
Changelogs and FeedsNathan Rutman1/30/081 IntroductionA changelog is a log of data or metadata changes. In general, these will track�lesystem operations conveyed via one or more RPCs. Changelogs are used byconsumers such as userspace audit logs, mirroring OSTs or �les, database feeds,etc. Changelogs are stored persistently and transactionally and are removedupon completion.There are 3 sub�avors of changelogs (we intend to use the same changelog facilityfor all).1. rollback (undo) logs - used for �lesystem recovery2. replication logs - used to propagate changes from a master server to a replica3. audit logs - record auditable actions (�le create, access violation, etc.)Audit logs are presented to userspace consumers via a special transactional,readable �le called a feed. A replication log may also be presented as a feed, ifa userspace consumer is to be used. Rollback logs are only used internally.2 RequirementsImplement changelogs as a low level service for the following use cases.2.1 Audit logs (text)A particular site policy requires audit logs of �lesystem usage (access, create,delete, write, etc) and errors (speci�cally permission failures, perhaps quotaoverrun). Files A and B are on MDT0001, where the sysadmin has set upa Lustre audit feed with mask ALL_FILES|ALL_EVENTS. User on client 1opens �le A, reads �le A, removes �le A. User on client 2 attempts to open1

�le B, but fails with permission denied. The audit feed, presented as a �le un-der /mnt/MDT0001/.lustre/audit, is updated synchronously with event recordsA/open/ok, A/read/ok, A/delete/ok, B/open/EACCESS. The feed is read andpiped into a regular �le in /var/logs/audit where it is periodically purged by alogging daemon.The requirements of this scenario are:
• audit log, including not only �lesystem changes but also access events,atime changes, request failures.
• feed based on audit log
• feed set up (�lter, retention policy)2.2 DatabaseAn external database is to be updated with �lesystem changes for customer-speci�c purposes (audit, query, HSM, etc.). An audit feed is set up on eachserver; the feed consumer sends entries to the database back-end. The �lesystemevents are integrated into database, even in the event of power loss and recovery.Entries are removed from the audit feed only after the feed consumer has indi-cated completion (database integration) of the entry.Cross-server synchronization required is not required; if a single event results intwo changelog entries on two servers, these need not be reconciled/recombinedbefore submission to the consumer. However, a common identi�er will indicatelinked entries. For example, renaming a �le from MDT0001 to MDT0002 willresult in a changelog entry on each server; these will share a UUID so that theconsumer (database) can act appropriately.The requirements of this scenario are:
• audit log, including not only �lesystem changes but also access events,atime changes
• feed based on audit log
• feed set up (�lter, retention policy)
• shared cookie for compound transactions
• full recovery semantics on feed

2

2.3 ReplicationA �lesystem replica is de�ned to actively track changes in the master �lesystem,to provide widely-distributed access to �les and provide redundancy in case ofcatastrophic failure at one site (Continuity Of OPerations). The replica has adi�erent layout than the master �lesystem. Changes in data or metadata on themaster produce changelog entries; these entries are re-executed on the replica tobring the replica up-to-date. The replica must remain internally consistent atall times. The replica must remain up-to-date within some time frame (e.g. new�les on master are copied to replica within 5 minutes). The replica will alwaysremain consistent with the master in the event of a cache miss (e.g. �le 1 onmaster is modi�ed, replica will block until extents have been copied to replicaif a client on the replica tries to read it).The requirements of this scenario are:
• Replication log, including only �lesystem changes (not audit-type events,e.g. permission failures).
• Objects and byte ranges of modi�ed data must be recorded in the OSTchangelogs; reintegration of the changes on the replica will result in I/Oto the master requesting this data.
• Metadata changes should be completely described in the changelog so thatno additional RPCs are needed during reintegration.
• Replica must remain up-to-date within a reasonable (user-de�nable?) timeframe. Optimization: we need only propagate ��nal� versions of modi�edobjects for objects undergoing rapid rewrites. (But the time limit stillapplies to prevent major data loss for COOP scenarios.)
• Replica must remain consistent with master on speci�c �le access.
• Replica must always remain internally consistent (master dies, replicamust roll back to an epoch boundary).
• Replica must be fully scalable (e.g. 5 widely-distributed replicas of a largemaster system must not signi�cantly slow Lustre).2.4 ReintegrationFile or metadata is changed on caching (�ash cache or proxy) server. Thecaching servers may have a di�erent layout than the master servers. Client-driven changes in data or metadata on the cache produce replication changelogentries on the caching servers. When the cache is �ushed, the batched changelogsare sent to the master servers to be reintegrated. Multiple changes may bemerged in the cache; only the net e�ects need to be sent and/or reintegrated.The requirements of this scenario are: 3

