
007542.P002 -1-

007542.P002

UNITED STATES PATENT APPLICATION

FOR

CLUSTER METADATA RECOVERY

INVENTORS:

PETER J. BRAAM
ANDREAS E. DILGER
ALEXEY ZHURALEV

PREPARED BY:

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD

SEVENTH FLOOR
LOS ANGELES, CA 90025-1026

(408) 720-8300

007542.P002 -2-

CLUSTER METADATA RECOVERY

FIELD

[0001] An embodiment of the invention relates generally to file systems, and more

particularly to recovering file system metadata stored on file server clusters.

BACKGROUND

[0002] Network-oriented computing environments utilize high-performance, network-

aware file systems for individual system data storage and data sharing for workgroups and

clusters of cooperative systems. One type of high-performance file systems is a distributed

file system. Traditional distributed file systems decouple computational and storage resources,

where the clients focus on user and application requests and file servers focus on reading,

writing, and delivering data.

[0003] Another type of distributed file system is one that separates the storage resources

responsibility into a metadata server and a cluster of fileservers. The metadata servers

maintain a transactional record of high-level file and file system transactions. For example

and by way of illustration, file and file system transactions typically are: file creation, file

deletion, file modification, directory creation, directory deletion, directory modification, etc.

On the other hand, the fileserver is typically responsible for actual file system input/output

(I/O), maintaining file allocation data and file size during IO, etc. Separating the transactional

recording and file manipulation is a more efficient division of labor between computing and

storage resources.

[0004] Figure 1 illustrates one example of a prior art cluster file system 100 comprising a

metadata server and multiple distributed object storage targets as file servers. In Figure 1,

cluster file system comprises multiple clients 102A-N coupled to multiple distributed object

store servers (OSS) 104A-M and a metadata server (MDS) 108 over data network 110. The

MDS is attached to a metadata target (MDT) 110 which provides storage for the metadata in

the file system. In addition, each OSS104A-M is coupled to one or more object storage

targets (OST) 106A-M. Typically, clients 102A-N are computers that utilize the fileserver

cluster. Typically, clients are personal computers, laptops, handheld devices, compute servers,

007542.P002 -3-

web servers, application servers, etc. and/or combination thereof. As per above, MDS 108

maintains a record of high-level file transactions. These transactions are used to preserve file

system consistency in case of an interrupt to the MDS software stack, which, for example can

be caused by power loss. Each OSS 104A-M manages the file data and file allocation

metadata stored in the corresponding OST storage array 106A-M. While for one example,

OSS storage array 108A-M is a LINUX based server using disk arrays as its OST, for other

examples, OST storage array 106A-M can be an integrated device, such as an intelligent

storage controller or intelligent disk. Furthermore, while for one example, the data network

is a transmission control protocol (TCP) based gigabit Ethernet network, other examples may

use may be different data network types (e.g., Quadrics (QSWNet), Myrinet, Infiniband,

wireless, etc. and/or combinations thereof). In addition, cluster file system 100 may include a

redundant MDS (not shown) that takes over in the event of MDS 108 going down.

[0005] Although cluster file system 100 is advancement a traditional client/file server

system, having one MDS 108 represents a single point of failure and a computational

bottleneck. Even though cluster file system 100 may have a redundant MDS in case MDS 108

fails, redundant metadata servers do not by themselves relieve the computational bottleneck.

007542.P002 -4-

SUMMARY

[0006] A method and an apparatus are described for recovering a fully consistent file

system stored in a cluster file system with multiple metadata servers using an epoch of undo

records. The epoch consists of (i) a virtual instantaneous snapshot marking a consistent and

valid file system image and (ii) a set of undo records that enable the file servers to roll-back to

this fully consistent image associated with the file system. The file system is recovered by

rolling back file transactions associated with undo records subsequent to the undo records

associated with the epoch snapshot. In addition, the undo records are maintained by advancing

the epoch value and purging unneeded undo records.

[0007] Embodiments of the present invention are described in conjunction with systems,

clients, servers, methods, and machine-readable media of varying scope. Other features and

advantages of embodiments of the invention will be apparent from the accompany drawings

and from the detailed description that follows.

007542.P002 -5-

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is illustrated by way of example and not limitation in the

figures of the accompanying drawings, in which the references indicate similar elements and

in which:

[0009] Figure 1 shows one example of a prior art cluster file system comprising a

metadata server and multiple distributed object storage targets.

[0010] Figure 2 shows one example of a cluster file system comprising multiple metadata

servers and multiple distributed object storage targets.

[0011] Figure 3 is a block diagram illustrating one example of a cluster of metadata

storage targets indicating disk layout of key data.

[0012] Figure 4 shows one example of undo logs for a metadata server cluster.

[0013] Figure 5 is a flow diagram of one example of a method that rolls back a cluster to

the last epoch.

[0014] Figure 6A shows one example of undo logs for a metadata server cluster used for a

cluster recovery.

