Lustre Log API DLD

11 Nov 2005
Contents
1 Requirements 4
2 Functional Specification 5
2.1 Terminology 5
2.2 Llog normal operation 5]
221 Originator e)
2.22 Replicatoro 6
2.3 Llogconnections 6
2.4 Cookie sending methods 7
24.1 Client-originated 7
2.4.2 MDS(originator)-originated. L. 7
2.4.3 Possible approacheso 7
2.5 The cancellation daemon. 7
2.5.1 Cancellation timeouts. 8
2.6 Llogrecovery handling 8
2.6.1 Logremoval failure. 8
2.6.2 Filesize recovery. oL 9
2.7 Lloginternals 9
2.8 Fundamental data structures 10
281 LlogID 10
2.8.2 Logging contexts 10
283 Lloghandle 11
2.8.4 Llogcookie 11
29 General API.o 12
29.1 lop_setup() 12
29.2 lop_cleanup().o 12
293 lop_create() 13
294 lop close() L 13
295 lop destroy() 13
29.6 lop_read_header() 14
29.7 lop_add() 14
29.8 lop_cancel() 14

29.9 lop_write_rec()o 15

2.9.10 lop_mext_block() L. 16
2911 lop_sync()o 16
2.9.12 lop_connect() 17
2.10 Catalog API. 17
2.10.1 llog cat_initialize() 17
2.10.2 int llog_cat_add_rec() 18
2.10.3 intllog_cat_put() 18
2.10.4 int llog_cat cancel records() 18
2.10.5 int llog cat_process() 19
211 OBD API e 19
2.11.1 obd_llog init() 19
2.11.2 obd_llog finish() 20
2.11.3 OBD llog helpers 20
2.11.4 Llog origin OBD methods 20
2.11.5 Llog replicator OBD methods 20
212 LVES APL o o 21
2.13 Network APL 21
Use Cases 22
3.1 Deletionoffiles.. Lo 22
3.2 Filesizechanges. L 22
3.3 Configuration updates 23
34 RAID1IOST. e 23
3.5 Llog using for local purposes 23
351 Joinfiles. oo 23
Logic Specification 24
4.1 Llog on-disk format and structures 24
4.2 GenericLlog APT 24
421 llog connect() 25
43 LVFSLlog APL 25
44 Llog Catalog APL 25
4.5 Network Llog API 26
46 OBD Llog APT 26
4.6.1 llog init.o 26
4.6.2 llog cat initialize. 26
4.6.3 OBDlloghelpers 26
464 obd llog setup 27
465 obd llog cleanup 27
4.6.6 llog obd origin _add 27
4.6.7 llog_obd repl cancel 27
4.7 Llog IOCTLs i i 27

5 State Specification 27

5.1 Normal llog operation 27
5.1.1 Originator 27
5.1.2 Replicator o 28

5.2 Llog recovery operation 28

Llog API

1 Requirements

Key requirements for llog are:

Clear and efficient facility to update of persistent information on multiple
systems

Llogs should be written transactionally

Llogs only grow and records are cancelled when a commit on local or
another system is completed.

Empty llog can be truncated

Logs can be removed, remote callers may not assume that open logs will
remain available

Access to logs should be through stateless APIs that can be invoked re-
motely

Logs operations should be scalable

Some of the key requirements of these APIs that defines their design are:

The API should be usable through methods

The methods should not reveal if the API is being used locally or invoked
remotely

Access to logs should be through stateless APIs that can be invoked re-
motely

Access to logs should go through some kind of authorization/authentication
system

API should be clear and flexible. It should be usable for new llog utiliza-
tion

APT shouldn’t has restrictions related to big numbers, i.e. it should be
scalable

2 Functional Specification

The typical use of the logging APIT is the managment of distributed commit of
related persistent updates. Other possible use is fast store/retrieve small chunks
of data to/from storage.

2.1 Terminology

Originator - the system(s) performing a transaction. The originator starts the
action triggered by some internal conditions or events.

Replicator - other system(s) performing a related persistent update. The
replicator becomes involved in the action only when a message arrives
from originator.

Initiator - the system setting up the connection to execute remote procedure
call.

Receptor - the target of that connection event.

