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Executive Summary
The computational performance of High Performance Computing (HPC) systems 
is rapidly increasing. Each year, the performance of supercomputing sites in the 
Top500 list doubles. At this rate, we can expect the deployment of production-
level exaflop systems within the next 10 years. This paper discusses this trend 
and the challenges it presents to delivering high-performance I/O for HPC 
systems. In particular, this paper identifies scalability issues in the Lustre file 
system that must be addressed to successfully support exascale systems, and it 
presents several approaches to address these issues.

HPC Trends
Steadily increasing demands for computing capability in the HPC community 
have been met by creating systems with ever larger numbers of processing 
elements. Today's high-end computer systems consist of clusters with thousands 
or tens of thousands of nodes. These clusters have successfully met the demand 
for computing capacity that has outpaced the growth of single processor 
performance.

While the growth in processor performance has lagged the growth in compute 
demand, the growth in I/O performance of disk drives has lagged far behind 
improvements in processor performance. To provide the I/O bandwidth required 
for large HPC centers, storage systems with very large numbers of disk drives 
are being deployed. As processor performance improvements continue to 
exceed disk drive bandwidth improvements, the ratio of the number of disk drives 
to compute nodes will continue to grow. With this growth, the cost of drives and 
other storage system components will become an increasing percentage of 
system cost.

Increasingly, HPC customers want to implement solutions that provide shared 
access to a common pool of storage for all systems in a data center, rather than 
directly attach storage to individual systems. This design enables better 
utilization of the storage system and makes it easier to move users and workload 
from one system to another. Centralizing a storage solution in this way greatly 
increases the importance of a high-performance, reliable storage system. When 
the shared storage system is degraded or down, the entire site is affected.

Lustre Center of Excellence – Oak Ridge National Laboratory
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Very large component counts1 in current and planned HPC systems also create 
issues for the storage system. A recent study2 showed average annual 
replacement rates of 3% for disk drives in large HPC sites and a minimum 
processor failure rate of .1 failures per processor per year. Applying these results 
to a site with 25,000 drives and 50,000 processor sockets, one could expect 
2 drive failures and 13 processor failures per day. 

Large HPC sites must continue to operate in the presence of component failures. 
Applications running on these systems write checkpoint files at frequent intervals 
(every 1 to 2 hours), so they can restart from a known, recent state if they are 
interrupted. These checkpoint files have become a major portion of the 
I/O workload.

As these trends continue, the following issues have become more significant:

• I/O performance is becoming the key constraint on overall system 
performance. The storage system has to effectively aggregate I/O to and from 
tens or hundreds of thousands of compute nodes and disk drives, as well as 
enable administrators to manage them effectively.

• If I/O bandwidth is the limiting resource in system performance, then 
mechanisms must be provided to allocate this resource among users and jobs 
(much as CPU cycles are allocated today).

• The storage system must function in the presence of constant component 
failures and nearly continuous drive reconstructions.

• The storage system must enable the effective administration of configurations 
containing trillions of files and hundreds of thousands of drives.

Lustre File System

Today, Lustre is the leading clustered file system in the HPC market. Lustre 
effectively scales to support systems with tens of thousands of compute nodes. 
As HPC systems increase node counts to increase overall performance, Lustre is 
challenged to scale even further. To prepare for this challenge, this paper 
identifies the obstacles to scale Lustre to support 1,000,000 application nodes 
and high-level approaches to overcoming these obstacles. It also discusses key 
issues in the areas of Lustre architecture, operation, performance improvements 
and RAS.

1 A “very large component count” is tens of thousands of compute nodes and disk drives, and 
associated components, such as routers and cables.

2 Understanding Failures in Petascale Computers, Bianca Schroeder, Garth A. Gibson, SciDAC 
2007 Journal of Physics: Conference Series 78 (2007) 012022.
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HPC Center of the Future
Scaling a storage system to support 1,000,000 or more application nodes raises 
issues beyond simply enabling this number of nodes. To place this goal in 
context, this section describes the high-level configuration of a hypothetical HPC 
center of the future.