[0015] Figure 6B shows one example of undo logs for a metadata server cluster used after

cluster recovery.

[0016] Figure 7 is a flow diagram of one example of a method that updates epoch undo

logs.

[0017] Figure 8A shows one example of undo logs for a metadata server cluster when

used to purge unneeded undo records.

[0018] Figure 8B shows one example of undo logs for a metadata server cluster used after

purging unneeded undo records.

[0019] Figure 9 is a block diagram illustrating one example of metadata cluster

management module.

[0020] Figure 10 is a diagram of one example of a computer system suitable for use in the

operating environment of Figures 5 and 7.

007542.P002 -6-

DETAILED DESCRIPTION

[0021] A recovery mechanism for a cluster of metadata servers is described. As will be

described in more detail below, for one embodiment a cluster file system employs a cluster of

metadata servers. Each metadata server includes an undo log that comprises a plurality of

undo records. The undo records are written as part of the transactions that update metadata on

one of the metadata servers in the file system. The undo records contain sufficient

information to undo the effect of the transaction they belong to. Furthermore, each undo

record is associated with an epoch value. An epoch is a marker indicating a fully consistent

file system image. An intended advantage is defining the epoch that can be used to recover a

fully consistent file system in the event of cluster file system outage. Another intended

advantage is to define multiple epochs allowing different levels of recovery. (NICE!)

[0022] An embodiment is described wherein the cluster of metadata servers rollback to a

previous epoch. An intended advantage of the embodiment is for the cluster of metadata

servers to rollback to a fully consistent state. Another intended advantage is to support

metadata dependencies across multiple metadata servers. A further intended advantage is that

this mechanism does not invoke a coordinated wait condition among nodes that disrupts the

flow of operations.

[0023] A method is described for updating an epoch across a cluster of metadata servers.

An intended advantage of this method is to advance the epoch value associated with future

undo records. A further intended advantage is to identify unneeded undo records and purge

these records accordingly. Another intended advantage is to determine if certain file

transactions do not need associated undo records.

[0024] Figure 2 illustrates one example of a cluster file system 200 comprising multiple

metadata servers and multiple distributed object storage targets. As in Figure 1, Figure 2

comprises clients 102A-N coupled to cluster file system 200 via data network 110. Clients

102A-N and cluster file system 200 communicate through network 110 using a variety of

protocols, such as the TCP/IP protocol, and possibly other protocols such as the hypertext

transfer protocol (HTTP) for hypertext markup language (HTML) documents that make up

the World Wide Web (web). The physical connections of the Internet and the protocols and

communication procedures of the Internet are well known to those of skill in the art. Clients

102A-N can be a personal computer system, a network computer, a Web TV system, a

007542.P002 -7-

handheld device, or other such computer system. Clients 102A-N are coupled to the network

through network interfaces, that can be Ethernet interfaces, wireless interfaces or network

interfaces known in the art. In addition, cluster file system 200 comprises OSS 104A-M

coupled to OST storage(s) 106A-M. However, unlike Figure 1, in Figure 2, the metadata

storage for cluster file system 200 comprises a cluster of MDS 202A-P coupled to OST 104A-

M and client 102A-N via data network 110 MDS 202A-P further couples to MDT 204A-P.

While for one example each MDS 202A-P couples to one MDT 204A-P, for other examples

(not shown), each MDS 202A-P one or more MDT 204A-P, two or more MDS 202A-P share

an MDT 204A-P, and/or combinations thereof.

[0025] Typically, clients 102A-N contact a MDS 202A-P to initiate the execution of a file

system operation. As above, a file system operation may be reading, writing, creating,

deleting, renaming, or otherwise modifying, etc. a file and/or directory. The contacted MDS

202A-P initiates the operation requested by clients 202A-N. The initiating MDS 202A-P may

involve one or more other MDS 202A-P in the process. The other MDS 202A-P server

executes a dependent operation. For example and by way illustration a new directory can be

created by inserting the name of the new directory into the parent directory on one MDS

202A-P while the inode for the new directory is created on another MDT 204A-P.

Operations can even involve more than two MDS servers, for example directory rename and

directory split, an operation where a very large directory is split into components residing on

different targets for the purpose of load balancing operations can involve more than two MDS

202A-P and/or repeated transactions. In this case, a stack of initiating and dependent calls is

built, with each MDS 202A-P involved starting one dependent operation on another MDS

202A-P. For example and by way of illustration, consider creating a new file within an

existing directory. Furthermore, assume that the metadata for the file will be stored in MDS

202A and the directory metadata is stored in MDS 202B. In this example, a client contacts

MDS 202A to create the file. In response, MDS 202A contacts MDS 202B to initiate the

directory modification because a new file will stored in the directory. MDS 202B initiates the

directory modification and creates an associated undo record. After completing the directory

modification, MDS 202A initiates the transaction creating the new file and creates an undo

record for the file creation.