2.2 Llog normal operation
2.2.1 Originator

Originator should perform the action and initiate corresponding updates on
replicators.
This task can be done using the algorithm below:

1. Starts action triggered by some internal algorithm;

2. the performed action is written transactionally in a log;

(a) record is added to the llog by llog add();

(b) a log_cookie is generated;

3. sends the action RPC to the replicators involved, through one of the 2.4
Cookie sending method.

(a) if action needs result from replicators immediately then synchronous
RPC is used;

(b) if updates on replicators can be deffered then asynchronous RPC can
be used

4. finishes an action;

5. deletes records from log using llog cancel() when the cancel RPC is re-
ceived from replicator

2.2.2 Replicator

The key requirement is that the replicators must complete their updates if the
originators do, even if the originating systems crash or the replicators roll back.
Note that we do not require that the the system remains invariant under rollback
of the originator.

Replicator algorithm:

1. Receives the originator message;
2. performs the related action and executes a commit callback for that;
3. answers to the originator with action’s result;

4. The callback indicates that . The function lop_cancel is responsible for
this queuing of the cancellation.

5. when the replicators related action commits:

(a) the log_cookie is put up for cancellation;

(b) cancellations can be grouped together before sending to the origina-
tor. See 2.5 section.

2.3 Llog connections

In order to process llog operations and recovery actions, the originators and
replicators use a connection to execute remote procedure calls. The connection is
used symmetrically, i.e. the originator and replicator can either be the initiator
or the receptor.
The obd device store a pointer to the import to be used for queuing RPC’s.
The key feature about connection is llog generation:

e It is unchanged while connection exists;

e it is increased when connection is reestablished

The connection is established /re-established by originator only. This is an usual
connection used by other subsystems.

1. The originator establishes a connection to the replicator.

2. Prior to sending this the originator increases its generation, and includes
the generation the connect RPC.

3. The replicator receives a llog connect RPC. The handler first updates the
generation then initiates processing of the logs.

2.4 Cookie sending methods
2.4.1 Client-originated

Client initiates operations, e.g. unlink, receves llog cookie with result and send
cookie to the replicator - OST. Current scheme is used for unlink recovery
currently.

2.4.2 MDS(originator)-originated.

MDS sends llog cookie to the replicator right after adding record to the llog.
In that case it is usefull to has ’sending daemon’ of some kind maybe. MDS-
originated way is used in chown update for quota functionality.

2.4.3 Possible approaches

1. Combined method. It is MDS-originated initially but if MDS isn’t able
to send too many RPCs it can be switched to client-originated schema.
Possible way to avoid massive RPC on MDS in MDS-originated scheme.

2.5 The cancellation daemon.

A replicator runs a subsystem responsible for collecting groups of llog_ cookies
and sending them to the originator for cancellation of the origin llog records.
This is done as a side effect of committing the replicating transaction on the
replicator. There can be several originators, cookie groups for each of them are
linked into list.

A key element in the cancellation is to distinguish between old and new
cookies. Old cookies are those that have a generation smaller than the current
generation, new cookies have the current generation. The generation is present
in the llog_context, hence it is both on the server and on the client.

The cancellation context is responsible for the queueing of cancel cookies.
For each originator it is in one of two states:

1. Accepting cookies for cancellation

2. Dropping cookies for cancellation

The context switches from 1 to 2 if a timeout occurs on the cancellation RPC.
It switches from 2 to 1 in two cases:

1. A cookie is presented with an llog _generation bigger than the one held in
the context

2. The replicator receives a llog connect method (which will also carry a
new llog generation)

The llog generation is an increasing sequence of 128 bit integers with highest
order bits the boot count of the originator and the lower bits the obd_ connect
between the originator and the replicator. The originator increases its gener-
ation just before sending the llog connect call, the replicator increases it just
prior to beginning the handling of recovery when receiving an llog_ connect call.

2.5.1 Cancellation timeouts.

If the replicator times out during cancellation, it will continue to process the
transactions with cookies. The cancellation context will drop the cookies.
The timeout will indicate to the system that the connection must be recovered.