This hypothetical HPC site will have several large computing clusters that share 
access to a single Lustre storage cluster. In this example, the systems are:

• Capability - A 500,000 node compute cluster used for Grand Challenge-type 
problems.

• Capacity - Three systems used for throughput workloads:

— Capacity 1 - 250,000 nodes

— Capacity 2 - 150,000 nodes

— Capacity 3 - 50,000 nodes

• Test - A 25,000 node system used as a development and test platform.

• Viz 1 and Viz 2 - Two visualization clusters used to drive very large display 
devices.

Lustre Center of Excellence – Oak Ridge National Laboratory
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All of these systems connect to a large shared Lustre Storage Cluster through a 
shared high-performance network. The network is attached to a tape archive 
used to back up the Lustre Storage System. It is also connected to external 
networks (WAN, Internet, etc.). 

The Shared Storage System is a Lustre Storage Cluster consisting of tens of 
thousands of disk drives with a storage capacity of hundreds of petabytes. The 
drives are attached to hundreds of Object Storage Servers (OSSs). The 
metadata is housed on a cluster of Metadata Servers (MDSs). The storage 
system provides aggregate bandwidth of 10 TB/sec (sustained over a 10-minute 
interval).

Connecting these different systems to shared storage enables data sharing 
between the systems, makes it easier for users to move their applications from 
system to system, and simplifies the addition or removal of large systems to the 
HPC center because data management is decoupled from the compute systems. 

Architectural Improvements to Lustre Scalability
This section identifies the architectural and functional enhancements needed to 
improve Lustre scalability to the point where it can support 1,000,000 clients. 
Currently, there are two main architectural limits to Lustre’s scalability.

The first limitation is that only one MDS can be active in a Lustre file system at a 
given time. This means that metadata operations can be processed only as 
quickly as a single server can manage. To date, this has not been a serious 
limitation, and it has been addressed by selecting an MDS that is capable of 
handling the required load. However, as a Lustre system scales, a single MDS 
becomes a bottleneck. This issue is being addressed by the addition of Clustered 
Metadata Server (CMD) functionality to Lustre.

The second limitation is the flat nature of the current Lustre communications 
model. In a Lustre cluster, all Lustre clients must communicate with all Lustre 
servers. This many-to-many communication pattern reduces scalability. Adding a 
hierarchy to Lustre communications addresses this concern. There are two 
independent approaches to creating such a hierarchy, proxy servers and I/O 
forwarding.

Lustre Center of Excellence – Oak Ridge National Laboratory
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CMD Functionality

With CMD functionality, a collection of metadata servers manages the file 
system's metadata operations. Each MDS manages a set of directories in the file 
system. A hash function, based on a directory's name, determines which MDS 
will manage the directory and its contents. The MDSs are connected to one 
another in failover pairs to deal with MDS failures.

While there is some overhead in CMD compared to a single, active metadata 
server, the majority of metadata operations are still performed on a single MDS, 
so performance is the same as a system with a single MDS. Operations involving 
more than one server can occur in parallel.

Communications Hierarchy

Lustre's many-to-many communication pattern reduces scalability. Adding a 
hierarchy, such as proxy servers or I/O forwarding, to Lustre communications 
addresses this concern. Both of these mechanisms effectively reduce the 
number of clients visible to the Lustre file system, and improve the opportunity to 
consolidate requests.

Proxy Servers 

Proxy servers are a layer of servers between the OSSs and the Lustre clients. 
The proxy servers appear as a Lustre file system to the clients, and appear as 
Lustre clients to the parent servers. The proxy servers cache data and aggregate 
I/O and lock requests. This mechanism can reduce packet handling on the 
network by replacing hundreds of individual requests with a single aggregated 
request.

