/O Elevator

3) Added a note on loopback interface in
Chapter II – 2 Configuring Lustre
Network – 2.2.2 Module Parameters

4) Gave the full pathname instead of * in
Chapter III – 2 Lustre Proc – 2.2.1
Client I/O RPC Stream Tunables

5) Changed 'portals' to 'lnet' in Chapter III
– 2 Lustre Proc – 2.4 Debug Support

6) Corrected the setstripe command in
1.1.1 Synopsis and elaborated
information on Stripe Size, Stripe Start
and Stripe Count in 1.1.3 Examples in
the Chapter V – 1 User Utilities

7) Added a note on loopback interface in
Chapter V – 3 Config Files and Module
Parameters – 3.2.1.1 Network
Topology

8) Added a sample output for invoking
lconf on the OST node in Chapter V – 4
System Configuration Utilities – 4.2.3
Examples

SPSOFT 06/30/06

Version 1.4.6.1-
man-v30

1) Changed the version and date
2) Added Chapter II – 9 Bonding
3) Added sample output of peer list for lctl

in Chapter V – 4 System Configuration
Utilities

4) Added sample output of setstripe and
getstripe for lfs in Chapter V – 1 User
Utilities

5) Added a note on the pathnames of
/proc variables under 2.2.1 Client I/O
RPC Stream Tunables in Chapter III –
2 LustreProc. In the same chapter
changed 'portals' to 'lnet' all over and
'/proc/fs/ldiskfs/xxxx/mb_history' to
'/proc/fs/ldiskfs/loop0/mb_history' in
2.2.4 mballoc history

6) Deleted 2 hanging lines and corrected
the spelling of passive in 5.1.3
Heartbeat in Chapter II – 5 Failover

SPSOFT 07/11/06

Version 1.4.6.1-
man-v31

1) Changed the version and date
2) Added Chapter II - 2. Lustre Installation

SPSOFT 07/19/06

248

Lustre in a nutshell Cluster File Systems, Inc.

Version No. Details of the changes made Author Date
3) Edited Chapter II - 1. Prerequisites for

proper flow of information considering
insertion of Chapter II - 2. Lustre
Installation

Version 1.4.6.1-
man-v32

1) Changed the version and date
2) Edited Chapter I – 1. A Cluster With

Lustre to improve readability
3) Added information on LNET lnd

interface number indexing in 3.2.2
Module Parameters in Chapter II – 3.
Configuring Lustre Network

4) Added 9.2 Disk Performance
Measurement in Chapter II – 9. RAID

5) Added Chapter V – 6. System Limits

SPSOFT 07/26/06

Version 1.4.6.1-
man-v33

1) Changed the version and date
2) Replaced 'Portals' with LNET in section

2.3 of Chapter I – 2. Understanding
Lustre Networking

3) Upgraded the output of llmount.sh in
section 2.2.1, and changed the format
of the example in section 2.4.2 in
Chapter II – 2. Lustre Installation

4) Added sample graphs of Read and
Write Performance as section 9.2.1 in
Chapter II – 9. RAID
Also, edited point no. 10 of section 9.2
for correct description of mdadm in
Chapter II – 9. RAID

5) Explained how to set the debug level
and added a note in section 2.4 of
Chapter III – 2. Lustre Proc

6) Replaced 'Portals' with LNET in section
4.3.2 of Chapter V – 4. System
Configuration Utilities

SPSOFT 08/01/06

Version 1.4.6.1-
man-v34

1) Changed the version and date
2) Updated Chapter V – 1. User Utilities

as per the latest LFS man page
3) Added a table describing various

networks and supported software
stacks under section 3.2.1.1 Network
Topology in Chapter V – 3. Config Files
and Module Parameters

SPSOFT 08/08/06

Version 1.4.7.1-
man-v35

1) Changed the version and date
2) Changed the Title from “Lustre 1.4.6

Operations Manual” to “Lustre 1.4.7
Operations Manual”

3) Changed the mentions of 1.4.6 to 1.4.7
wherever applicable

4) Updated following chapters -
i. Chapter I – 1. A Cluster with

Lustre
ii. Chapter I – 2. Understanding

Lustre Networking
iii. Chapter II – 1. Prerequisites

SPSOFT 09/14/06

249

Lustre in a nutshell Cluster File Systems, Inc.