2.6 Llog recovery handling

When the replicator recieves an llog connect rpc, it increases the llcd’s gener-
ation, and then spawns a thread to handle the processing of catalogs for the
context. For each of the catalogs it is handling, it fetches the catalog’s logid
through an obd_get cat info call. When it has received the catalog logid, the
replicator calls sync and proceeds with llog cat_process

e It only processes records in logs from previous log connection generations.

e The catalog processing repeats operations that should have been per-
formed by the initiator earlier

— The replicator must be able to distinguish:

Done: If the operation already took place. If so it queues a com-
mit cancellation cookie which will cancel the log record which
it found in the catalog?s log that is being processed. Because
sync was called there is no question that this cancellation is for
a committed replicating action.

Not done: The operation was not performed, the replicator per-
forms the action, as it usually does, and queues a commit cookie
to initiate cancellation of the log record.

e When log processing completes, an obd-method is called to indicate to the
system that logs have been fully processed. In the case of size recovery,
this means that the MDS can resume caching file sizes and guarantee their
correctness.

2.6.1 Log removal failure.

If an originator crashes during log removal, the log entries may re-appear after
recovery. It is important that the removal of a log from a catalog and the
removal of the log file are atomic and idempotent. Upon re-connection, the
replicator will again process the log.

2.6.2 File size recovery.

The recovery of orphan deletion is adequately described by 2.6.1. In the case of
file size recovery, things are more complicated.

2.7 Llog internals

1. Llog objects can be identified in two ways

(a) Through a name - The interpretation of the name is upto the driver
servicing the call. Typical examples of named llogs are files identified
by a path name, text versions of the UUIDs, profile names.

(b) Through an object identifier or llog-id identifier - A directory of llogs
which can lookup a name to get an id can provide translation from
naming system to an id based system. In our implementation, we
use a file system directory to provide this catalog function.

2. Logs only contain records

3. Records in the logs have the following structure:

e llog rec_hdr - a header, indicating the index , length and type. The
header is 16 bytes long

e Body which is opaque, 32-bit aligned blob

e llog rec_tail - length and index of recors for walking backwards, it
is 8 byte long

4. The first record in every log is a 8K long llog log hdr. The body of this
record contains:

e a bitmap of records that have been allocated; bit 0 is set immediately
because the header itself occupies it

e A collection of log records behind the header
5. Records can be accessed by :

e iterating through a specific log

e providing a llog _cookie, which contains the struct llog logid of the
log and the record number in the log file where the record resides.

6. Llog catalog functionality is used to store data about many llogs. A catalog
of llogs is held at the top level and provides access to the llogs via llogid.
e A catalog API is provided which exploits the lower lustre log API

e Catalog entries are log entries in the catalog log which contain the
log id of the log file concerned.

2.8
2.8.1

Fundamental data structures

Llog ID

Llog ID is used to get access to the llog as well as the using of name.
\begin{lstlisting }
struct llog_logid {

b

u64 lgl oid;

u64 lgl ogr;

u32 lgl ogen;

_attribute ((packed));

\end{lstlisting}

2.8.2

Logging contexts

Each obd device has an array of logging contexts, struct llog ctxt:
\begin{lstlisting}
struct llog ctxt {
int loc_idx;
struct llog gen loc_ gen;
struct obd _device *loc_obd;
struct obd _export *loc__exp;
struct obd _import *loc_imp;
struct llog operations *loc_logops;
struct llog _handle *loc_handle;
struct llog canceld ctxt *loc_llcd;
struct semaphore loc_sem;
void *llog_proc_cb;

b

\end{lstlisting}
The contexts contain:

1.

struct llog _gen loc_gen - the generation of the logs. This is a 128 bit
integer consisting of the mount count of the origianating device and the
connection count to the replicators.

struct llog_handle *loc handle - a handle to an open log ()

struct llog_canceld _ctat *loc_lled - a pointer to the logging commit dae-
mon ()

. struct obd_ device *loc_ obd - a pointer to the containing obd ()
. struct obd_ export *loc_ exp - an export to the storage obd for the logs ()

. struct llog_operations *loc_logops - a table of llog methods from General

API (2.9)

10

2.8.3 Llog handle

Llog handle is in-memory descriptor for a log object or log catalog
\begin{lstlisting}
struct llog handle {
struct rw__semaphore 1gh lock;
struct llog_logid lgh _id; /* id of this log */
struct llog_log hdr *Igh hdr;
struct file *1gh_file;
int Igh last_idx;
struct llog_ctxt *lgh ctxt;
union {
struct plain _handle data phd;
struct cat _handle data chd;
b u
};
\end{lstlisting}

2.8.4 Llog cookie

\begin{lstlisting}
struct llog cookie {
struct llog_logid lgc_1gl;
__u32lgc_subsys;
~u32lge_index;
__u32lgc_padding;
} _ attribute_ ((packed));
\end{lstlisting}

11

2.9 General API

General API describes operations with llog that can be done on any Lustre level.
It consider the llog as some abstration without knowing low-level details. All
these methods are mapped to real group of method for each OBD with special
method table in llog context. Therefore the General API is high-level API for
llog functionality.