Lustre Center of Excellence – Oak Ridge National Laboratory
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I/O Forwarding

I/O forwarding mechanisms are used in some clusters to forward I/O requests 
from application nodes to dedicated I/O nodes. IBM's Blue Gene system uses I/O 
forwarding, and it is also available on some Cray systems. In a Lustre system 
using I/O forwarding, the Lustre client is only installed on the dedicated I/O 
nodes. This significantly reduces the number of Lustre clients to be serviced. 
The I/O forwarders enable the Lustre clients to which they connect to aggregate 
I/O from multiple application nodes. The I/O forwarders also reduce the number 
of Lustre clients in a system and the amount of state information that the Lustre 
servers need to track. (For example, IBM uses a ratio of 64 application nodes to 
1 I/O node; the reduction in the number of Lustre clients is substantial.)

These I/O forwarding mechanisms will need to be modified to better integrate 
with future Lustre features. For example, when ZFS support is added to Lustre, 
ZFS checksumming capability will need to be added to ensure end-to-end data 
integrity. The Lustre team may partner with other vendors to introduce this 
functionality to the I/O forwarding software or, if the technique is deemed 
valuable enough, we may develop I/O forwarding capability specific to Lustre. 
Additionally, liblustre could be adapted to include this functionality.

Proxy servers and I/O forwarding functionality can be used independently or in 
combination. For example, the 1,000,000 nodes in the HPC center of the future 
could communicate with 20,000 Lustre proxy servers through I/O forwarders. 

Lustre Center of Excellence – Oak Ridge National Laboratory
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This would enable the parent servers in the Lustre file system to see and service 
requests from 20,000 clients.

Resource Management and Performance 
Enhancements
In addition to the architectural features discussed above, Lustre scalability will be 
enhanced by performance improvements to existing areas of the system, and by 
adding functionality to manage and tune system performance.

SMP Scalability

System-wide Lustre scalability can be enhanced by improving the efficiency and 
scalability of individual Lustre servers. Scalability improvements are being 
achieved with the introduction of improved functionality. Two examples are:

• Finer granularity locks. Currently in Lustre, LNET has one global lock. LNET 
operations that require locking are, therefore, essentially single threaded. The 
SMP performance of LNET will be improved by replacing a single global lock 
with multiple locks, to enable greater parallelism and scalability of LNET 
operations.

• CPU affinity. At the LND level, keeping the processing of given peers on 
particular CPU cores has resulted in substantial performance improvements. 
This improvement could be extended into a generic facility, so all levels of the 
software do this identically.

Metadata Writeback Cache

Metadata writeback cache is a mechanism to cache metadata operations in a 
manner similar to existing caches for data operations, such as client data cache. 
It enables a client to cache metadata operations to a server (instead of sending 
them immediately), simulate their local effects, and later send a batched 
description of the cached operations to the server for execution. Writeback cache 
offers these advantages:

• Improved network efficiency because of the batched transfer of metadata 
operations.

• Decreased workload and more efficient operations execution on the server.

• Greater concurrency on the client.

• Client operation without communication to/from the MDS. (Note: This requires 
a suitable locking mechanism, such as sub-tree locking.)

Lustre Center of Excellence – Oak Ridge National Laboratory
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Network Request Scheduler

The Network Request Scheduler (NRS) manages incoming RPC requests on a 
Lustre server, providing improved and more consistent performance. The NRS 
re-orders request execution to avoid client starvation and to present a workload 
to the backend file system that can be optimized more easily. This is analogous 
to the disk elevator feature in the Linux kernel which allows I/O requests to sit in 
a queue, so the I/O scheduler can coalesce requests and improve throughput. 
Unlike the disk elevator, NRS does not require bulk data buffers to be allocated 
in memory to schedule the I/O, so it has lower memory requirements.

NRS implements an allocation policy to give clients a fair share of the servers' 
resources. Extending NRS to enforce a global allocation policy is one way to 
implement Quality of Service (QoS). Potentially, NRS could be extended to 
throttle the request load from clients, thereby avoiding server overload and 
degradations in responsiveness and performance.

Channel Bonding

Lustre channel bonding combines multiple, physical Network Interfaces (NIs) into 
a single, logical NI. The bonded NIs do not need to be the same type; for 
example, Ethernet and InfiniBand networks can be bonded together. Channel 
bonding can be used in two modes. In standby mode, one NI is active; 
communication fails over to a spare NI if the active NI fails. In load-balancing 
mode, communication is distributed across all of the bonded NIs, according to 
the load-balancing policy.