007542.P002 -8-

[0026] Furthermore, MDS 202A-P executes file system transactions in volatile storage

using a start/stop pattern. The MDS 202A-P collects the file system transactions into disk

transactions. The disk transactions are sequentially ordered. For example and by way of

illustration, if file system transaction A is started before file system transaction B, file system

transaction A will be associated with a disk transaction that is the same or occurs earlier to the

disk transaction associated with file system transaction B. A file system transaction comprises

a (a) an update to the file system metadata (b) a transaction number and (c) a corresponding

undo record. The undo records are maintained in an undo log. Undo logs are further described

in Figure 3. MDS 202A-P commits to disk the file system transactions comprising metadata,

transaction numbers and undo records in an atomic fashion consistent with the ordering based

on the memory transaction number order.

[0027] Nevertheless, if a system with multiple MDS crashes due to a power failure or due

to multiple MDS failures, the metadata stored on the MDS cluster may not represent a valid

file system. This is because some of the metadata may be committed to disk while some of the

metadata may be lost in a MDS crash. As will be described further in Figure 5, loss of

metadata does not present the file system inconsistency problem when there is only one MDS.

With two or more MDS, loss of metadata can cause file system inconsistencies because of the

metadata dependencies. For example and by way of illustration, consider the scenario where a

client creates a directory and stores a number of files. Further, assume that the metadata for

the directory creation is stored on MDS 202A, while the metadata for the creation for the files

is stored on MDS 202B. If the directory creation metadata was lost, then the files stored in the

directory would be lost from the file system because the directory no longer exists in the file

and the files have no place to be stored in the file system. Thus, there is a need to keep the file

system in a defined state across a cluster MDS that can withstand loss of metadata.

[0028] MDS 202A-P further comprise cluster management module that includes MDS

rollback module. MDS rollback module that manages the rollback information contained in

the undo logs. MDS rollback module adds the undo records to undo logs, rolls back MDS

302A-P in the event of a cluster file system 200 crash, purges unneeded undo records, etc.

Furthermore, because the dependencies between the undo logs, MDS rollback management

module communicate with each other to manage the undo logs such that MDS rolls back the

cluster file system 200 to a fully consistent file system. This includes rolling back the file

007542.P002 -9-

system to a state where the file system dependencies are properly satisfied. Cluster

management module functionality is further described in Figures 5-9.

[0029] In addition, each MDS 202A-P is labeled with an index, an integer assigned to

each MDS that is present in the cluster. MDS 202A-P use the index to determine a

coordinating MDS for different operations, such as file system recovery, updating epochs, etc.

While for one example the index is an integer increment starting at one, other examples may

have different indexing schemes (assigning index based on computing resources, etc.).

[0030] For one example two processes are running that manage and make use of the

metadata, undo logs and the associated data stored on MDS 202A-P and MDT 204A-P. One

process informs MDS 202A-P to start a new epoch. In addition, the last globally committed

epoch is communicated to MDS 202A-P so that each MDS 202A-P can cancel records in the

undo log that will not be needed. This process is further described in Figure 7 below. For one

example this process runs during normal operation and initiated in a round robin fashion

among MDS 202A-P.

[0031] The second process is a process that rolls back the file system after an unclean

shutdown. The recovery process runs at startup of the file system. This roll back process rolls

back the file system across MDS 202A-P and MDT 204A-P to the last globally committed

epoch. For one example the roll back process additionally collects the last globally committed

epoch and cancels unused undo records. For a further example, the file system cannot be used

during until the rollback process completes. The roll back process is further described in

Figure 5 below.

[0032] Figure 3 is a block diagram illustrating one example of the data layout of a MDT

204A. Other MDT 204B-P contain similar data. In Figure 3, MDT 202A comprise undo logs

304A, metadata 306, metadata target index 308, and transaction number 310. Undo log 304

comprises one or more undo records that describe each transaction initiated by MDS 302A-P.

MDS 302A-P uses the undo logs to roll back the transactions described in undo logs 304,

based on an ordering constraint in the implementation which assures that the undo records are

written before or atomically with the associated metadata updates. Because there are multiple

MDS 202A-P, there can be dependencies among the undo records in the undo logs stored on

MDT 204A-P. Furthermore, because a file system typically commits file transaction

information, such as undo records, to disk in batches, not all of the undo records in undo logs

007542.P002 -10-

304A-P may be committed to disk. Thus, loss of power or multiple MDS crash could result in

the loss of undo records and associated metadata not committed to disk. Undo logs are further

described in Figure 4, below.

[0033] Metadata 306 comprises information about the files and directories that make up a

file system. While for one example this information can simply be information about local

files, directories, and associated status information, for other examples, the information can

also be information about mount points for other file systems within the current file system,

information about symbolic links, etc. and/or combinations thereof. Each MDT 204A-P

further comprises index 308, where index 308 is used by MDS 202A-P to determine which

MDT 204A-P is associated with MDS 202A-P for a particular operation. Transaction number

310 is a series of one or more integers relating a particular under record that is part of undo

log 306 with a corresponding transaction.