2.9.1 lop_setup()

Prototype:
\Istinline|int lop setup(struct obd device *, int, struct obd device *, int,
struct llog logid *; struct llog operations *);]

Parameters:

struct obd device *obd - current OBD;

int index - index in OBD array of llogs;

struct obd device *disk obd - OBD where llog is stored actually;
int count - not used, always 1;

struct llog logid *logid - llog id;

struct llog operations *op - list of operations for current OBD

Return Values:

Description:

Initialize llog context for llog with index.

2.9.2 lop_ cleanup()

Prototype:
\Istinline|int lop _cleanup(struct llog_ctxt *);|

Parameters:
struct llog ctxt *ctxt - llog context.

Return Values: 0 or error code.

Description:

Clean llog context structure.

12

2.9.3 lop_create()

Prototype:
\Istinline|int lop create(struct llog ctxt *, struct llog handle **, struct
llog logid *, char *);|

Parameters:

struct llog _ctxt * ctxt: llog context;
struct llog handle **handle: pointer to the resulting llog_handle;
struct llog logid *logid: optional logid;

char *name: optional name for the llog

Return Values: return code 0 and filled llog handle in case of success or error
code otherwise

Description:
If the log id is not null, open an existing log with this ID. If the name
is not NULL, open or create a log with that name. Otherwise open a
nameless log. The object id of the log is stored in the handle upon success
of opening or creation.

2.9.4 lop_ close()

Prototype:
\Istinline|int lop _close(struct llog handle *);|

Parameters:
struct llog handle *handle - the already opened llog_ handle.
Return Values: 0 if successfull or error code otherwise

Description:

Close the log and free the handle. Remove the handle from the catalog’s
list of open handles. The log may be zapped if special flag is set
2.9.5 lop_destroy()

Prototype:
\Istinline|int lop _destroy(struct llog _handle *);|

Parameters:
struct llog handle *handle - opened llog_handle
Return Values: 0 if there are no errors or error code otherwise.

Description:

Close the handle and destroy the llog.

13

2.9.6 lop read header()
Prototype:

\Istinline|int *lop read header(struct llog handle *);|
Parameters:

struct llog handle *handle - opened llog_handle;

Return Values: error code in case of failure or zero otherwise.

Description:

Read the header of the llog into the handle and also read the last rec_ tail
in the llog to find the last index that was used in the llog.

2.9.7 lop_add()

Prototype:
\Istinline|int lop _add(struct llog_ ctxt *, struct llog_rec_hdr *, struct lov_stripe_md
* struct llog_cookie *, int, llog_fill rec_cb_t);]

Parameters:

struct llog ctxt *ctxt - llog context;

struct llog rechdr *rec - record header;

struct lov_stripe_md *Ism - information about lov stripes;
struct llog cookie *logcookies - array of llog_ cookie;

int numcookies - number of cookies in logcookie array;

llog fill rec cb t - record filling function

Return Values: error code if failures occur. If successfull then return 0 and
filled llog_ cookies array

Description:

add new records to the llog. This function is used when several replicators
are updated, so several llog records should be added with returning several
llog _cookie structures

2.9.8 lop_cancel()

Prototype:
\Istinline|int lop cancel(struct llog ctxt *, struct lov_stripe_md *, int,
struct llog_cookie *, int);|

Parameters:

struct llog ctxt *ctxt - lloging context;

14

struct lov_stripe_md *Ism - information about lov stripes;
int count - number of llog_cookie to cancel;
struct llog cookie *cookies - array of llog_ cookie;

int flags - flags to show should be cancels sent now to the originator or
not.

Return Values: error code in case of failures or zero otherwise.