• Replication log, including only �lesystem changes (not audit-type events,e.g. permission failures).
• The objects (or inodes) of modi�ed data must be recorded in the changelog;reintegration of the changes on the master will result in I/O to the cachesrequesting these.
• Metadata changes should be completely described in the changelog so thatno additional RPCs are needed during reintegration.
• Only �net� changes need to be reported/reintegrated on the master.
• Master must always remain internally consistent (if reintegration can'tcomplete, master must roll back to an epoch boundary).2.5 RollbackMaster servers record �lesystem changes for each epoch in a rollback log. Rein-tegration of changes from a writeback cache server also results in rollback logentries on the master. Reintegration fails when one of the master servers rebootsin the middle of reintegration. WBC recovery mechanism (not de�ned in thisHLD) decides that this incomplete epoch must be rolled back on all the masterservers to reestablish a consistent �lesystem state. The committed operationsfor this epoch are backed out of all master servers by undoing each operation inthe rollback log (in reverse order) until the previous epoch boundary record ismet.The requirements of this scenario are:
• Rollback log, including only �lesystem changes, stored locally on destina-tion targets.
• Rollback log entries are stored in the same �lesystem transaction (jour-nalled) as the operation itself.
• Rollback log entries are created for direct client transactions as well ascaching server reintegration. Note that for a caching server, a replicationlog is created on the cache, and during reintegration of this log a rollbacklog is created on the master.
• During rollback, committed log entries are rolled back in reverse order,until the previous epoch boundary is met.
• Rollback log entries must contain su�cient detail to fully undo the trans-action.
• Old disk blocks are linked to the end of the rollback log so that the orig-inal data is stored without copying. When the log is eventually unlinked(rollback is no longer needed), the blocks will be freed automatically.
• E�cient storage of rollback data.4

2.6 CoverageOperations contained in changelogs
• create / delete
• rename
• hard/soft link
• permission change
• extended attribute change
• mtime, atime change
• administrative changes (quotas, �lesets, log messages, �lesystem proc set-tings?)
• access violation (audit only)
• epoch boundary
• �le writes
• �le reads (audit only)It is worth noting that all the information above except �le read/writes is avail-able from the MDTs, and even then there are still the open(2) �ags and mtimeindications of writes. If byte range information is not required for audit, thenthere is no need to record (or send) audit changelogs on the OSTs. Rollbacklogs are still required on the OSTs to recover the original data. Replication logsare still required on OSTs to record modi�ed byte ranges.3 Functional speci�cation3.1 Implementation constraints3.1.1 Base on llogsChangelogs will be implemented as a �avor of Lustre llogs after relatively minorenhancements are made to the llog facility:
• multiple cancels of a single record (multiple replicators using a singlechangelog)
• appending old data blocks (for rollback logs)5

3.1.2 Create entries only on demandChangelog entries are created only when required by an existing consumer(s),and are canceled when that consumer(s) has �nished processing the change. Fil-ters are placed on the �front end�, reducing the number of transactions enteringthe changelogs instead of ��ltering out� entries that are already there. Filtersmay include operations, �les (�lesets), users, etc.Audit logs are only required if audit is turned on. Replication logs are onlyrequired for replicas or caching servers. Rollback logs are required for distributedtransaction recovery (currently CMD).3.1.3 RegistrationAudit and replication logs are only kept when there is at least one consumer;a registration process is therefore implied. It also follows that logs cannot begenerated retroactive to registration (boundless history is not kept).3.1.4 Independent changelogs per serverChangelogs are per-server, and may be further restricted to a particular �leset.Changelogs from di�erent servers / �lesets will not be recombined by Lustre.Applications that require cross-server feeds have to combine separate per-serverfeeds within the application. Note: a Lustre-level feed combiner could be in-cluded later.3.1.5 Feeds available on 1 client onlyFeeds are FIFO �les, accessed only though Lustre clients (llite), as <mntpt>/.lustre/feed/<feedname>.The feed is available only on a single client (the one that set up the feed). (AFIFO allows us to �forget� the old entries in the �le and prevents the �le growingwithout bounds.)3.1.6 Replication only on epoch boundariesReintegration on a replica should only be executed on full epoch boundaries.They may be executed less frequently - no more often than every X seconds.Too-frequent reintegration will unnecessarily load the �lesystem.3.1.7 No byte range information in audit logsAudit logs will contain only information currently available to the MDTs. Thisincludes open()s, mtime and atime updates, but not byte ranges. This obviatesthe need for OST audit logs (not OST rollback or replication logs, however).6