Version No. Details of the changes made Author Date
iv. Chapter II – 2. Lustre Installation

(Corrected information in “Patch
Series Selection”)

v. Chapter II – 3. Configuring Lustre
Network

vi. Chapter II – 4. Configuring Lustre
– Examples

vii. Chapter II – 5. More Complicated
Configurations

viii. Chapter II – 6. Failover (Included
“Instructions to setup Failover with
Heartbeat V1 and V2”)

ix. Chapter II – 7. Configuring
Quotas

x. Chapter II – 8. Upgrading from
1.4.5

xi. Chapter II – 9. RAID
xii. Chapter III – 1. Lustre I/O Kit
xiii. Chapter III – 2. Lustre Proc (full

path names)
xiv. Chapter III – 3. Lustre Tuning

(Added information on OST
threads)

xv. Chapter IV – 2. Striping and I/O
(Introduced information on “MDS
Space Utilization”)

xvi. Chapter IV – 4. Other Lustre
Operating Tips

xvii.Chapter V – 1. User Utilities
(Edited description of “find”)

xviii.Chapter V – 4. System
Configuration Utilities (Changed
the references of Portals to LNET
wherever applicable)

Version 1.4.7.1-
man-v36

1) Changed the version and date
2) Moved the chapter on Upgrading from

1.4.5 to a new section called
Appendices. As a result, Part II –
Chapter 9. RAID became Part II –
Chapter 8. RAID and Part II – Chapter
10. Bonding became Part II – Chapter
9. Bonding

3) Improved Part IV – Chapter 2. Striping
and Other I/O Options for information
on following -

 aggregate striping
 formatting the MDS for better

space utilization
 lfs setstripe

4) Improved Part III. Lustre Tuning,
Monitoring and Troubleshooting

5) Improved Part IV. Lustre for Users
6) Corrected Section 8.2 of Part II –

Chapter 8. RAID for information on
sgpdd survey and sgp_dd tool

SPSOFT 11/30/06

250

Lustre in a nutshell Cluster File Systems, Inc.

Version No. Details of the changes made Author Date
7) Added information on I/O scheduler in

Part II – Chapter 1. Prerequisites in the
section 1.3.3 Proper Kernel I/O
Elevator

8) Introduced obdfilter survey in Part III –
Chapter 1. Lustre I/O Kit, section 1.2.2
obdfilter_survey

9) Documented exceptional failover
conditions in Part II – Chapter 6.
Failover in section 6.7 Considerations
With Failover Software and Solutions.
Also added information on errors=panic
option in section 6.4 Configuring MDS
and OSTs for Failover

10) Removed Part V – Chapter 5. Lustre
Proc Elements, and as a result Part 5 –
Chapter 6. System Limits is now Part V
– Chapter 5. System Limits

11) Corrected Part V – Chapter 3. Lustre
Security for information on ACLs

12) Improved information on mballoc
tunables in section 2.2.4 mballoc
History of Part III – Chapter 2. Lustre
Proc

13) Replaced lfs examples with correct
tested examples, corrected several
other errors and removed XML
example in Part V – Chapter 1. User
Utilities

14) Added a new chapter: Part III –
Chapter 4. Lustre Troubleshooting and
Tips

15) Added directives for IB and re-written
the section 5.1.1 Modprobe.conf of Part
II - Chapter 5. More Complicated
Configurations

16) Added section 3.2.4 Downed Routers
in Part II – Chapter 3. Configuring the
Lustre Network. Also added information
on router checker in section 3.2.3
Module Parameters – Routing

17) Improved Part V – Chapter 3. Config
Files and Module Parameters for
information on LNET configurations

