

What HSM brings us
New API bits

And future possibilities

October 27, 2010
Oleg Drokin

A bit of a background

● HSM is being worked on by CEA
– Under our supervision and guidance

● What is HSM?

– A way to save money on storage

– By moving unused data

– To less expensive media

How do they do it

● Two aspects to that:

● Changelogs for tracking file activity

– We are not going to dive into that

● Ways to change layouts “on the fly”

– Includes ability to lock layouts

● Empty “placeholder” files

– We still need to remember and show filenames in place

● Locking file content while HSM works on it

– Good old group lock

Layout lock

● Another bit in inodebits lock

Layout lock

● Another bit in inodebits lock

● Layout is stored on MDS, so most logical place

● Other benefits include:

– ability to be granted with other bits to decrease lock
traffic

– Less memory usage

– Less cpu usage for accesses

Usage

● Get lock around lsm accesses

● ll_get_layout_lock(parent, inode);

● LSM accessing code

● ll_get_layout_put(parent, inode);

– NULL parent is fine if unknown.

● Calling into LOV currently is lsm access

● IO as a whole is lsm access too

● Of course we should be smarter about it

Usage example
 static int ll_lov_getstripe(struct inode *inode, unsigned long arg)
 {
 struct lov_stripe_md *lsm;
 int rc;
 ENTRY;

 ll_get_layout_lock(NULL, inode);
 lsm = ll_i2info(inode)->lli_smd;
 if (!lsm)
 GOTO(out, rc = -ENODATA);

 rc = obd_iocontrol(LL_IOC_LOV_GETSTRIPE, ll_i2dtexp(inode),
0, lsm,
 (void *)arg);
out:
 ll_put_layout_lock(NULL, inode);
 RETURN(rc);
 }

About layout lock getting

● We fetch the layout lock on first lsm access

● Introduces a performance regression

● Originally planned to always fetch it unless blocked

– Did not pan out due to time

● We can fight the regression by always getting the
lock, at the cost of access time.

– Easy tradeoff for those who don't run any HSM now.

Opportunistic lock get

● Asking for two sets of lock properties:

● Must have (LOOKUP or UPDATE)

● Nice to have (LAYOUT)

● Will get us layout lock every time unless file is
being migrated.

● Lock conversion to request and release just
individual bits in a lock

● Some day in the future

Layout lock on a client

● Lock is referenced from struct ll_inode_info

● Refcount, lock handle and lock mode

● In ll_get_layout:

● Check struct ll_inode_info for active handle

– If present, just increase the refcounts

● Otherwise, execute an intent to get the lock

– IT_LAYOUT intent type

– Put received lock into the struct ll_inode_info

● In ll_put_layout

● Drop refcounts and clears the handle if needed.

Layout lock on client – cont'd

● During cancel

● We set LLIF_LAYOUT_INVALID flag in inode flags

– But nobody looks at the flag yet.

● What else do we need:

● Lsm refcounting

– Less lock holding

– Layouts stay while needed

HSM migration scenario

● Migration thread exclusively locks file layout

● This does not invalidate the cached data on files

● A Group lock is taken on all stripes of the file

● Flushes and invalidates client caches

● Allows copy tool to “join” the lock and actually move
data

– Other IO is still locked out during this

● A migration thread starts to move the data out

HSM migration scenario – cont'd

● Once the data copy is done, stripes are deleted

● Group lock unlocked too

● Lsm is replaced with empty one

● Inode is populated with size/blocks (som-alike)

● Would be great to retain a bit of file data too. e.g. so
that file(1) works without restore.

● Inode is marked “data offline”

● Layout lock unlocked.

HSM – restore scenario

● When you try to open a file

● A layout is locked

● We create the new layout

● Lock all stripes with a group lock

● Great opportunity to release layout lock here, but...

● “copy tool” starts to move data in

● Once done, release group lock, then layout
lock.

Changes to LSM format

● LSM format v3 is changed somewhat:

● Without actually making it v4

● Stripe count is now 16 bit instead of 32 bits

● Freed 16 bits are now for “lsm version”

● It is only considered valid for LSM to change if
id/gid of LSM remains the same and just
version increases

● Prevents files from having multiple layouts due to
errors.

Other applications of layout lock

● Allows to restripe files on the
fly

● Long overdue ability to grow
file stripes as it grows

● Handle OST-out of space
gracefully

● Very basic version already
implemented

● Rebalancing of space usage
on OSTs

Thank you