3.2 Changelog contentThe following information must be stored for every recorded transaction.1. record length2. �ags (committed, ignore, rolled_back)3. epoch4. transaction id (transno)5. synchronization cookie (shared among a single distributed transaction)6. reference �d7. �d forward link8. �d backward link9. transaction type (and version)10. transaction type-speci�c struct (variable length)The reference �d is the �primary� �d a transaction is concerned with (sometransactions may have multiple �ds associated; primary should just be chosenconsistently). The �d forward/backward links are a bookkeeping feature tosimplify tracking future/past related changes, potentially for single-�le rollbackor replication. An llog pointer to the last llog entry for each in-memory inode isstored in the inode struct for any subsequent backward link. The forward linkmay be installed later (see Origination).The transaction-speci�c struct includes any items necessary to undo a transac-tion (for undo logs), replicate a transaction on a remove server (for replicationlogs), or all audit data (for audit logs).3.2.1 ReplicationFor MDT's, the mdt_reint_record information is su�cient (including eadata,logcookies). For OSTs, the object, object version, and extents are required. Thereplica servers are responsible for translating target names and layout mapping(no assumptions should be made about the replica(s) at log recording time.Adressed in Replication HLD.)
7

3.2.2 RollbackRollback is not a symmetric operation with respect to the information availablein the RPC. The log entry must contains the �reverse� transaction; e.g. the�unlink �d 123� transaction must provide the �create �le foo under parent �d234 with �d 123, stripe pattern XXX, and objects[] on osts[]� instructions. (Notethis still results in a new inode.) Everything must be restored during rollback.For the unlink example, the MDT must restore the ownership, striping, EA,�d, parent(s), ctime, mtime, atime, mtime of parent(s). (Performance impact -this will e�ectively require copying the entire inode data, plus the parent list.Potentially we can just mark the inode �pending delete� until epoch commit?)For MDTs, a mdt_reint_rec structure is su�cient for the basic operation, butnot the restoration of mtime, ctime, parent �d(s), etc.1. mdt_reint_rec2. mtime, atime of �le3. additional operation-speci�c info: ctime, parent dir(s), mtime, atime ofparent dir(s)RPC undo record must restore:unlink full inode entry (EAs, ctime, mode, owner, etc), parent dir(s) onMDT; objects on OSTslink unlink inode on MDTcreate unlink inode on MDT, unlink objects on OSTsrename original name, parentsetattr full inode entry, mtimewrite partially and fully overwritten blocks, mtimeFor OSTs, the previous version of the objects are required.3.2.3 AuditFor MDTs1. mdt_reint_rec (for detailed event description)2. consumer list (for multi-consumer audit logs)3. parent �d (for pathname reconstruction)4. user id: nid, pid, uid5. mtime, atime6. event type (e.g. create, delete, write, read, permission failure)For OSTs, no audit logs are required (see Implementation Constraints).8