251

	Part I. Architecture
	Chapter I – 1. A Cluster with Lustre
	1.1 Lustre Server Nodes
	1.1.1 The Meta Data Server
	1.1.2 The Object Storage Servers

	Chapter I – 2. Understanding Lustre Networking
	2.1 Introduction
	2.2 Old Schema
	2.3 New Schema

	Part II. Lustre Administration
	Chapter II – 1. Prerequisites
	1.1 Lustre Version Selection
	1.1.1 How to get Lustre
	1.1.2 Supported Configurations

	1.2 Using a Pre-packaged Lustre Release
	1.2.1 Choosing a Pre-packaged Kernel
	1.2.2 Lustre Tools
	1.2.3 Other Required Software
	1.2.3.1 Core Requirements
	1.2.3.2 High Availability Software
	1.2.3.3 Debugging Tools

	1.3 Environment Requirements
	1.3.1 Consistent Clocks
	1.3.2 Universal UID/GID
	1.3.3 Proper Kernel I/O Elevator

	Chapter II – 2. Lustre Installation
	2.1 Installing Lustre
	2.2 Quick Configuration of Lustre
	2.2.1 Single System Test Using the llmount.sh Script

	2.3 Using Supplied Configuration Tools
	2.3.1 Single Node Lustre
	2.3.2 Multiple Node Lustre
	2.3.3 Starting Lustre

	2.4 Building from Source
	2.4.1 Building Your Own Kernel
	2.4.1.1 Patch Series Selection
	2.4.1.2 Using Quilt

	2.4.2 Building Lustre
	2.4.2.1 Configuration Options
	2.4.2.2 Liblustre
	2.4.2.3 Compiler Choice

	Chapter II – 3. Configuring the Lustre Network
	3.1 Designing Your Network
	3.1.1 Identify all Lustre Networks
	3.1.2 Identify nodes which will route between networks
	3.1.3 Identify any network interfaces that should be included/excluded from Lustre networking
	3.1.4 Determine cluster-wide module configuration
	3.1.5 Determine appropriate zconf-mount parameters for clients

	3.2 Configuring Your Network
	3.2.1 LNET Configurations
	3.2.1.1 NID Changes
	3.2.1.2 XML Changes

	3.2.2 Module parameters
	3.2.3 Module Parameters – Routing
	3.2.4 Downed Routers

	3.3 Starting and Stopping LNET
	3.3.1 Starting LNET
	3.3.1.1 Starting Clients

	3.3.2 Stopping LNET

			Chapter II – 4. Configuring Lustre - Examples
	4.1 Simple TCP Network
	4.2 Example One: Simple Lustre Network
	4.2.1 Installation Summary
	4.2.2 Usage Summary
	4.2.3 Configuration Generation and Application

	4.3 Example Two: Lustre with NFS
	4.3.1 Installation Summary
	4.3.2 Usage Summary
	4.3.3 Configuration Generation and Application

	4.4 Example Three: Exporting Lustre with Samba
	4.4.1 Installation Summary
	4.4.2 Usage Summary
	4.4.3 Model of Storage
	4.4.4 Configuration Generation and Application

	4.5 Example Four: Heterogeneous Network with Failover Support
	4.5.1 Installation Summary
	4.5.2 Usage Summary
	4.5.3 Model of Storage
	4.5.4 Configuration Generation and Application

	4.6 Example Five: OSS with Multiple OSTs
	4.6.1 Installation Summary (*target)
	4.6.2 Usage Summary
	4.6.3 Model of Storage
	4.6.4 Configuration Generation and Application

	4.7 Example Six: Client with Sub-clustering Support
	4.7.1 Installation Summary
	4.7.2 Usage Summary
	4.7.3 Configuration Generation and Application

	Chapter II – 5. More Complicated Configurations
	5.1 Multihomed Servers
	5.1.1 Modprobe.conf
	5.1.2 LMC Configuration Preparation
	5.1.3 Start Servers
	5.1.4 Start Clients