[0034] Figure 4 illustrates one example of undo logs for a metadata server cluster. In

Figure 4, MDS undo logs 410A-C each comprises a plurality of epoch boundary and undo

records. A boundary record is a record that marks the beginning of an epoch. As stated above,

an undo record contains sufficient information to undo the effect of the transaction they

belong to. For example and by way of illustration, MDS undo log 410A comprises epoch

boundary records 416A-C and undo records 412A-C, 414A, and 416A-B. In addition, MDS

undo log 410B comprises epoch boundary records 424A-C and undo records 422A-B and

424A-C. In addition, MDS undo log 410A comprises epoch boundary records 440A-C and

undo records 432A-B, 434A, 436A, and 438A-C. Alternatively, MDS undo logs 410A-C may

comprise one or no undo records.

[0035] Furthermore, each boundary and undo record is associated with an epoch number.

An epoch is a collection of operation that includes all the file transaction dependencies. At the

end of an epoch, MDS 202A-P are in a completely dependent state, because the file

transactions that depend on each other are include in the epoch. For example and by way of

illustration, boundary records 416A, 426A, and 440A and undo records 412A-C, 422A-B, and

423A-B are associated with epoch one. Furthermore, boundary records 416B, 426B, and

440B and undo records 414A, 424A-C, and 434A have epoch value of two. In addition,

boundary records 416C, 426C, and 440C and undo records 416A-B and 436A have epoch

007542.P002 -11-

three while undo records 438A-C have epoch four. Other examples may have undo records

with epoch numbers with different values.

[0036] By associating each undo record with an epoch number, an epoch is defined across

multiple MDS 302A-P. As mentioned above, each epoch is defined in such a way that the file

system resulting from a rollback is consistent file system. By way of illustration, epoch 440

comprises boundary records 416A, 426A, and 440A and undo records 412A-C, 422A-B,

423A-B with an epoch value of one. In addition, epoch 442 comprises boundary records

416B, 426B, and 440B and undo records 412A-C, 422A-B, 423A-B with an epoch value of

two. On the other hand, boundary records 416C, 426C, and 440C and undo records 416A-B,

436A, and 438A-C do not belong to an epoch because these undo records do not define a fully

consistent file system.

[0037] Figure 5 is a flow diagram of one example of a method 500 that rolls back a cluster

to the last epoch. In Figure 5, at block 502, method 500 receives a rollback signal that

indicates cluster file system 200 has undergone a crash, lost power, etc., to one, some or all of

the nodes comprising the cluster file system 200. While for one example method 500 receives

a rollback signal by sensing a disruption of a keep alive signal between MDS 202A-P, for

other examples, method 500 receives a rollback signal through any of a wide variety of cluster

membership and liveness mechanisms.

[0038] At block 504, method 500 assigns a coordinator that coordinates the rollback

amongst MDS 202A-P. While for one example method 500 assigns the coordinator to the

MDS 202A-P with index one, for other examples, method 500 may assign the coordinator

with a different index or some other coordinator election algorithm known in the art. The

coordinating MDS enquires about possible rollbacks from other MDS. For purposes of

illustration, let MDS 202A have index one and be the coordinator for rollback management.

When the coordinator announces itself each MDS 202A-P initiates recovery scans its undo

logs and responds to the MDS coordinator 202A indicating what the last committed epoch is.

For one example the coordinator announces itself by sending a SNAPSTATUS_LOCAL

message to the other MDS 202A-P.

[0039] At block 506, method 500 computes and distributes rollback corresponding to the

earliest epoch to MDS 202A-P. For one example coordinating MDS 202A sends a snapstatus

007542.P002 -12-

message with flags STATUS GLOBAL | STATUS_ROLLBACK and the epoch value. MDS

202A-P receive the message and roll back the undo records to the common epoch.

[0040] At block 508, method 500 rolls back the target data to the earliest committed

epoch boundary and responds to coordinator. For one example MDS 202A-P rolls back to the

earliest committed using the undo records. An undo record contains sufficient information to

undo all changes made to the metadata in a transaction. Each record has a method associated

with the type of transaction undo information it encodes to process the undo operation. For

one example MDS 202A-P return status to MDS coordinator MDS 202A using message

snapstatus with flags. An example of a rollback is illustrated in Figures 6A-B below.

[0041] Figure 6A illustrates one example of undo logs 410A-C for a metadata server

cluster used for a cluster recovery. As in Figure 4, in Figure 6A, MDS undo logs 410A-C

comprises boundary and undo records as follows: MDS undo log 410A comprises boundary

records 418A-C, undo records 412A-C with epoch value one, undo record 414A with epoch

value two, and undo records 416A-B with epoch value three; MDS undo log 410B comprises

boundary records 428A-C, undo records 422A-B with epoch value one and undo records

424A-C with epoch value two; while MDS undo 410C comprises boundary records 440A-C,

undo records 432A-B with epoch value one, undo record 434A with epoch value two, undo

record 436A with epoch value three, and undo records 438A-C with epoch value four. For this

example and by way of illustration, epochs 440-442 are committed to the disk and available to

cluster file system 200 for rollbacks. Because epoch two is later in time than epoch one,

method 500 will choose epoch two for a cluster rollback endpoint. By using epoch two for the

rollback, method 500 undoes the transaction in undo records 416-B, 436A, and 438A-C.

