Linux
Clustering &

!'_ Storage Management

Peter J. Braam
CMU, Stelias Computing, Red Hat

i Disclaimer

= Several people are involved:
= Stephen Tweedie (Red Hat)
= Michael Callahan (Stelias)
=« Larry McVoy (BitMover)

= Much of it is not new —

= Digital had it all and documented it!
« IBM/SGI ... have similar stuff (no docs)

i Content

= What is this cluster fuzz about?

= Linux cluster design
= Distributed lock manager

= Linux cluster file systems
= Lustre: the OBSD cluster file system

i Clusters - purpose

= Assume:
= Have a limited number of systems
= On a secure System Area Network
= Require:
= A scalable almost single system image
» Fail-over capability
= Load-balanced redundant services
= Smooth administration

i Precursors — ad hoc solutions

= WWW:

» Piranha, TurboCluster, Eddie, Understudy:
= 2 node group membership
= Fail-over http services

= Database:
= Oracle Parallel Server

= File service
= Coda, InterMezzo, IntelliMirror

i Ultimate Goal

= Do this with generic components
= OPEN SOURCE
= Inspiration: VMS VAX Clusters

= New:
= Scalable (100,000's nodes)
= Modular

The Linux “Cluster Cabal”:

Peter J. Braam — CMU, Stelias Computing, Red Hat (?)
Michael Callahan — Stelias Computing, PolyServe

Larry McVoy — BitMover
Stephen Tweedie — Red Hat

= Who is doing what?

Tweedie

= Core cluster services

Project leader

Braam

DLM
InterMezzo FS
Lustre Cluster FS

McVoy

= Cluster computing

= SMP clusters
Callahan

= Varia
Red Hat

= Cluster apps & admin
UMN

» GFS: Shared block FS

i Technology Overview

Modularized VAX cluster architecture (Tweedie)

Core Support Clients

Transition Cluster db Distr. Computing
Integrity Quorum Cluster Admin/Apps
Link Layer Barrier Svc Cluster FS & LVM
Channel Layer Event system DLM

‘L Components

Channel layer - comms: eth, infiniband

Link layer - state of the channels

Integration layer - forms cluster topology

CDB - persistent cluster internal state (e.g. sysid)
Transition layer - recovery and controlled startup

Quorum - who has enoug votes?

i Events

= Cluster transition:
= Whenever connectivity changes
« Start by electing “cluster controller”

= Only merge fully connected sub-clusters
= Cluster id: counts “incarnations”

= Barriers:
= Distributed synchronization points

‘L Scalability — e.g. Red Hat cluster

Ty L

[redhat/usa [redhat/scotland [redhat/canada
= P = peer = File Service
= Proxy for remote core cluster = Cluster FS within cluster
= Involved in recovery = Clustered Samba/Coda etc
= Communication = Other stuff
= Point to point within core clusters « Membership / recovery
= Routable within cluster = DLM / barrier service

= Hierarchical flood fill = Cluster admin tools

‘L Distributed Lock Manager

i Locks & resources

= Purpose: generic, rich lock service
= Will subsume “callbacks”, “leases” etc.

s Lock resources: resource database
= Organize resources in trees

= High performance
=« Node that acquires resource manages tree

i Typical simple lock sequence

Resource mgr =
Sys A: has Vec[hash(R?] Sys B: need
Lockon R / Lock on R
Who has R? > Sys B: need
Sys A Lockon R
Block B’s request: 1 Want lock on A Sys B: need
Trigger owning process Lock on R

Owning process:
releases lock

Grant lock to sys B

i A few details...

= Six lock modes = Notifications:
= Acquisition of locks = On blocked requests
= Promotion of locks = On release
=« Compatibility of locks

= First lock acquisition = Recovery (simplified):
= Holder will manage = Dead node was:
resource tree = Mastering resources

= Owning locks
= Re-master rsrc
= Drop zombie locks

= Remotely managed
= Keep copy at owner

i Lustre file system

= Based on object storage
= EXxploits cluster infrastructure and DLM

s Cluster wide Unix semantics

i What Is an OBSD ?

