Lustre

Peter J. Braam

braam@clusterfs.com

http://www.clusterfilesystems.com

Cluster File Systems, Inc

Talk overview

- What is Lustre
- The big plan
- The small plan
- Discussion

What is Lustre?

A new storage architecture

Use object oriented storage concepts

Advanced cluster file system

Scalable clustering ideas

Project history

- Started between CMU Seagate Stelias Computing
 - Another road to NASD style storage
 - NASD now at Panasas originated many ideas
- Los Alamos
 - More research
 - Nearly built little object storage controllers
 - Currently looking at genomics applications
- Sandia, Tri-Labs
 - Can Lustre meet the SGS-FS requirements?

Now

- Put in a proposal with Intel and XXX to build it
- 3 year project

Big Lustre picture

Orders of magnitude

- Clients (aka compute servers)
 - **10,000's**
- Storage controllers
 - 1000's to control PB's of storage (PB = 10**15 Bytes)
- Cluster control nodes
 - **10'**S
- Aggregate bandwidth
 - 100's GB/sec

Key issues: Scalability

- I/O throughput
 - How to avoid bottlenecks
- Meta data scalability
 - How can 10,000's of nodes work on files in same folder
- Cluster recovery
 - If something fails, how can transparent recovery happen
- Management
 - Adding, removing, replacing, systems; data migration & backup

Approach

- Andrew Project at CMU
 - 80's file servers with 10,000 clients (CMU campus)
 - Key question: how to reduce foot print of client on server
 - By 1988 entire campus on AFS
- Lustre
 - Scalable clusters?
 - How to reduce cluster footprint of shared resources (scalability)
 - How to subdivide bottlenecked resources (parallelism)

Ingredients 1: object storage

What is Object Based Storage?

- Object Based Storage Device
 - More intelligent than block device
- Speak storage at "inode level"
 - create, unlink, read, write, getattr, setattr
 - iterators, security, almost arbitrary processing
- **S**0...
 - Protocol allocates physical blocks, no names for files
- Requires
 - Management & security infrastructure

Components of OB Storage

- Storage Object Device Drivers
 - class drivers attach driver to interface
 - Targets, clients remote access
 - Direct drivers to manage physical storage
 - Logical drivers for intelligence & storage management
- Object storage applications:
 - (cluster) file systems
 - Advanced storage: parallel I/O, snapshots
 - Specialized apps: caches, db's, filesry

Inside the storage controller...

System Interface

Modules

- Load the kernel modules to get drivers of a certain type
- Name devices to be of a certain type
- Build stacks of devices with assigned types

For example:

- insmod obd_xfs; obdcontrol dev=obd1,type=xfs
- insmod obd_snap; obdcontrol current=obd2,old=obd3,driver=obd1
- insmod obdfs; mount —t obdfs —o dev=obd3 /mnt/old

Examples of logical modules

- Tri-Lab/NSA: SGS File system (see next slide)
 - Storage management, security
 - Parallel I/O for scientific computation
- Other requests:
 - Data mining while target is idle
 - LANL: gene sequencing in object modules
 - Rich media industry: prioritize video streams

I/O bandwidth requirements

- Required: 100's GB/sec
- Consequences:
 - Saturate 100's 1000's of storage controllers
 - Block allocation must be spread over cluster
- This almost forces object storage controller approach

- Open file on metadata system
- Get obtain information
 - What objects on what storage controllers store what part of the file
 - Striping pattern
- Establish connection to storage controllers you need
 - Do logical object writes to OST
 - From time to time OST updates MDS with new file sizes

And...

- For everybody: locking
 - OST manages locks for file writes:
 - Lockf/flock locks
 - Internal cluster file system enforced locks
- For the labs parallel I/O
 - Client and OST can carry logical parallel I/O modules
 - Translate file views to larger aggregates
 - Collective I/O
 - Disable locking

And...

- Storage management
 - Investigate versioning
 - HSM interfaces
- Security
 - Token interface between client, MDS, OST
 - Content based security etc.

Ingredients 2: metadata handling

Basic picture

- Clients dealing with metadata cluster
- Low concurrency
 - Want write back caching
- High concurrency
 - Want load balancing in cluster
 - Subdivide directories etc with hashes
 - Want server handling of requests to limit lock revocations

Metadata cluster

- Responsible for storing:
 - Inodes
 - Directory content
 - File data: replaced with indirect objects on OST's
 - "Third party I/O model", on steroids
- Must execute:
 - Read only requests
 - Update requests
 - Lock requests

And...

Load balancing

- Hashing directories
 - Named based hashes allow client to target particular cluster node
 - Allow load balancing highly concurrent operation
 - E.g.: MDS1 serves filenames A-J, MDS2: K-Z
- Resource allocation issues
- Recovery issues
- Little bit like ordinary cluster file system with NFS servers on top

And...

- Interaction with storage targets
 - Preallocation of objects
 - Recovery in case MDS or OST's fail

This

Is a 3 year project

- Has hard parts:
 - Meta cluster, load balancing, recovery
 - Tuning
 - Management infrastructure

Small Plan

Lustre light

NO

- No meta cluster with single, failover metadata server
- No advanced security do basic Unix security
- No storage management
- No parallel I/O
- No write back caching for metadata
- Minimize locking support (like NFS)

What remains?

- A pretty attractive open source cluster file system
- Something that can evolve into Lustre

Picture...

What is there, what do we need?

- Black components are there
- Red is missing

What do we need? — file I/O

client fs

page cache
flush daemon

network client

Clients

failover
network tgt
object server
direct driver

second OST Object
Storage
Targets

What do we need? — meta data

VFS

Lustre client fs

packetize request

network client

- 1. pre-allocate to OST
- 2. connection failure
- 3. connection creation
- 4. OST/MDS recovery
- 5. How bad is failover?

network target
request server
journal transaction
persistent storage

object target

What do we need? — Locking

Leads to cluster Unix semantics for file writes

Enthusiastic?

- Definitely!
 - We'll have a working clusterfs soon.
 - We have a roadmap for serious improvements.
- But...
 - Have we overlooked something?
 - How serious is recovery from network failures?
- Thanks Mark, for kicking this discussion off!