[0042] Figure 6B illustrates one example of undo logs 610A-C for a metadata server

cluster used after cluster recovery. In Figure 6B, undo records with epoch value one or two

remain after cluster recovery. For one example after cluster recovery, the undo records

comprising the last consistent file system are kept whereas the other undo records are

discarded. Furthermore, the boundary record associated with the next available epoch is kept

or regenerated. For example, and by way of illustration, in Figure 6B, the resulting MDS undo

log 610A comprises boundary records 418A-C and undo records 412A-412C and 414A; MDS

undo log 610B comprises boundary records 428A-C and undo records 422A-B and 424A-C;

007542.P002 -13-

and MDS undo log 610C comprises boundary records 440A-C and undo records 432A-B and

434A.

[0043] Returning to Figure 5, at block 512, method 500 determines if the rollback is

complete. While for one example method 500 determines if the rollback is complete by the

number of non-finished snapstatus messages received, for other examples method 500 may

determine rollback status using equivalent process notification schemes known in the art.

[0044] If method 500 determines the rollback in complete, method 500 sends a rollback

complete message to MDS 202A-P. For one example MDS 202A sends snapstatus message

with flags STATUS_GLOBAL | STATUS_ROLLB_COMPL. If the roll back is not complete

and status response have not been received method 500 initiates a recovery of the cluster as

described at block 502 above. However, if the roll back is complete, MDS 202A-P resume

normal operation.

[0045] Figure 7 is a flow diagram of one example of a method 700 that updates an epoch.

Method 700 initiates a new epoch on each MDS 202A-P and notifies each MDS 202A-P of

what records may be purged. In Figure 7, at block 702, method 700 determines the epoch

coordinator. For one example method 700 selects the epoch coordinator in a round robin

fashion whose MDS index is equal to the remainder of epoch number divided by the number

of MDS nodes 202A-P. Alternate examples may choose epoch coordinator using other ways

known in the art (permanent epoch coordinator, selecting based on load, etc.).

[0046] At block 704, method 700 sends a control message to MDS 202A-P to move the

epoch forward by one. For one example method 700 sends a snapcontrol message with flags

SNAPSTATUS_LOCAL | STATUS_NEW_EPOCH. At block 706, MDS 202A-P process the

new epoch message. For one example upon receipt of this message, MDS 202A-P moves the

epoch forward by incrementing the epoch value associated with new undo records. For

example and by way of illustration, if MDS 202B is currently storing undo records with epoch

value two, after receipt of the snapcontrol message, MDS 202B will create undo records with

an epoch value of three. Furthermore, each MDS 202A-P marks the start of a new epoch with

a boundary record. The boundary record comprises information that signals the start of a new

epoch.

[0047] At block 708, method 700 waits for response from MDS 202A-P that the last

epoch was committed. For one example coordinator MDS 202A waits for each MDS 202A-P

007542.P002 -14-

to report back the epoch committed. For one example each MDS 202A-P sends a snapcontrol

message with a STATUS_LOCAL flag and the epoch value for the epoch committed to disk.

The purpose of reporting the last globally committed epoch is to allow the coordinator to

indirectly signal each MDS 202A-P which undo records are unneeded.

[0048] At block 708, method 700 purges unneeded undo records. For one example and in

response to the reports sent in block 706, method 700 coordinates the reports and reports to

MDS 202A-P the latest globally committed epoch. For one example, coordinator MDS 202A

determines the last globally committed epoch that each MDS 202A-P committed by

determining the greatest globally committed epoch value. Coordinator MDS 202A sends the

greatest globally committed epoch value to MDS 202A-P in a snapstatus message with flags

STATUS_GLOBAL and STATUS_PURGE. For example and by way of illustration, if MDS

202A has committed epoch four and five, while MDS 202B-P committed epochs five and six,

coordinator MDS 202A sends a snapstatus message that epoch five is the most recent globally

committed epoch.

[0049] For one example method 700 purges the unneeded undo records in the MDS undo

logs. For one example MDS 202A-P purge the undo records in response to the snapstatus

message send. Furthermore, method 700 may stop recording undo information for certain

transactions. Purging of undo records is further described in Figures 8A-B below.