= Object Based Storage Device
= More intelligent than block device

= Speak storage at “inode level”
= create, unlink, read, write, getattr, setattr

= Variety of OBSD types:
= PDL style OBD’s — not rich enough for Lustre
=« Simulated, e.q. in Linux: lower half of an fs
= 'Real obds” — ask disk vendors

i Components of OB Storage

= Storage Object Device Drivers

= cClass drivers — attach driver to interface
= Targets, clients — remote access
= Direct drivers — to manage physical storage
= Logical drivers — for storage management

= Object storage applications:
= Object (cluster) file system: blockless
= Specialized apps: caches, db’s, filesrv

Object Based Disk
File System
(OBDFS)

/dev/obd1l mount
on /mnt/obd
type “obdfs”

v

Simulated Ext2
Direct OBD driver
(obdext2)

“ext2” attached to

/dev/obd1 of type
/dev/hda2

Object Based
Database

Data on

/dev/obd2

RaidO Logical OBD
Driver (obdraid0)

/dev/obd2

attached to

Type “raid0”

/dev/obd3 & 4

SBD
(e.g. IDE disk)

v v
Direct Direct
SCSI OBD SCSI OBD

/dev/obd3 /dev/obd4

Clustered Object
Based File System

Mount of /dev/obd

on host A
l FS type “lustre”

Clustered Object
Based File System

2

OBD Client Driver
Type SUNRPC

Mount of /dev/obd?2

on host B
l FS type “lustre”

/dev/obd?2
Type “rpcclient’\

OBD Client Driver
Type VIA

Both targets are

Attached to /dev/obd3

Type “viaclient”

/ /dev/obd?2

/dev/obd3

Direct SCSI OBD

‘_L OBDFS
e swas

Object File System:

Page Object based
o Cache storage device
of :
ile/dir data: lookup
* set/read attrs Device e all allocation
e remainder:ask obsd

Methods |® all persistence

‘L Why This Is Better...

= Clustering

= Storage management

i Storage Management

= Many problems become easier:
= File system snapshots

= Hot file migration

= Hot resizing

= Raid

=« Backup

* LOVM: can do it all - Raid

Logical Object Volume Management:

[dev/obdO
(type RAID-0)

Attachment meta data:
Stripe on /dev/obd{1,2,3}

(no objects)

Snapshot setup

attachment
attachment
| | :
/dev/obd1 /dev/obd?2 OBD logical snapshot driver
snap=current snap=8am
device= obd0 device =obd0 AttaChment meta data
¢ ¢ |
= Result:

= /dev/obd2 is read only clone
= /dev/obd1 is copy on write (COW) for 8am

i Snapshots in action

OBDFS
mount /dev/obd1l /mnt/obd

mount /dev/obd2 /mnt/obd/8am Snap_write
Modify /mnt/obd/files before —=~—> after
Result: objectX objectX
= new copy in /mnt/obd/files —
= old copy in /mnt/obd/8am objY objZ
7am 7am 9am

bla bla bla bla bla bla

i Hot data migration:

Key principle: dynamically switch device types

Before... During... After...
[dev/obdO [/dev/obdO [/dev/obdO
ext2obd } [Logical Migrator} [ext3obd
ext20bd ext3obd

>
/dev/hdal /dev/hdal /dev/hdb2

i Lustre File System

s Lustre ~ Linux Cluster

= Object Based Cluster File System
= Based on OBSD’s

= Symmetric - no file manager
= Cluster wide Unix semantics: DLM
= Journal recovery etc.

i Benefits of Lustre design

= space & object allocation
= Managed where it is needed !!

m cONnsSequences
= IBM (Devarakonda etc): less traffic
= Much simpler locking

= mobile use, server replication, security

s GFS:

= shared storage file system, logical volumes

= InterMezzo:
= Smart “replicator”. Exploits disk fs.

= Lustre
= shared storage file system
= likely best with smarter storage devices

= NFS

mmm File data
mmm Tnode meta data
mmm Directory data

i Data Paths

Lustre
Client Server

FS Objects InterMezzo, NFS |FS Objects
Coda InterMezzo

Lustre, Lustre
Client Server
Buffers In‘rer'Mezzo, Coda |Buffers

——

f

GFS, 6FS, GFS

Client cache NFS (Server) Disk

i Conclusions

= Linux needs this stuff
= Badly

= Relatively little literature

= Cluster file systems
= DLMs

= Good opportunity to innovate