RAS

In a file system of the size being discussed, with hundreds of thousands of disk 
drives and thousands of servers, some components will be in a degraded or 
failed state at any given time. For example, a system with 200,000 drives could 
expect replacement of 2,000 or more drives per year. Studies have shown that at 
large HPC sites, annual replacement rates of drives increase over time and can 
approach 5% a year after several years. Meeting this challenge with an effective 
Reliability, Availability and Serviceability (RAS) strategy is a vital part of system 
scalability.

Lustre Center of Excellence – Oak Ridge National Laboratory
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Virtual Health Network

Today, Lustre server failures are detected by RPC timeouts. The RPC timeout 
period tends to be long, to avoid confusing network congestion with server 
failure. Long timeout periods can result in large delays in detecting and 
recovering from failures. 

To address this issue, investigation is underway to add a virtual health network to 
LNET that provides a specific mechanism to monitor the storage cluster's health. 
Traffic on the health network would have a higher priority than other LNET traffic, 
and would not be delayed by congested “normal” communication. This network 
would enable the prompt detection of server or client failures and the rapid 
removal of communication associated with a failed client or server from the 
network, as well as prompt notification to clients about recovered servers. This 
mechanism should improve failover/recovery times from tens of minutes (or 
longer) to seconds. One enhancement under consideration is adding network 
priority levels to improve lock conflict resolution.

Rebuild Performance

When disk failures occur, it is important that recovery (the rebuild of the RAID 
group) occur as quickly as possible. This reduces the risk of a second drive 
failure occurring in the same group of disks while the rebuild is in progress. The 
other important aspect of disk rebuilding is that the process minimally impact the 
normal operation of the disk group. Both of these concerns are being addressed 
by the addition of declustered parity and distributed sparing functionality to 
Lustre. This functionality will spread the rebuild load across multiple disks.

ZFS

Lustre's current node file system, ext3, has several limitations. It is limited to an 
8 TB maximum file system size and it offers no guarantee of data integrity.

To improve the reliability and resilience of the underlying file system on the OSS 
and MDS components, Lustre will add ZFS support. Lustre supporting ZFS will 
offer a number of advantages, such as improved data integrity with transaction-
based, copy-on-write operations and end-to-end checksumming on every block. 
Copy-on-write means that ZFS never overwrites existing data. Changed 
information is written to a new block, and the block pointer to in-use data is only 
moved after the write transaction is completed. This mechanism is used all the 
way up to the file system block structure at the top block. To avoid data 
corruption, ZFS performs end-to-end checksumming. The checksum is not stored 
with the data block, but rather in the pointer to the block. 

Lustre Center of Excellence – Oak Ridge National Laboratory
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All checksums are done in server memory, so errors not caught by other file 
systems are detected in ZFS, such as:

• Phantom writes, where the write is dropped on the floor.

• Misdirected reads or writes, where the disk accesses the wrong block.

• DMA parity errors between the array and server memory (or from the driver), 
since the checksum validates data inside the array.

• Driver errors, where data winds up in the wrong buffer inside the kernel.

• Accidental overwrites, such as swapping to a live file system, are all detected 
by ZFS.

In Lustre, data checksumming will be done by the Lustre client on the application 
node. This will detect any data corruption introduced into the network between 
the application node and the disk drive in the Lustre storage system. In testing, 
Lustre data checksumming has detected previously unknown problems in 
network cards. These cards silently introduced data corruption that went 
undetected without Lustre data checksumming.

An implementation note: ZFS support is being developed and tested with a user 
space implementation of the ZFS DMU. In the future, the DMU will run in kernel 
space. Also, the Lustre DMU code is almost entirely common with the Solaris 
version of ZFS, so Lustre support for ZFS will closely parallel the Solaris release 
of ZFS.

Lustre support of ZFS will offer several specific advantages:

• ZFS is self-healing - In a mirrored or RAID configuration, ZFS not only detects 
data corruption, but it automatically corrects the bad data.