[0050] Figure 8A illustrates one example of undo logs 410A-C for a metadata server

cluster when used to purge unneeded undo records. Similar to Figure 6A, in Figure 8A MDS

undo logs 410A-C each comprise boundary records 418A-C and undo records as follows:

MDS undo log 410A comprises undo records 412A-C with epoch value one, undo record

414A with epoch value two, and undo records 416A-B with epoch value three; MDS undo log

410B comprises undo records 422A-B with epoch value one and undo records 424A-C with

epoch value two; while MDS undo 410C comprises undo records 432A-B with epoch value

one, undo record 434A with epoch value two, undo record 436A with epoch value three, and

undo records 438A-C with epoch value four. For each undo log, boundary records 418A,

428A, and 440A are associated with epoch one, boundary records 418B, 428B, and 440B are

associated with epoch two, and boundary records 418C, 428C, and 440C are associated with

epoch three. For this example and by way of illustration, epochs 440-442 are globally

committed to the disk. Thus, because both epoch 440 and 442 are globally committed to disk,

007542.P002 -15-

a rollback of undo records to the end of either epoch produces a fully consistent file system.

Thus, it is not necessary to have both epochs and the epochs are unnecessary. Therefore,

method 700 purges the undo records associated with epochs 440-442 which include purging

undo records 412A-C, 4414A, 422A-B, 424A-C, 433A-B, and 434A as well purging the

associated boundary records.

[0051] Figure 8B illustrates one example of undo logs for a metadata server cluster used

after purging unneeded undo records. As mentioned above, the undo records in epochs 440-

442 are not needed and method 700 purges those records. In Figure 8B, method 700 purged

the unnecessary records, resulting in MDS undo log 810A with undo records 416A-B and

MDS undo log 810C with undo records 436A and 438A-C. Each MDS undo log 810A-C

further comprises boundary records 418C, 428C, and 440C, respectively.

[0052] Returning back to Figure 7, at block 712, method 700 determines if the system is

shutting down. If not, at block 716, method 700 waits for the next purge. While for one

example method 700 waits a pre-determined time before starting the next purge at block 702,

for other examples, method 700 waits based on some other metric before starting the next

purge at block 702 (based on the number of file transactions, amount of data stored, etc.).

Otherwise, at block 716, method 700 concludes the process and exits.

[0053] Figure 9 is a block diagram illustrating one example of cluster management

module 900. In Figure 9, metadata cluster management module 900 comprises coordination

selection module 902, rollback module 904, epoch update module 906, control handler

module 908, log writing module 910, log management module 912, and log undo module 914.

Coordination selection module selects the coordinating MDS for various operations, such as

rollback, epoch update, etc. Rollback module 904 manages the rolling back of undo records

on the MDS. Furthermore, if the MDS is the coordinator for the rollback, rollback module

904 manages the rollback to the previous epoch as illustrated in Figure 5, blocks 504-526.

Epoch update module 906 manages the updating of epochs as illustrated in Figure 7. Control

handler module 908 manages the passing and receiving of messages used for rollback and

epoch update operations. Log writing module 910 controls writing out of the undo logs. Log

management module 912 manages the undo logs. Log undo module 914 controls the rolling

back of the each undo record in the undo logs.

007542.P002 -16-

[0054] In practice, the methods described herein may constitute one or more programs

made up of machine-executable instructions. Describing the method with reference to the

flowchart in Figures 5 and 7 enables one skilled in the art to develop such programs, including

such instructions to carry out the operations (acts) represented by logical blocks on suitably

configured machines (the processor of the machine executing the instructions from machine-

readable media). The machine-executable instructions may be written in a computer

programming language or may be embodied in firmware logic or in hardware circuitry. If

written in a programming language conforming to a recognized standard, such instructions

can be executed on a variety of hardware platforms and for interface to a variety of operating

systems. In addition, the present invention is not described with reference to any particular

programming language. It will be appreciated that a variety of programming languages may

be used to implement the teachings of the invention as described herein. Furthermore, it is

common in the art to speak of software, in one form or another (e.g., program, procedure,

process, application, module, logic...), as taking an action or causing a result. Such

expressions are merely a shorthand way of saying that execution of the software by a machine

causes the processor of the machine to perform an action or produce a result. It will be further

appreciated that more or fewer processes may be incorporated into the methods illustrated in

the flow diagrams without departing from the scope of the invention and that no particular

order is implied by the arrangement of blocks shown and described herein.

[0055] Figure 10 shows one example of a conventional computer system that can be used.