Description:

For each cookie in the cookie array, function choose correct llog using the
stripe information, the log in-use bit is cleared and either:

e Mark it free in the catalog header and delete it if its empty
e Just write out the log header if the log is not empty

The cookies maybe in different llogs, so we need to get new llogs each
time.

2.9.9 lop_ write rec()

Prototype:
\Istinline|int lop write rec(struct llog_ handle *, struct llog rec_hdr *,
struct llog_ cookie *, int, void *, int);]

Parameters:

struct llog handle *loghandle - opened llog_ handle;
struct llog rec hdr *rec - record header;

struct llog cookie *logcookies - array of llog_ cookie;
int numcookies - number of llog cookie in array;

void *buf - record body;

int idx - record index or -1 if records is just appended;

Return Values: llog cookie and return code 0 or error code if any error oc-
cured.

Description:

Appens or overwrite a record in the log. If buf is NULL, the record is
complete. If buf is not NULL, it is inserted in the middle. Records are
multiple of 128bits in size and have a header and tail. Write the cookie
for the entry into the cookie pointer.

15

2.9.10 lop next block()

Prototype:
\Istinline|int lop next block(struct llog handle * int *, int, u64 *, void

il
Parameters:

struct llog handle *loghandle - opened llog_ handle;
int *cur idx - current index;

int next idx - next index;

___u64 *cur_offset - offset of next idx;

void *buf - buffer for data;

int _len - length of data.

Return Values:

® sets:

— cur_ offset to the furthest point read in the log file
— cur_idz to the log index preceeding cur_offset

e returns -EIO/-EINVAL on error

Description:

Index curr_idz is in the block at *offset. Set *offset to the block offset
of recort next_idx. Copy len bytes from the start of that block into the
buffer buf.

2.9.11 lop_sync()

Prototype:
\Istinline|int lop_sync(struct llog_ctxt *, struct obd _export *);|

Parameters:

struct llog ctxt *ctxt - llog context;

struct obd _export *exp - OBD export for sync.

Return Values: 0 or error code

Description:

Flush cached cancels. If reverse import is disconnected, put corresponding
canceld context.

16

2.9.12 lop_connect()

Prototype:
\Istinline|int lop_ connect(struct llog_ ctxt *, int, struct llog_logid *, struct
llog gen *, struct obd uuid *);]

Parameters:
struct llog ctxt *ctxt - llog context;
int count - count (not used currently);
struct llog logid *logid - llog id;
struct llog gen *gen - llog generation;
struct obd uuid *uuid - OBD UUID.

Return Values: 0 or error code

Description:

Set connection with replicator. If connection is re-established then the
new llog generation is sent to the replicator.

2.10 Catalog API

Llog catalog is a functionality over plain llogs that allow to create llog abstarac-
tion over several physical llogs. Llog catalog has two major uses in Lustre:

1. it is used instead of simple plain llog and can grow over size of plain llog
by creating new one seamlessy

2. it can be used as storage for multiple llogs, organizing them and providing
access to them by id instead of names.
2.10.1 llog cat initialize()

Prototype:
\Istinline|int llog cat_initialize(struct obd device *, int)|;

Parameters:

struct obd device *obd - OBD for llog catalog;

int count - number of sub-llogs.
Return Values: 0 or error code

Description:

There is a simple master function llog cat initialize for catalog setup that
uses and array of object id7s stored on the storage obd of the logging.
The logids are stored in an array form and given to the llogging contexts
during the lop setup calls made by llog init. It uses support from lvfs to
read and write the catalog entries and create or remove them.

17

2.10.2 int llog_cat add_rec()

Prototype:
\Istinline|int llog cat _add_rec(struct llog_handle *cathandle, struct llog_rec hdr
*rec, struct llog cookie *reccookie, void *buf);|

Parameters:

struct llog handle *cathandle - current catalog handle;
struct llog rechdr *rec - record header;

struct llog cookie *reccookie - llog cookie to be returned as result of
operation;
void *buf - record body.

Return Values: - error code or zero with llog cookie structure filled.

Description:

Adds new record in current sub-llog. If it is empty, then create new llog.

2.10.3 int llog cat put()

Prototype:
\Istinline|int llog cat put(struct llog handle *);|

Parameters:
struct llog handle *cathandle - llog catalog handle.
Return Values: 0 or error code

Description:

Call llog_close() for each plain llog in the catalog and close llog catalog
itself.

