

Peter J. Braam CMU, Stelias Computing, Red Hat

Disclaimer

- Several people are involved:
 - Stephen Tweedie (Red Hat)
 - Michael Callahan (Stelias)
 - Larry McVoy (BitMover)
- Much of it is not new
 - Digital had it all and documented it!
 - IBM/SGI ... have similar stuff (no docs)

Content

What is this cluster fuzz about?

- Linux cluster design
- Distributed lock manager

- Linux cluster file systems
- Lustre: the OBSD cluster file system

Cluster Fuz

Clusters - purpose

Assume:

- Have a limited number of systems
- On a secure System Area Network

Require:

- A scalable almost single system image
- Fail-over capability
- Load-balanced redundant services
- Smooth administration

Precursors – ad hoc solutions

- WWW:
 - Piranha, TurboCluster, Eddie, Understudy:
 - 2 node group membership
 - Fail-over http services
- Database:
 - Oracle Parallel Server
- File service
 - Coda, InterMezzo, IntelliMirror

Ultimate Goal

- Do this with generic components
- OPEN SOURCE
- Inspiration: VMS VAX Clusters
- New:
 - Scalable (100,000's nodes)
 - Modular

The Linux "Cluster Cabal":

- **Peter J. Braam** CMU, Stelias Computing, Red Hat (?)
- Michael Callahan Stelias Computing, PolyServe
- Larry McVoy BitMover
- **Stephen Tweedie** Red Hat

Who is doing what?

- Tweedie
 - Project leader
 - Core cluster services
- Braam
 - DLM
 - InterMezzo FS
 - Lustre Cluster FS

- McVoy
 - Cluster computing
 - SMP clusters
- Callahan
 - Varia
- Red Hat
 - Cluster apps & admin
- UMN
 - GFS: Shared block FS

Technology Overview

Modularized VAX cluster architecture (Tweedie)

Core

Support

Clients

Transition

Cluster db

Distr. Computing

Integrity

Quorum

Cluster Admin/Apps

Link Layer

Barrier Svc

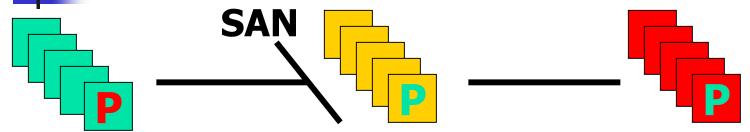
Cluster FS & LVM

Channel Layer

Event system

DLM

Components


- Channel layer comms: eth, infiniband
- Link layer state of the channels
- Integration layer forms cluster topology
- CDB persistent cluster internal state (e.g. sysid)
- Transition layer recovery and controlled startup
- Quorum who has enoug votes?

Events

- Cluster transition:
 - Whenever connectivity changes
 - Start by electing "cluster controller"
- Only merge fully connected sub-clusters
- Cluster id: counts "incarnations"
- Barriers:
 - Distributed synchronization points