	5.2 Elan to TCP routing
	5.2.1 Modprobe.conf
	5.2.2 LMC configuration preparation
	5.2.3 Start servers
	5.2.4 Start clients

	Chapter II – 6. Failover
	6.1 What is Failover?
	6.1.1 The Power Management Software
	6.1.2 Power Equipment
	6.1.3 Heartbeat
	6.1.3.1 Roles of Nodes in a Failover

	6.2 OST Failover Review
	6.3 MDS Failover Review
	6.4 Configuring MDS and OSTs for Failover
	6.4.1 Starting / Stopping a Resource
	6.4.2 Active/Active Failover Configuration
	6.4.3 Hardware Configurations
	6.4.3.1 Hardware Preconditions

	6.5 Instructions for Failover Setup with Heartbeat Version1
	6.5.1 Software Installations
	6.5.1.1 Lustre Configuration
	6.5.1.2 Heartbeat Configuration

	6.5.2 Mon (Status Monitor)
	6.5.2.1 Mon Setup and Configuration

	6.5.3 Scripts
	6.5.3.1 auth.cf
	6.5.3.2 fail_lustre.alert
	 6.5.3.3 ha.cf
	6.5.3.4 haresources
	6.5.3.5 lustre.mon.trap
	6.5.3.6 lustre-resource-monitor
	6.5.3.7 mon.cf
	6.5.3.8 mon.init
	6.5.3.9 mon.trap
	6.5.3.10 S99mon.patch
	6.5.3.11 simple.health_check.monitor

	6.6 Instructions for Failover Setup with Heartbeat Version2
	6.6.1 Software Installations
	6.6.2 Hardware Configurations
	6.6.2.1 Hardware Preconditions
	6.6.2.2 Lustre Configuration
	 6.6.2.3 Heartbeat Configuration

	6.6.3 Operation
	6.6.4 Scripts
	6.6.4.1 ha.cf
	6.6.4.2 haresources
	6.6.4.3 basic.cib.xml
	6.6.4.4 Modified basic.cib.xml
	6.6.4.5 HA with STONITH
	6.6.4.6 Heartbeart CIB with basic STONITH

	6.7 Considerations With Failover Software and Solutions

	Chapter II – 7. Configuring Quotas
	7.1 Working with Quotas
	7.1.1 Configuring Disk Quotas
	7.1.2 Creating Quota Files and Quota Administration
	7.1.3 Quota Allocation

	Chapter II – 8. RAID
	8.1 Considerations for Backend Storage
	8.1.1 Reliability
	8.1.2 Selecting Storage for the MDS and OSS
	8.1.3 Understanding Double Failures with Hardware and Software RAID5
	8.1.4 Performance considerations
	8.1.5 Formatting

	8.2 Disk Performance Measurement
	8.2.1 Sample Graphs
	8.2.1.1 Graphs for Write Performance:
	8.2.1.2 Graphs for Read Performance:

	Chapter II – 9. Bonding
	9.1 Network Bonding
	9.2 Requirements
	9.3 Bonding Module Parameters
	9.4 Setup
	9.4.1 Examples

	9.5 Lustre Configuration
	9.6 References

	Part III. Lustre Tuning, Monitoring and Troubleshooting
	Chapter III – 1. Lustre I/O Kit
	1.1 Prerequisites
	1.2 Running the I/O Kit Tests
	1.2.1 sgpdd_survey
	1.2.2 obdfilter_survey
	1.2.3 ost_survey

	Chapter III – 2. LustreProc
	2.1 Introduction
	2.1.1 /proc Entries for Lustre
	2.1.1.1 Recovery
	2.1.1.2 Lustre timeouts/ debugging

	 2.2 Input/output
	2.2.1 Client Input/output RPC Stream Tunables
	2.2.2 Watching the Client RPC Stream
	2.2.3 Watching the OST Block Input/output Stream
	2.2.4 mballoc History