2.10.4 int llog cat cancel records()

Prototype:
\Istinline|int llog_ cat _cancel records(struct llog handle *, int, struct llog_ cookie

)3l
Parameters:
struct llog handle *cathandle - llog catalog handle;

int count - number of llog cookies in the cookie array;
struct llog cookie *cookies - array of llog cookies for cancellation.

Return Values: 0 or error code

Description:

Call llog_cancel _records() for each llog cookie in array. If sub-llog was
destroed, it will be deleted from llog catalog also.

18

2.10.5 int llog cat process()

Prototype:
\Istinline|int llog cat_process(struct llog handle *, llog cb_t, void *);|

Parameters:

struct llog handle *cat _1lh - llog catalog handler;
llog cb_t cb - llog processing function;

void *data - data for llog processing function.

Return Values: 0 or error code.

Description:

Tterate through all sub-llogs and call llog _process() for each of them.

2.11 OBD API

Each OBD supports array of llog contexts for various llogs and each llog has
own index in that array. Therefore each llog has own context in all related OBD.
Key structure in context is llog_operations which maps general llog functions
to the real one for that context.

2.11.1 obd_ llog init()

Prototype:
\Istinline|int obd llog init(struct obd device *, struct obd device *, int,
struct llog_catid *);]

Parameters:

struct obd _device *obd - current OBD;
struct obd_device *disk _obd - OBD where llog is setup;

int count - number of sub-llogs in llog catalog. Usually it is equal to the
number of replicators.

struct llog catid *logid - array of llog_logid structures according with
count.

Return Values: 0 or error code.

Description:

This obd method initializes the logging subsystem for an current OBD. It
sets the methods and propages calls to dependent OBD’s.

19

2.11.2 obd_llog _finish()

Prototype:
\Istinline|int obd llog finish(struct obd device *| int);|

Parameters:

struct obd _device *obd - current OBD;

int count - not used.

Return Values: 0 or error code.

Description:

Current method calls llog cleanup for current OBD.

2.11.3 OBD llog helpers

The obd _llog APT has several methods, setup, cleanup, add, cancel, as part
of the OBD operations. These operations have 2 implementations:

mds _obd_llog_*: simply redirects and uses the method mds_osc_obd, which
is normally the LOV running on the MDS to reach the OST’s.

lov_obd llog *: calls the method on all relevant OSC devices attached to
the LOV. A parameter including striping information of the inode is in-
cluded to determine which OSC’s should generate a log record for their
replicating OST.

2.11.4 Llog origin OBD methods

While several OBDs have llog methods that are helpers actually, there is the
OBD where llog is created on disk. That OBD has special set of methods:

e llog obd _origin_setup;
e llog obd origin cleanup;
e llog obd_origin add;
e llog origin connect;
2.11.5 Llog replicator OBD methods
The replicator OBD is the one used on replicator

e llog obd repl cancel
e llog obd repl sync

e llog repl connect

20

2.12 LVFS API
LVFS llog API is responsible

2.13 Network API

21

3 Use Cases

3.1 Deletion of files.
Change needs to be replicated from MDS (originator) to OST?s (replicators):

e The OSC’s used by the LOV on the MDS act as originator for the change
log, using the storage and disk transactions offered by the MDS:

0OSC’s write log records for file unlink events. This is done through
an obd api which stacks the MDS on the LOV on the OSC’s. Such
events are caused by unlink calls, by closing open but unlinked files,
by removing orphans (which is recovery from failed closes) and by
renaming inodes when they clobber.

The OSC’s create cookies to be returned to OSTs. These cookies are
piggy backed on the replies of unlink, close and rename calls. In the
case of removing orphans the cookies are passed to obd_ destroy calls
executed on the MDS.

e OST’s act as replicators, they must delete the objects associated with the
inode.

Remove objects.

Pass OSC generated cookies as parameters to obd_destroy transac-
tions.

Collect cookies in pages for bulk cancellation RPCs to the OSC on
MDS.

Cancel records on the OSCs on MDS.