The computer system 1100 interfaces to external systems through the modem or network

interface 1102. It will be appreciated that the modem or network interface 1102 can be

considered to be part of the computer system 1100. This interface 1102 can be an analog

modem, ISDN modem, cable modem, token ring interface, satellite transmission interface, or

other interfaces for coupling a computer system to other computer systems. The computer

system 1102 includes a processing unit 1104, which can be a conventional microprocessor

such as an Intel Pentium microprocessor or Motorola Power PC microprocessor. Memory

1108 is coupled to the processor 1104 by a bus 1106. Memory 1108 can be dynamic random

access memory (DRAM) and can also include static RAM (SRAM). The bus 1106 couples

the processor 1104 to the memory 1108 and also to non-volatile storage 1114 and to display

controller 1110 and to the input/output (I/O) controller 1116. The display controller 1110

007542.P002 -17-

controls in the conventional manner a display on a display device 1112 which can be a

cathode ray tube (CRT) or liquid crystal display (LCD). The input/output devices 1118 can

include a keyboard, disk drives, printers, a scanner, and other input and output devices,

including a mouse or other pointing device. The display controller 1110 and the I/O

controller 1116 can be implemented with conventional well known technology. A digital

image input device 1120 can be a digital camera which is coupled to an I/O controller 1116 in

order to allow images from the digital camera to be input into the computer system 1100. The

non-volatile storage 1114 is often a magnetic hard disk, an optical disk, or another form of

storage for large amounts of data. Some of this data is often written, by a direct memory

access process, into memory 1108 during execution of software in the computer system 1100.

One of skill in the art will immediately recognize that the terms “computer-readable medium”

and “machine-readable medium” include any type of storage device that is accessible by the

processor 1104 and also encompass a carrier wave that encodes a data signal.

[0056] Network computers are another type of computer system that can be used with the

embodiments of the present invention. Network computers do not usually include a hard disk

or other mass storage, and the executable programs are loaded from a network connection into

the memory 1108 for execution by the processor 1104. A Web TV system, which is known in

the art, is also considered to be a computer system according to the embodiments of the

present invention, but it may lack some of the features shown in Figure 11, such as certain

input or output devices. A typical computer system will usually include at least a processor,

memory, and a bus coupling the memory to the processor.

[0057] For one embodiment, memory 1108 comprises cluster management module 1122

as described in Figure 9 above.

[0058] It will be appreciated that the computer system 1100 is one example of many

possible computer systems, which have different architectures. For example, personal

computers based on an Intel microprocessor often have multiple buses, one of which can be

an input/output (I/O) bus for the peripherals and one that directly connects the processor 1104

and the memory 1108 (often referred to as a memory bus). The buses are connected together

through bridge components that perform any necessary translation due to differing bus

protocols.

007542.P002 -18-

[0059] It will also be appreciated that the computer system 1100 is controlled by

operating system software, which includes a file management system, such as a disk operating

system, which is part of the operating system software. One example of an operating system

software with its associated file management system software is the family of operating

systems known as Windows® from Microsoft Corporation of Redmond, Washington, and

their associated file management systems. The file management system is typically stored in

the non-volatile storage 1114 and causes the processor 1104 to execute the various acts

required by the operating system to input and output data and to store data in memory,

including storing files on the non-volatile storage 1114.

[0060] In the foregoing specification, the invention has been described with reference to

specific exemplary embodiments thereof. It will be evident that various modifications may be

made thereto without departing from the broader spirit and scope of the invention. The

specification and drawings are, accordingly, to be regarded in an illustrative sense rather than

a restrictive sense.

007542.P002 -19-

CLAIMS

What is claimed is:

1. A computerized method comprising:

 defining an epoch, epoch boundaries and a first plurality of undo records wherein the

epoch boundary describes a fully consistent file system across a plurality of metadata servers

and the first plurality of undo records represent information associated with file transactions

initiated by the plurality of metadata servers;

 creating a second plurality of undo records that are subsequent to the epoch boundary;

and

 recovering the file system by rolling back the file system with the second plurality of

undo records, wherein the resulting file system is a fully consistent file system across the

plurality of metadata servers.

2. The computerized method of claim 1, wherein the first plurality of undo records have

multiple dependencies.

3. The computerized method of claim 1, wherein the recovering the file occurs in

response of at least two metadata servers from the plurality of metadata servers losing file

transactions.

4. The computerized method of claim 1, further comprising:

 requesting an epoch level status from the plurality of metadata servers;

 determining a common epoch level status across the plurality of metadata servers; and

 requesting the plurality of metadata servers to rollback to the common epoch level.

5. The computerized method of claim 1, further comprising:

 sending a control message to the plurality of metadata servers to advance the epoch

level.

6. The computerized method of claim 1, further comprising:

007542.P002 -20-

 reporting the previous epoch committed; and

 purging unneeded undo records.

7. The computerized method of claim 1, further comprising storing a third plurality of

undo records associated with one metadata server from the plurality of metadata servers in an

undo log.

8. The computerized method of claim 1, further comprising recovering the file system on

one metadata server from the plurality of metadata servers using a redo log associated with

the one metadata server.

9. A machine readable medium having executable instructions to cause a processor to

perform a method comprising:

 defining an epoch, epoch boundaries and a first plurality of undo records wherein the

epoch boundary describes a fully consistent file system across a plurality of metadata servers

and the first plurality of undo records represent information associated with file transactions

initiated by the plurality of metadata servers;

 creating a second plurality of undo records that are subsequent to the epoch boundary;

and

 recovering the file system by rolling back the file system with the second plurality of

undo records, wherein the resulting file system is a fully consistent file system across the

plurality of metadata servers.