3.3 Changelog entry originationChangelogs are kept per-server for every �lesystem operation taking place onthat server, either initiated directly by a client or indirectly as part of a dis-tributed transaction from another server.Every �le has a list of �lesets of which it is a member stored in an EA. Every �le isalso automatically a member of the GLOBAL �leset. When audit or replicationlogs are set up, associated PRE and POST methods are de�ned for the �leset.The PRE and POST methods contain any applicable �lters and describe anychangelog-related actions that need to occur before the RPC is initiated (PRE)and after the RPC completes (POST). Whenever a server starts to process anRPC referencing a �le, each of the �le's �leset PRE and POST functions arecalled.PRE is called before a request is processed. POST is called when the epochcontaining the request has been globally committed.PRE and POST methods are derived from policy information in a global database.Policies for a particular �leset are downloaded to a server and cached the �rsttime a member �le is accessed on that server.3.3.1 RollbackRollback changelog entries are generated on the master or proxy servers forevery transaction that results in a local disk change.A transaction request must be reversed before it is committed in order to retrieveall the information necessary to undo the operation.During playback of a rollback log it is unnecessary to propagate the rollback ofdependent transactions to remote servers because the other servers will performtheir own rollback to the same common, consistent epoch.3.3.2 ReplicationReplication changelog entries are generated on a server for every incoming RPCthat results in a �lesystem change, when there is at least one registered replica-tion consumer.Replication logs need to be generated and stored persistently as activity on theserver takes place.It is desirable to reduce the size of replication log before sending. To compactlogs, earlier entries may be marked with an �ignore� �ag, implying that a lateroperation will reverse or subsume the e�ect of the earlier entry, such that onlythe later entry need be replayed on the master. A forward pointer to the latertransaction may also be stored in the earlier transaction (since we're modifyingit anyhow) for e�cient per-�le replay. 9

3.3.3 AuditAudit changelog entries are recorded only when:1. a consumer exists2. the operations in question meet the �lter criteria.Filter criteria may include speci�c �les (�leset), operations, or conditions (e.g.violations). RPCs that result in items that would be �ltered out are simply notrecorded in a changelog log.3.4 FilesetsFeeds are typically de�ned to watch a particular subset of �les or directorieson the �lesystem. This subset is designated a �leset. Filesets may be usedfor purposes other than feeds as well (replication, mounting a subset of thenamespace).3.4.1 Implementation contraints1. RecursiveDirectories are always considered fully recursive; any �le or directory inthe directory tree is part of the �leset as well.2. Multiple MembershipA �le may be part of multiple �lesets. One �leset may implicitly includeother �lesets. Operations on a �le should a�ect all �lesets it belongs to,and vice-versa.3. GlobalFileset de�nitions are shared between all MDTs.3.4.2 MembershipWhen a new �leset is set up, the �leset name is added to a global �leset database.This is used for tracking the existence of the �leset, assigning a �leset number,and recording consumer information for the �leset. Consumer information in-cludes audit policies for any active feeds, replication policies, and other �lesetdescription. [?The �leset database should be stored as a regular �le on anOST; this is accessable via each MDT's OSCs (do we need llite for �le ac-cess?)][The �leset database should be stored in the same manner as the FidLocation Database, which is also shared between MDTs.]10

When a �le or directory is added to the �leset, an RPC is sent to the MDTowning the �le/dir, which adds the �leset number to the �le's �leset list (anextended attribute). A high-order bit on the �leset number is also set markingthis �le as part of the �leset de�nition.Whenever a �le path is traversed, parent �lesets are copied to the child's �lesetlist (with the de�nition bit masked out), erasing the existing �leset numbersexcept where the de�nition bit is set. When a directory is added or removedfrom a �leset (via the �leset API), the inodes for subtrees under that directorymust be �ushed so that we re-execute path traversal on lookup. Note that if�les are accessed without path traversal they are not guaranteed to be identi�edas part of the �leset. A �le or directory explicitly removed from a �leset viathe �leset API will store the �leset number with the de�nition bit set as well asanother high-order bit signifying exclusion.If a �le is moved, it inherits �leset de�nitions from its new parent, but againretains those with the de�nition bit set. Rename does not a�ect the �leset list.3.5 FeedsFeeds are the userspace interface to an audit or replication changelog. The feedgates access to the log and translates log entries into a user-consumable form.Every audit log has exactly one feed. A replication log may have zero or onefeeds (it may have an internal consumer instead).A new audit changelog is started whenever a feed is set up via the feed API.Filtering takes place before entries enter the audit log; audit logs are pre�ltered.4 Use casesSee section 2.4.1 File post-processingA post-processing operation is to be started whenever a new �le is created in/srv/cam1, /srv/cam2, or /srv/cam4. The post-processing operation needs the�lename, and should be started when the new �le is �rst closed.1. Fileset 'towatch' is created using �leset API, below2. Directories are added to 'towatch' using �leset API3. Feed is created to watch CREATE and OPEN/CLOSE events on this�leset 11