3.2 File size changes.

Changes originate on OSTs, these need to be implemented on the MDS

e Upon the first file size change in an I/O epoch on the OST:

Writes a new size changes record for new epoch
Records the size of the previous epoch in the record
Records the object id of the previous epoch in the record

It generates a cancellation cookie

e When MDS knows the epoch has ended:

It obtains the size at completion of the epoch from client (or excep-
tionally from the OST)

It obtains cancellation cookies for each OST from the client or from
the OSTs

22

— It postpones starting a new epoch untill the size is known
— It starts a setattr transaction to store the size

— When it commits, it cancels the records on the OSTs

3.3 Configuration updates
3.4 RAID1 OST.

The primary is the originator, the secondary is the replicator

e Writes on the primary are accompanied by a change record for an extent

3.5 Llog using for local purposes

Llog can be as fast way to store/retrieve small amount of data locally. Benefits
of that way are the following:

e compact placement of records
e simple and fast adding/deleting of records

e complete API

3.5.1 Join-files

Join file functionality uses llog to store lsm of files to join. The llog is used here
not for recovery purposes but as tools to fast store-retrieve small chunks of data.
When two files are joined:

1. lsm-s from second file are added to the first one:

(a) if first file has no llog yet, the new llog is created and Ism is moved
from EA to new llog;

(b) if second file has Ism-llog already then it iterate through llog and
move all Isms to the first file llog;

(c) if second file has only one Ism in EA then lsm is added to first file
llog;

2. records in Ism-llog of second file are cancelled.

23

4 Logic Specification

4.1 Llog on-disk format and structures

On-disk llog structure consists of header llog log hdr followed by records. Each
record must start with llog rec_ hdr structure, end with a llog rec_ tail and be
a multiple of 256 bits in size.
\begin{lstlisting }[label=L:llog log hdr, caption={struct\ llog\, log\ hdr}]
#define LLOG CHUNK SIZE 8192
#define LLOG_HEADER_ SIZE (96)
#define LLOG_BITMAP_ BYTES (LLOG_CHUNK _ SIZE-LLOG_HEADER_SIZE)
struct llog_log hdr {
struct llog_rec_hdr 1Ih _hdr;
~_u64 1lh timestamp;
u32 1lh count;
__u321lh_bitmap_offset;
~u321lh_size;
~u32 llh flags;
~u321lh cat_ idx;
/* for a catalog the first plain slot is next to it */
struct obd _uuid 1lh _tgtuuid;
__u321lh_reserved[LLOG_HEADER _SIZE/sizeof(u32) - 23];
__u321lh bitmap[LLOG_BITMAP BYTES/sizeof(_ u32)];
struct llog_rec tail llh _tail;
} _ attribute_ ((packed));
\end{lstlisting}
\begin{lstlisting}
struct llog_rec_hdr {
~u32Irh len;
~u32Irh index;
__u32lrh type;
__u32 padding;
};
\end{lstlisting}
\begin{lstlisting}
struct llog rec_tail {
_u32Irt_len;
__u32 Irt_index;

b
\end{lstlisting}

4.2 Generic Llog API
Llog methods

24

4.2.1 llog connect()

Prototype:
\begin{lstlisting}
int llog _connect(struct llog_ctxt *ctxt,
int count,
struct llog_logid *logid,
struct llog gen *gen,
struct obd _uuid *uuid);
\end{lstlisting}
The originator and the replicator establish a connection.

1. The logging subsystem on the originator uses the lop_connect method to
the replicator. The lop connect call sends the logid’s of the open catalog
from the originator to the replicator.

2. Just prior to sending this the originator context increases its generation,
and includes the generation and the logid in the lop connect method,
usually calling llog orig connect.

3. The replicator now receives a llog connect RPC. The handler is the repli-
cators lop connect (usually llog repl connect). This method first
increases the lled’s generation then initiates processing of the logs.

4.3 LVFS Llog API

typedef int (*llog_cb_t)(struct llog handle *, struct llog rec hdr *, void *);
typedef int (*llog_fill rec_cb_t)(struct llog rec_hdr *rec, void *data);
extern struct llog handle *llog_alloc_handle(void);
int llog_init _handle(struct llog handle *handle, int flags,
struct obd_uuid *uuid);
extern void llog free handle(struct llog handle *handle);
int llog _process(struct llog _handle *loghandle, llog cb_t cb,
void *data, void *catdata);
extern int llog cancel rec(struct llog handle *loghandle, int index);
extern int llog close(struct llog _handle *cathandle);