• Improved administration - Because ZFS detects and reports data corruption 
on all read and write errors at the block level, it is easier for system 
administrators to quickly identify which hardware components are corrupting 
data.

• SSD support - ZFS supports the addition of high-speed I/O devices, such as 
SSDs, to the storage pool. The Read Cache Pool or L2ARC acts as a cache 
layer between memory and the disk. This support can substantially improve 
the performance of random read operations.

• Scalability - ZFS is a 128-bit file system. This means that current restrictions 
on maximum size file systems for a single MDS or OST, maximum stripe size, 
maximum number of files, fixed number of inodes in the MDS file system, and 
maximum size of a single file will be removed. ZFS support will also remove 
the current 8 TB limitation on LUNs.

Lustre Center of Excellence – Oak Ridge National Laboratory
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RAS Database

Lustre's RAS strategy needs more than a reliable, redundant, scalable 
architecture; it requires a software component to provide status, diagnostics and 
an overall view of the system. The software component under consideration is a 
RAS Database (RASd).

Primarily, this database would contain real-time information regarding the 
cluster's status, node status (up/down, available to be scheduled, etc.), physical 
locations of nodes (rack number, coordinate location, chassis number, slot 
number, etc.), inventory of support hardware (InfiniBand switches, PDUs, etc.), 
etc. Ideally, the RAS database would contain as much information about software 
status (e.g., process states, job states, operating system health, etc.) as about 
hardware status (e.g., memory errors, fan speed, CPU temperatures, etc.). 
This database would use as much automation as possible to populate its initial 
information. While the system is in use, RASd information will be updated by a 
mechanism that impacts the system as little as possible.

Much like a hardware RAS solution is incomplete without a software counterpart, 
the RAS database is incomplete without tools to use the information it contains. 
These tools can monitor information in the database, look for events, or even 
implement, over time, ways to data mine information and help predict errors 
before they occur. The database could also be used to manipulate the node's 
states; for example, send reboot or power cycle signals to the hardware in 
question. Additionally, the database could be used as a way to provide node 
availability or suggestions to the job scheduler used on the system, to better 
increase overall system use.

Arguably, the most important piece of the RAS software solution is its 
redundancy and availability. Access to the RASd information and its tools will 
need to be granted securely to any service node in the system, not just for ease 
of use, but also to provide redundant access in case of problems. In addition, the 
database itself will need to be replicated and mirrored, with updates made 
simultaneously to all clones (so the state is consistent between them). This 
provides confidence that at any time the system could switch between these 
clones and continue to function. Lastly, a good backup and restore method 
needs to be available to allow for a quicker recovery if an unforeseen, 
catastrophic event occurs.

Lustre Center of Excellence – Oak Ridge National Laboratory
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The proposed RASd system will be based on a MySQL database. The RASd 
database will capture the following types of information:

• Machine topology – Basic node information including node type, hostname, 
IP address and physical location.

• System inventory – Information on nodes, switches, PDUs and any other 
support hardware, including associated IP addresses.

• System state – Availability of nodes in the system (up/down, running, etc.).

The RASd database is not limited to these types of data; it can be populated with 
even more useful information.

Operational Issues
This section identifies issues with the administration and operation of an 
extremely large-scale Lustre system.

Lustre HSM

Lustre HSM, a collaborative project between CEA and the Sun Lustre team, will 
provide an interface between Lustre and the hierarchical storage system. HPSS 
will be the initial system supported by Lustre HSM, with others, such as 
SAM/QFS to follow.

Tiered Storage

The combination of Lustre HSM's ability to connect a Lustre file system to an 
archive system such as HPSS, and ZFS’s ability to manage SSD storage as 
cache, provides a basic capability for system administrators to map Lustre to 
tiered storage. Effective management of a tiered storage system with Lustre will 
require the implementation of a policy manager that enables the system 
administrator to specify policies, such as which directories or systems to map to 
which class of storage device. A Policy Manager will be implemented as part of 
the HSM project, and it is likely that this will form the basis of future Lustre policy-
based file system management.
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