
Linux
Clustering &
Storage Management

Peter J. Braam
CMU, Stelias Computing, Red Hat

Disclaimer
� Several people are involved:

� Stephen Tweedie (Red Hat)
� Michael Callahan (Stelias)
� Larry McVoy (BitMover)

� Much of it is not new –
� Digital had it all and documented it!
� IBM/SGI ... have similar stuff (no docs)

Content
� What is this cluster fuzz about?

� Linux cluster design
� Distributed lock manager

� Linux cluster file systems
� Lustre: the OBSD cluster file system

Cluster Fuz

Clusters - purpose
� Assume:

� Have a limited number of systems
� On a secure System Area Network

� Require:
� A scalable almost single system image
� Fail-over capability
� Load-balanced redundant services
� Smooth administration

Precursors – ad hoc solutions
� WWW:

� Piranha, TurboCluster, Eddie, Understudy:
� 2 node group membership
� Fail-over http services

� Database:
� Oracle Parallel Server

� File service
� Coda, InterMezzo, IntelliMirror

Ultimate Goal
� Do this with generic components
� OPEN SOURCE
� Inspiration: VMS VAX Clusters
� New:

� Scalable (100,000’s nodes)
� Modular

The Linux “Cluster Cabal”:

� Peter J. Braam – CMU, Stelias Computing, Red Hat (?)

� Michael Callahan – Stelias Computing, PolyServe

� Larry McVoy – BitMover

� Stephen Tweedie – Red Hat

� Who is doing what?

� Tweedie
� Project leader
� Core cluster services

� Braam
� DLM
� InterMezzo FS
� Lustre Cluster FS

� McVoy
� Cluster computing
� SMP clusters

� Callahan
� Varia

� Red Hat
� Cluster apps & admin

� UMN
� GFS: Shared block FS

Technology Overview

Modularized VAX cluster architecture (Tweedie)

Channel Layer

Integrity

Link Layer

Transition Cluster db

Barrier Svc

Event system

Quorum

DLM

Cluster Admin/Apps

Cluster FS & LVM

Distr. Computing

Core Support Clients

Components

� Channel layer - comms: eth, infiniband

� Link layer - state of the channels

� Integration layer - forms cluster topology

� CDB - persistent cluster internal state (e.g. sysid)

� Transition layer - recovery and controlled startup

� Quorum - who has enoug votes?

Events
� Cluster transition:

� Whenever connectivity changes
� Start by electing “cluster controller”

� Only merge fully connected sub-clusters
� Cluster id: counts “incarnations”
� Barriers:

� Distributed synchronization points

Scalability – e.g. Red Hat cluster

/redhat/usa /redhat/scotland /redhat/canada

P PP

� P = peer
� Proxy for remote core cluster
� Involved in recovery

� Communication
� Point to point within core clusters
� Routable within cluster
� Hierarchical flood fill

� File Service
� Cluster FS within cluster
� Clustered Samba/Coda etc

� Other stuff
� Membership / recovery
� DLM / barrier service
� Cluster admin tools

SAN

Distributed Lock Manager

Locks & resources
� Purpose: generic, rich lock service
� Will subsume “callbacks”, “leases” etc.

� Lock resources: resource database
� Organize resources in trees

� High performance
� node that acquires resource manages tree

Typical simple lock sequence
Sys A: has
Lock on R

Sys B: need
Lock on R

Who has R?
Sys A

Sys B: need
Lock on R

Resource mgr =
Vec[hash(R)]

Block B’s request:
Trigger owning process

Sys B: need
Lock on R

I want lock on A

Owning process:
releases lock

Grant lock to sys B

A few details…
� Six lock modes

� Acquisition of locks
� Promotion of locks
� Compatibility of locks

� First lock acquisition
� Holder will manage
resource tree

� Remotely managed
� Keep copy at owner

� Notifications:
� On blocked requests
� On release

� Recovery (simplified):
� Dead node was:

� Mastering resources
� Owning locks

� Re-master rsrc
� Drop zombie locks

Lustre file system
� Based on object storage

� Exploits cluster infrastructure and DLM

� Cluster wide Unix semantics

What Is an OBSD ?
� Object Based Storage Device

� More intelligent than block device

� Speak storage at “inode level”
� create, unlink, read, write, getattr, setattr

� Variety of OBSD types:
� PDL style OBD’s – not rich enough for Lustre
� Simulated, e.g. in Linux: lower half of an fs
� “Real obds” – ask disk vendors