4. The feed FIFO is opened by the consumer5. The consumer loops on feed entries with a blocking read on the feed FIFO.The consumer checks to see when newly created �les are �rst closed.llapi_fileset_new("towatch");llapi_fileset_add("towatch", "/srv/cam1");llapi_fileset_add("towatch", "/srv/cam2");llapi_fileset_add("towatch", "/srv/cam4");struct feed_policy policy={fp_filtermask=FF_CREATE|FF_OPEN};llapi_feed_new("towatch", *policy);fd=open($MNT/.lustre/feed/towatch, O_RDONLY);loop {read(fd, struct feed_entry *entrybuf);if entrybuf->fe_type = create then add fe_data.fid to createdlist;else if entrybuf->fe_type = close and fe_data.fid is on createdlist thenpostprocess(llapi_fid2path(fe_data.fid));}5 Logic speci�cation5.1 Llog modi�cations5.1.1 Multiple cancelAn audit log driving multiple feeds requires a reference for each feed. A repli-cation log driving multiple replicators may also bene�t. For an initial imple-mentation, making multiple copies of single-cancel llog records is su�cient. Asa re�nement, a list of consumers could be maintained within each llog entry toavoid multiple copies of the entry.5.1.2 Store old dataRollback requires restoration of an object's previous version. For OST objects,old data blocks are removed from the old inode and linked into the end of thellog's block list (and the entry is marked with the appropriate record length to�skip� the data blocks for the next entry). When the llog entry is cancelled andthe log (eventually) unlinked, the blocks are freed automatically.Under ext3, for full-block overwrites, new blocks must be allocated for the newdata to replace the old block links in the �le extents. The old blocks are removedfrom the extents and appended to the llog as above. For partial-block overwrites,the previous partial block data must be read and stored directly in the llog.12

However, under ZFS, the blocks are already COW'ed and so it is only necessaryto add a reference to the old blocks into the llog, or re-link them into a �to-be-purged� �le.5.1.3 Delayed sendIn the case of rollback logs, entries may be removed after an epoch global com-mit. For audit and replication logs, entries are processed only after globalcommit (see below). Therefore a changelog epoch commit callback is used forevery changelog. Log entries should not be sent to a replicator or placed in afeed until this callback; a �delay� bit is added to the llog entry to control this.A llog replicator can not see any entries with this bit set.5.2 Changelog entry recording5.2.1 RollbackA rollback log can be stored on an external device with links pointing back toblocks on the target device. These blocks are linked into a single special hidden�le(s) on the target, and removed as undo logs records are cancelled. (See StoreOld Data).Rollback records are recorded before or in the same transaction as the mainRPC.Rollback entries may be cancelled after the entry's epoch has been globallycommitted.5.2.2 Audit and replicationAudit and replication changelogs may be stored on the target device or on anexternal device. These entries must be processed (sent to consumers) after adistributed transaction has fully committed. This prevents partial updates frompropagating to a replica (in case master crashes and recovers). However, giventhat the RPC may have been destroyed by the time a distributed transaction ismarked complete, the changelog entry info will need to be recorded before theRPC is freed.Thus a two-part write is used for audit and replication changelogs:1. PRE: record changelog entry (setting �delay� bit)2. commit RPC3. POST: propagate changelog entry to consumers (unset �delay� bit, RPCis sent to llog replicators) 13

The entries can be enabled for propogation after some delay past the commit(it is acceptable for audit and replication to trail changes with some time lag).Therefore entries will be enabled when the server determines the entry's epochhas been globally committed. Multiple committed messages may be collectedinto a single RPC to llog replicators to reduce network load.After recovery, servers will eventually establish whether an epoch has been glob-ally committed; the audit and replication entries will wait for that event.Replication and audit logs are only kept when there is at least one registeredconsumer. Replication and audit logs may have multiple consumers; entries arecancelled when the all of the registered consumers have processed the entry. See5.1.1.5.3 Fileset APIStart a new �leset de�nition:int llapi_fileset_new(char *fileset);Add a �le or directory to a �leset:int llapi_fileset_add(char *fileset, char *filename);Directories added to a �leset refer to the entire subtree. Moving a �le out ofa subtree removes it from the �leset. A �le or directory explicitly added to a�leset retains its membership if renamed.Remove a �le or directory from a �leset:int llapi_fileset_remove(char *fileset, char *filename);A child �le or directory may be removed from a �leset that includes the parent.This has the e�ect of pruning a subtree out of the �leset tree.Destroy the �leset :int llapi_fileset_destroy(char *fileset);A �leset cannot be destroyed while in use by a feed, mount, etc. (EBUSY).Retrieve status or other info about a �leset:int llapi_fileset_getinfo(char *fileset, struct fileset_info *info)14