4.4 Llog Catalog API

struct llog process data {
void *Ipd _data;

llog _cb_t lpd_cb;

b

struct llog_process_cat_data {

int first _idx;

int last _idx;

/* to process catalog across zero record */

25

};

int llog_cat_put(struct llog_handle *cathandle);

int llog cat_add rec(struct llog handle *cathandle, struct llog rec hdr
*rec,

struct llog cookie *reccookie, void *buf);

int llog_cat_cancel records(struct llog handle *cathandle, int count,

struct llog _cookie *cookies);

int llog__cat _process(struct llog_handle *cat _1lh, llog_cb_t cb, void *data);

int llog_cat_set first idx(struct llog handle *cathandle, int index);

4.5 Network Llog API

int llog_initiator connect(struct llog ctxt *ctxt);
int llog_receptor _accept(struct llog ctxt *ctxt, struct obd import *imp);
int llog_origin _connect(struct llog ctxt *ctxt, int count,
struct llog_logid *logid, struct llog gen *gen,
struct obd _uuid *uuid);
int llog_handle connect(struct ptlrpc_request *req);

4.6 OBD Llog API
4.6.1 llog init.

This obd method initializes the logging subsystem for an obd. It sets the meth-
ods and propages calls to dependent obd’s.

4.6.2 llog cat initialize.

There is a simple master function llog cat initialize for catalog setup that uses
and array of object id”s stored on the storage obd of the logging. The logids are
stored in an array form and given to the llogging contexts during the lop setup
calls made by llog init. It uses support from lvfs to read and write the catalog
entries and create or remove them.

4.6.3 OBD llog helpers

The obd _llog api has several methods, setup, cleanup, add, cancel, as part of
the OBD operations. These operations have 3 implementations:

mds_obd_llog_*: simply redirects and uses the method mds_osc_obd, which
is normally the LOV running on the MDS to reach the OST’s.

lov_obd llog *: calls the method on all relevant OSC devices attached to
the LOV. A parameter including striping information of the inode is in-
cluded to determine which OSC’s should generate a log record for their
replicating OST.

26

4.6.4 obd llog setup

(struct obd _device *obd, struct obd device *disk obd, int index, int count,
struct llog_logid *idarray)

To activate the catalogs for logging and make their headers and file handles
available is fairly involved. Each system that requires catalogs manages an array
of catalogs. This function is given an array

of logid’s and an index. The index pertains to the array of logs used by an
originator, the array of logid’s is an array with an entry for each osc in the lov
stripe descriptor.

4.6.5 obd_ llog cleanup
int obd_llog_cleanup(struct obd_device *).

Cleans up all initialized catalog handles for a device.

4.6.6 llog obd origin add

(struct obd_export *exp, int index, struct llog_rec_hdr *rec, struct lov_stripe_md >

Adds a record to the catalog at index index. The Ism is used to identify how
to descend an LOV device. The cookies are generated for each record that is
added.

4.6.7 llog _obd repl cancel

(struct obd_device *obd, struct lov_stripe_md *1sm, int count, struct llog_cookie *

Queue the cookies for cancellation. Flags can be 0 or LLC_CANCEL NOW
for immediate cancellation.

4.7 Llog IOCTLs
5 State Specification

5.1 Normal llog operation
5.1.1 Originator

The log record creation produces a log_ cookie.

e The log cookie is sent to the replicator, through one of the 2./ Cookie
sending method.

27

e The replicator performs the related transaction and executes a commit
callback for that. The callback indicates that the log cookie can be put up
for cancellation. The function lop cancel is responsible for this queuing
of the cancellation.

e Cancellations can be grouped together before sending to the originator.
See 2.5 cancellation daemon section.

e The originator cancels the the log records associated with the cook-
ies through the lop_cancel method.The log record creation produces a
log_ cookie.

e The log cookie is sent to the replicator, through one of the 2./ Cookie
sending method.

e The replicator performs the related transaction and executes a commit
callback for that. The callback indicates that the log cookie can be put up
for cancellation. The function lop cancel is responsible for this queuing
of the cancellation.

e Cancellations can be grouped together before sending to the originator.
See 2.5 cancellation daemon section.

e The originator cancels the the log records associated with the cookies
through the lop_cancel method.

5.1.2 Replicator

5.2 Llog recovery operation

28