	2.3 Locking
	2.4 Debug Support
	2.4.1 RPC Information for Other OBD Devices

	Chapter III – 3. Lustre Tuning
	3.1 Module Options
	3.1.1 OST Threads
	3.1.2 MDS Threads
	3.1.3 LNET Tunables

	3.2 DDN Tuning
	3.2.1 Settings
	3.2.1.1 Segment Size
	3.2.1.2 maxcmds
	3.2.1.3 Write-back Cache
	3.2.1.4 Further Tuning Tips

	Chapter III – 4. Lustre Troubleshooting and Tips
	4.1 Tips

	Part IV. Lustre for Users
	Chapter IV – 1. Free Space and Quotas
	1.1 Querying File System Space
	1.2 Using Quota

	Chapter IV – 2. Striping and Other I/O Options
	2.1 File Striping
	2.1.1 Advantages of Striping
	2.1.2 Disadvantages of Striping
	2.1.3 Stripe Size

	2.2 Displaying Striping Information with lfs getstripe
	2.3 lfs setstripe – Setting Striping Patterns
	2.3.1 Changing Striping for a Subdirectory
	2.3.2 Using a Specific Striping Pattern for a Single File

	2.4 Performing Direct Input/output
	2.4.1 Making File System Objects Immutable

	2.5 Other Input/output Options
	2.5.1 MDS Space Utilization
	2.5.2 End to End Client Checksums

	Chapter IV – 3. Lustre Security
	3.1 Using Access Control Lists
	3.1.1 How do ACLs work?
	3.1.2 Lustre ACLs
	3.1.3 Examples

	Chapter IV – 4. Other Lustre Operating Tips
	4.1 Expanding the File System by Adding OSTs
	A simple data migration script

	Part V. Reference
	Chapter V – 1. User Utilities (man1)
	1.1 lfs
	1.1.1 Synopsis
	1.1.2 Description
	1.1.3 Examples

	Chapter V – 2. Lustre Programming Interfaces (man3)
	2.1 Introduction
	2.2 User/Group Cache Upcall
	2.2.1 Name
	2.2.2 Description
	2.2.3 Parameters
	2.2.4 Data structures

	Chapter V – 3. Config Files and Module Parameters (man5)
	3.1 Introduction
	3.2 Module Options
	3.2.1 LNET Options
	3.2.1.1 Network Topology
	3.2.1.2 networks ("tcp")
	3.2.1.3 routes (“”)
	3.2.1.4 forwarding ("")

	3.2.2 SOCKLND Kernel TCP/IP LND
	3.2.3 QSW LND
	3.2.4 RapidArray LND
	3.2.5 VIB LND
	3.2.6 OpenIB LND
	3.2.7 Portals LND (Linux)

	Chapter V – 4. System Configuration Utilities (man8)
	4.1 lmc
	4.1.1 Synopsis
	4.1.2 Description
	4.1.3 Examples

	4.2 lconf
	4.2.1 Synopsis
	4.2.2 Description
	4.2.3 Examples

	4.3 lctl
	4.3.1 Synopsis
	4.3.2 Description
	4.3.3 Examples

	Chapter V – 5. System Limits
	5.1 Introduction
	5.1.1 Maximum Stripe Count
	5.1.2 Maximum Stripe Size
	5.1.3 Minimum Stripe Size
	5.1.4 Maximum Number of OSTs and MDSs
	5.1.5 Maximum Number of Clients
	5.1.6 Maximum Size of a File System
	5.1.7 Maximum File Size
	5.1.8 Maximum Number of Files or Subdirectories in a Single Directory
	5.1.9 MDS Space Consumption
	5.1.10 Maximum Length of a Filename and Pathname

	Appendixes
	Appendix I: Upgrading from 1.4.5
	Portals and LNET Interoperability
	Portals Compatibility Parameter
	Upgrade a Cluster Using Shut Down
	Upgrading a Cluster “Live”
	Upgrading from 1.4.5

	Feature List
	Task List
	Glossary
	Alphabetical Index
	Version Log