Components of OB Storage
� Storage Object Device Drivers

� class drivers – attach driver to interface
� Targets, clients – remote access
� Direct drivers – to manage physical storage
� Logical drivers – for storage management

� object storage applications:
� Object (cluster) file system: blockless
� Specialized apps: caches, db’s, filesrv

Object Based Disk
File System
(OBDFS)

Simulated Ext2
Direct OBD driver

(obdext2)

SBD
(e.g. IDE disk)

/dev/obd1 mount
on /mnt/obd
type “obdfs”

/dev/obd1 of type
“ext2” attached to
/dev/hda2

Object Based
Database

Raid0 Logical OBD
Driver (obdraid0)

Direct
SCSI OBD

Data on
/dev/obd2

/dev/obd2
Type “raid0”
attached to
/dev/obd3 & 4

Direct
SCSI OBD

/dev/obd3 /dev/obd4

Clustered Object
Based File System

on host A

OBD Client Driver
Type SUNRPC

Mount of /dev/obd2
FS type “lustre”

/dev/obd2
Type “rpcclient”

Direct SCSI OBD/dev/obd3

Clustered Object
Based File System

on host B

OBD Client Driver
Type VIA

Mount of /dev/obd2
FS type “lustre”

/dev/obd2
Type “viaclient”

OBD Target
Type SUNRPC

OBD Target
Type VIA

Both targets are
Attached to /dev/obd3

OBDFS

Monolithic
File system

Object File System:

• file/dir data: lookup
• set/read attrs
• remainder:ask obsd

Object based
storage device

• all allocation
• all persistence

Page
Cache

Device
Methods

Buffer cache

Why This Is Better…
� Clustering

� Storage management

Storage Management
� Many problems become easier:

� File system snapshots
� Hot file migration
� Hot resizing
� Raid
� Backup

LOVM: can do it all - Raid

Logical Object Volume Management:

/dev/obd0
(type RAID-0)

Attachment meta data:
Stripe on /dev/obd{1,2,3}

(no objects)

/dev/obd1 (type ext2obd)
Obj meta data + blocks 1,4,7

/dev/obd2 (type ext2 obd)
Obj meta data + blocks 2,5,8

/dev/obd3 (type ext2obd)
Obj meta data + blocks 3,6,9

Snapshot setup

� Result:
� /dev/obd2 is read only clone
� /dev/obd1 is copy on write (COW) for 8am

OBD ext2 direct driver

OBD logical snapshot driver

obd0

/dev/obd1
snap=current
device= obd0

/dev/obd2
snap=8am
device =obd0

attachment

attachment

Attachment meta data

Snapshots in action

� mount /dev/obd1 /mnt/obd
� mount /dev/obd2 /mnt/obd/8am

� Modify /mnt/obd/files

� Result:
� new copy in /mnt/obd/files
� old copy in /mnt/obd/8am

Snap_write

objectX

7am
bla bla

objectX

7am
bla bla

9am
bla bla

objY objZ

OBDFS

COWbefore after

Hot data migration:

/dev/hda1 /dev/hdb2/dev/hda1 /dev/hdb2

Logical Migratorext2obd

ext2obd ext3obd

ext3obd

/dev/obd0 /dev/obd0 /dev/obd0

Before… During… After…

Key principle: dynamically switch device types

Lustre File System

� Lustre ~ Linux Cluster

� Object Based Cluster File System
� Based on OBSD’s

� Symmetric - no file manager
� Cluster wide Unix semantics: DLM
� Journal recovery etc.

Benefits of Lustre design
� space & object allocation

� Managed where it is needed !!

� consequences
� IBM (Devarakonda etc): less traffic
� Much simpler locking

Others…
� Coda:

� mobile use, server replication, security
� GFS:

� shared storage file system, logical volumes
� InterMezzo:

� Smart “replicator”. Exploits disk fs.
� Lustre

� shared storage file system
� likely best with smarter storage devices

� NFS

Data Paths

Client
FS Objects

Server
Buffers

Server
FS Objects

Client
Buffers

(Server) DiskClient cache

Lustre, Lustre

InterMezzo, NFS
Coda InterMezzo

GFS, GFS, GFS

InterMezzo, Coda

File data
Inode meta data
Directory data

NFS

Lustre

Conclusions
� Linux needs this stuff

� Badly

� Relatively little literature
� cluster file systems
� DLMs

� Good opportunity to innovate