Scalability – e.g. Red Hat cluster

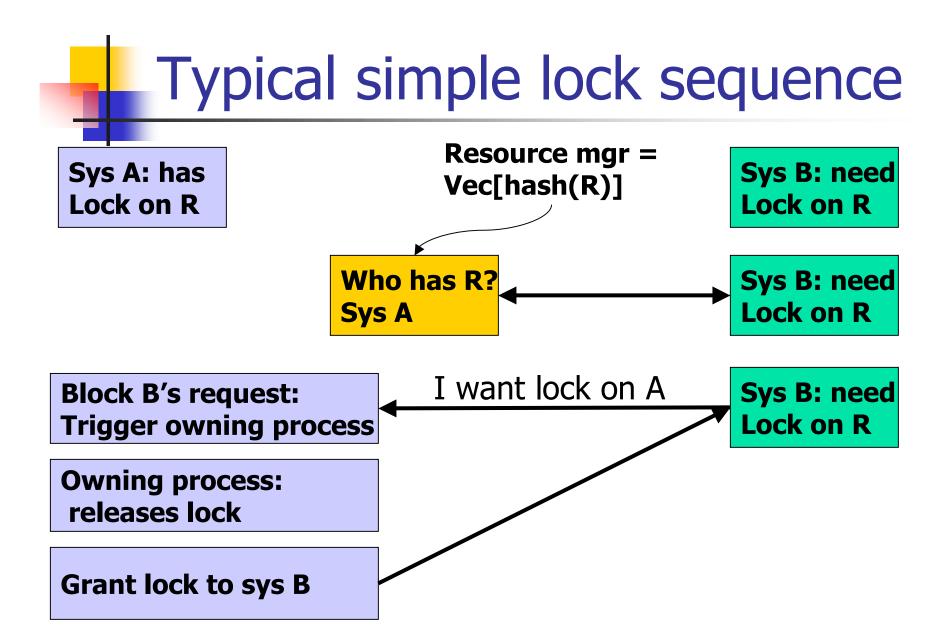
/redhat/usa

/redhat/scotland

/redhat/canada

- P = peer
 - Proxy for remote core cluster
 - Involved in recovery
- Communication
 - Point to point within core clusters
 - Routable within cluster
 - Hierarchical flood fill

- File Service
 - Cluster FS within cluster
 - Clustered Samba/Coda etc
- Other stuff
 - Membership / recovery
 - DLM / barrier service
 - Cluster admin tools


Distributed Lock Manager

Locks & resources

- Purpose: generic, rich lock service
- Will subsume "callbacks", "leases" etc.

- Lock resources: resource database
 - Organize resources in trees
- High performance
 - node that acquires resource manages tree

A few details...

- Six lock modes
 - Acquisition of locks
 - Promotion of locks
 - Compatibility of locks
- First lock acquisition
 - Holder will manage resource tree
- Remotely managed
 - Keep copy at owner

- Notifications:
 - On blocked requests
 - On release
- Recovery (simplified):
 - Dead node was:
 - Mastering resources
 - Owning locks
 - Re-master rsrc
 - Drop zombie locks

Based on object storage

Exploits cluster infrastructure and DLM

Cluster wide Unix semantics

What Is an OBSD?

- Object Based Storage Device
 - More intelligent than block device
- Speak storage at "inode level"
 - create, unlink, read, write, getattr, setattr
- Variety of OBSD types:
 - PDL style OBD's not rich enough for Lustre
 - Simulated, e.g. in Linux: lower half of an fs
 - "Real obds" ask disk vendors

Components of OB Storage

- Storage Object Device Drivers
 - class drivers attach driver to interface
 - Targets, clients remote access
 - Direct drivers to manage physical storage
 - Logical drivers for storage management
- object storage applications:
 - Object (cluster) file system: blockless
 - Specialized apps: caches, db's, filesrv

Object Based Disk File System (OBDFS)

/dev/obd1 mount on /mnt/obd type "obdfs"

Simulated Ext2 Direct OBD driver (obdext2)

/dev/obd1 of type "ext2" attached to /dev/hda2

SBD (e.g. IDE disk)

Object Based Database

Data on /dev/obd2

Raid0 Logical OBD Driver (obdraid0)

/dev/obd2
Type "raid0"
attached to
/dev/obd3 & 4

Direct SCSI OBD

/dev/obd3

Direct SCSI OBD

/dev/obd4

Clustered Object Based File System on host A

Mount of /dev/obd2▼ FS type "lustre"

OBD Client Driver Type SUNRPC

/dev/obd2 Type "rpcclient"

Both targets are Attached to /dev/obd3

Clustered Object
Based File System
on host B

Mount of /dev/obd2 FS type "lustre"

OBD Client Driver Type VIA

' /dev/obd2 Type "viaclient"

OBD Target
Type SUNRPC

OBD Target
Type VIA

/dev/obd3

Direct SCSI OBD

Monolithic File system

Buffer cache

Object File System:

- file/dir data: lookup
- set/read attrs
- remainder:ask obsd

Page Cache

Device Methods

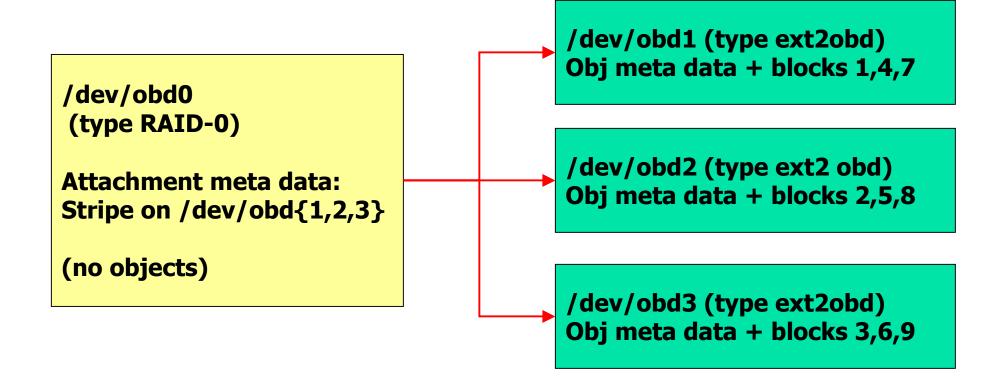
Object based storage device

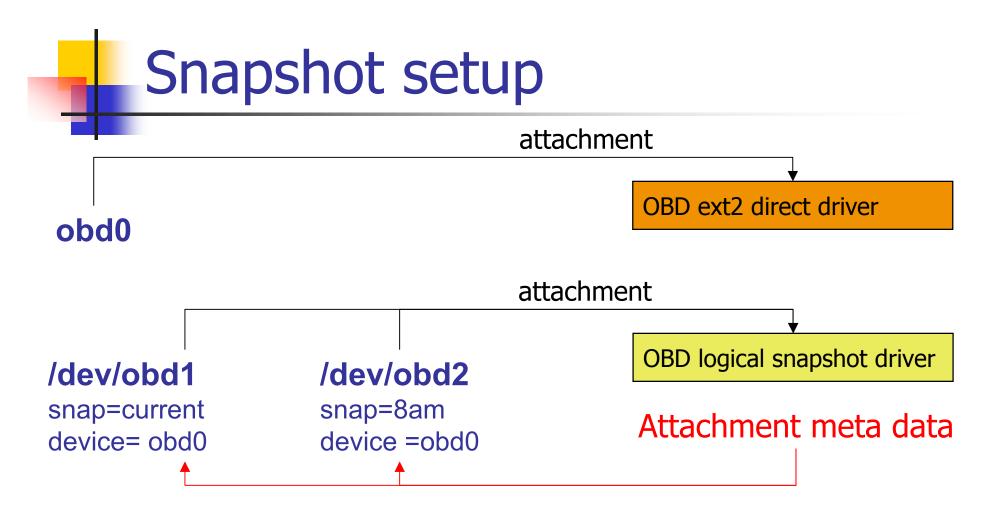
- all allocation
- all persistence

Why This Is Better...

Clustering

Storage management


Storage Management

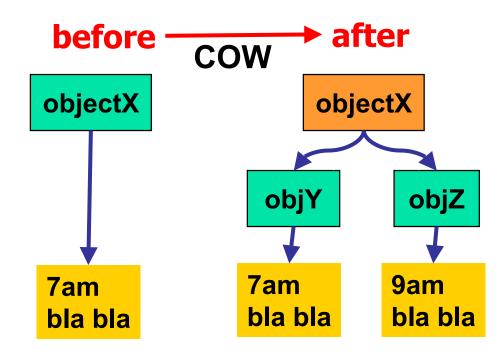

- Many problems become easier:
 - File system snapshots
 - Hot file migration
 - Hot resizing
 - Raid
 - Backup

LOVM: can do it all - Raid

Logical Object Volume Management:

Result:

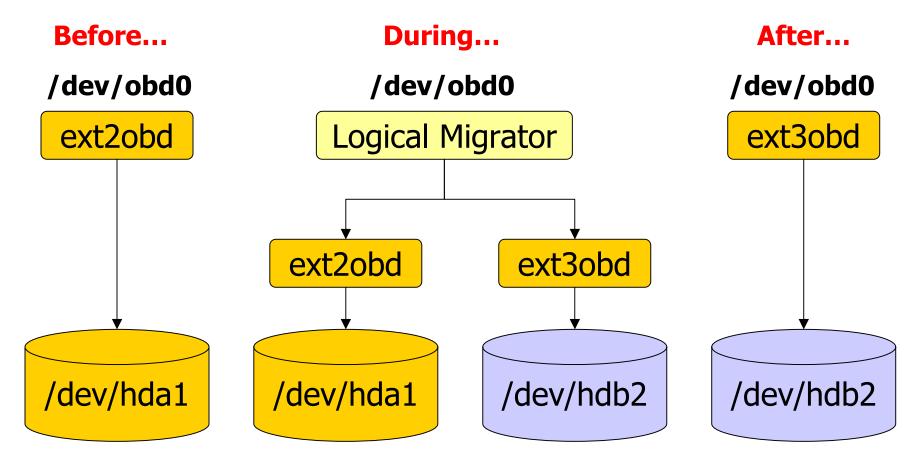
- /dev/obd2 is read only clone
- /dev/obd1 is copy on write (COW) for 8am


Snapshots in action

OBDFS

- mount /dev/obd1 /mnt/obd
- mount /dev/obd2 /mnt/obd/8am

Snap_write


- Modify /mnt/obd/files
- Result:
 - new copy in /mnt/obd/files
 - old copy in /mnt/obd/8am

Hot data migration:

Key principle: dynamically switch device types

Lustre File System

■ Lustre ~ Linux Cluster

- Object Based Cluster File System
 - Based on OBSD's

- Symmetric no file manager
- Cluster wide Unix semantics: DLM
- Journal recovery etc.

Benefits of Lustre design

- space & object allocation
 - Managed where it is needed !!
- consequences
 - IBM (Devarakonda etc): less traffic
 - Much simpler locking

Others...

Coda:

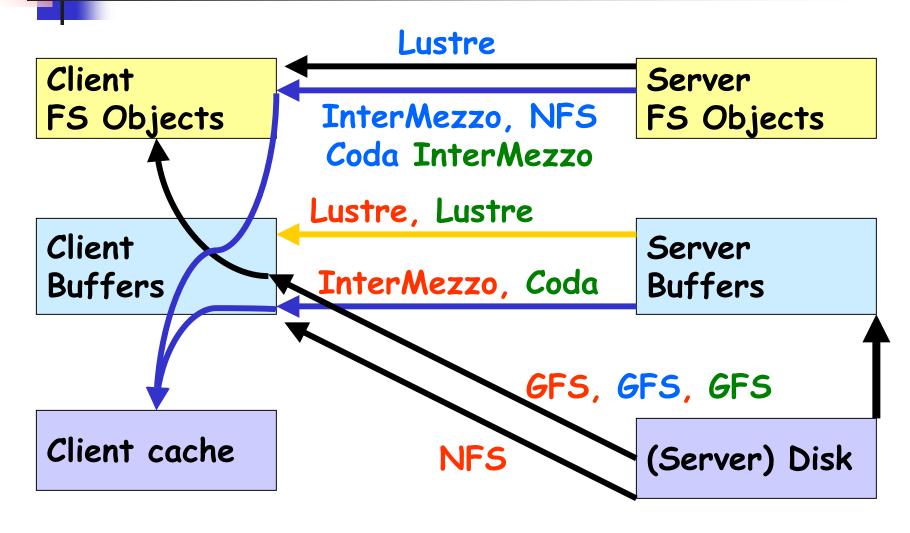
mobile use, server replication, security

GFS:

shared storage file system, logical volumes

InterMezzo:

Smart "replicator". Exploits disk fs.


Lustre

- shared storage file system
- likely best with smarter storage devices

NFS

Conclusions

- Linux needs this stuff
 - Badly
- Relatively little literature
 - cluster file systems
 - DLMs
- Good opportunity to innovate