10. The machine readable medium of claim 9, wherein the first plurality of undo records

have multiple dependencies.

11. The machine readable medium of claim 9, wherein the recovering the file occurs in

response of at least two metadata servers from the plurality of metadata servers losing file

transactions.

12. The machine readable medium of claim 9, further comprising:

007542.P002 -21-

 requesting an epoch level status from the plurality of metadata servers;

 determining a common epoch level status across the plurality of metadata servers; and

 requesting the plurality of metadata servers to rollback to the common epoch level.

13. The machine readable medium of claim 9, further comprising:

 sending a control message to the plurality of metadata servers to advance the epoch

level.

14. The machine readable medium of claim 9, further comprising:

 reporting the previous epoch committed; and

 purging unneeded undo records.

15. The machine readable medium of claim 9, further comprising storing a third plurality

of undo records associated with one metadata server from the plurality of metadata servers in

an undo log.

16. The machine readable medium of claim 9, further comprising recovering the file

system on one metadata server from the plurality of metadata servers using a redo log

associated with the one metadata server.

17. An apparatus comprising:

 means for defining an epoch, epoch boundaries and a first plurality of undo records

wherein the epoch boundary describes a fully consistent file system across a plurality of

metadata servers and the first plurality of undo records represent information associated with

file transactions initiated by the plurality of metadata servers;

 means for creating a second plurality of undo records that are subsequent to the epoch

boundary; and

 means for recovering the file system by rolling back the file system with the second

plurality of undo records, wherein the resulting file system is a fully consistent file system

across the plurality of metadata servers.

007542.P002 -22-

18. The apparatus of claim 17, wherein the first plurality of undo records have multiple

dependencies.

19. The apparatus of claim 17, wherein the recovering the file occurs in response of at

least two metadata servers from the plurality of metadata servers losing file transactions.

20. The apparatus of claim 17, further comprising:

 means for requesting an epoch level status from the plurality of metadata servers;

 means for determining a common epoch level status across the plurality of metadata

servers; and

 means for requesting the plurality of metadata servers to rollback to the common

epoch level.

21. The apparatus of claim 17, further comprising:

 means for sending a control message to the plurality of metadata servers to advance

the epoch level.

22. The apparatus of claim 17, further comprising:

 means for reporting the previous epoch committed; and

 means for purging unneeded undo records.

23. The apparatus of claim 17, further comprising means for storing a third plurality of

undo records associated with one metadata server from the plurality of metadata servers in an

undo log.

24. The apparatus of claim 17, further comprising means for recovering the file system on

one metadata server from the plurality of metadata servers using a redo log associated with

the one metadata server.

25. A system comprising:

a processor;

007542.P002 -23-

 a memory coupled to the processor though a bus; and

 a process executed from the memory by the processor to cause the processor to define

an epoch, epoch boundaries and a first plurality of undo records wherein the epoch boundary

describes a fully consistent file system across a plurality of metadata servers and the first

plurality of undo records represent information associated with file transactions initiated by

the plurality of metadata servers, to create a second plurality of undo records that are

subsequent to the epoch boundary, and to recover the file system by rolling back the file

system with the second plurality of undo records, wherein the resulting file system is a fully

consistent file system across the plurality of metadata servers.

26. The system of claim 25, wherein the first plurality of undo records have multiple

dependencies.

27. The system of claim 25, wherein the recovering the file occurs in response of at least

two metadata servers from the plurality of metadata servers losing file transactions.

28. The system of claim 25, wherein the process further causes the processor to request an

epoch level status from the plurality of metadata servers, to determine a common epoch level

status across the plurality of metadata servers, and to request the plurality of metadata servers

to rollback to the common epoch level.

29. The system of claim 25, wherein the process further causes the processor to send a

control message to the plurality of metadata servers to advance the epoch level.

30. The system of claim 25, wherein the process further causes the processor to report the

previous epoch committed and to purge unneeded undo records.

31. The system of claim 25, wherein the process further causes the processor to store a

third plurality of undo records associated with one metadata server from the plurality of

metadata servers in an undo log.

007542.P002 -24-

32. The system of claim 25, wherein the process further causes the processor to recover

the file system on one metadata server from the plurality of metadata servers using a redo log

associated with the one metadata server.

007542.P002 -25-

ABSTRACT OF THE DISCLOSURE

[0061] Method and apparatus are described for recovering a fully consistent file system

stored in a cluster file system with multiple metadata servers using an epoch of undo records.

The epoch consists of (i) a virtual instantaneous snapshot marking a consistent and valid file

system image and (ii) a set of undo records that enable the file servers to roll-back to this fully

consistent image associated with the file system. The file system is recovered by rolling back

file transactions associated with undo records subsequent to the undo records associated with

the epoch snapshot. In addition, the undo records are maintained by advancing the epoch

value and purging unneeded undo records.