5.4 Feed APIFeeds provide userspace access to a server changelog. A single user process(consumer) may access a feed. Feeds are transactional and persistent; feedentries are guaranteed to be replayable in the event of a server restart, from thepoint where the consumer last indicated completion.5.4.1 Feed contentFeed entries will be packed binary data, with the formstruct feed_entry {_u32 fe_len; total record length_u32 fe_type; transaction type_u64 fe_seq; local feed sequence number_u64 fe_cookie; synchronization cookie (for distributed events)_u64 fe_time; event time, server-local_u32 fe_result; return code (0=success)void *fe_data; transaction type-specific structTransaction types:enum {t_create, t_unlink, t_open, t_close, t_read, t_write, t_attrib, t_rename, t_link, t_admin}Transaction type-speci�c struct contains event-speci�c data. (Ideally this willcontain enough data for a userspace �lesystem replicator; in many cases aMDT_REINT structure would be su�cient.) For example:struct feed_entry_open {ll_fid fid; (see lustre_idl.h)ll_fid parent_fid;nid_t clientnid;_u32 fsuid;_u32 fsgid;_u32 cap;_u32 flags;_u32 mode;_u32 filename_len;char *filename;Feed content examples (expressed in human-readable form, produced by a Sunprovided feed consumer demo utility):15

logid=1 cookie=0 type=OPEN rc=0 name=/etc/passwd fid=23a87346:003d source=cli1@tcp0 mode=O_RW uid=root gid=rootlogid=2 cookie=0 type=UNLINK rc=-EACCESS fid=23a87346:003d source=cli2@tcp0 uid=joe gid=users5.4.2 Feed setupA feed is created (and available) on a single Lustre client as a FIFO �le. Newfeeds are de�ned through lfs or a direct call to the liblustre c library (llapi).int llapi_feed_new(char *fileset, struct feed_policy *policy)starts a new audit feed. <�leset> is a previously de�ned �leset or a server name.Filesets are de�ned via the Fileset API. Special user permissions are required tostart an audit log; else EPERM is returned. The new feed is created as a FIFO at$MNT/.lustre/feed/<feedname>, where <feedname> is <�leset>[_xx], withincreasing numerical xx if the name already exists.<policy> is a structure containingstruct feed_policy {_u32 fp_filtermask;_u32 fp_entry_timeout;_u32 fp_abort_timeout;_u32 fp_abort_size;int fp_flags;<�ltermask> is a bitwise event mask:

16

mask bit description masked typesFF_CREATE new �le creation t_createFF_WRITE �le modify/append t_writeFF_READ �le read t_readFF_OPEN open/close t_open, t_closeFF_ATTRIB �le attribute / EA change t_attribFF_DELETE �le removal t_unlinkFF_LINK soft/hard link t_linkFF_RENAME rename t_renameFF_FILE all of the above (shortcut) t_create, t_unlink, t_open,t_close, t_read, t_write,t_attrib, t_rename, t_linkFF_ADMIN administrative event t_adminFF_ERR report failed requests also err & (t_create, t_unlink,t_open, t_close, t_read,t_write, t_attrib, t_rename,t_link, t_admin)FF_REPLICATE all events related to �lesetreplication t_create, t_unlink, t_write,t_attrib, t_rename, t_linkRetention policies (see Feed I/O below) may include:
• entry_timeout - automatically cancel each feed record after X seconds(0=o�, default=0).
• abort_timeout - abort recording and destroy the feed after X second time-out (0=o�, default=0).
• abort_size - abort recording after the number of unconsumed recordsexceeds a maximum (0=o�, default=1000).
• �ags� FG_RATELIMIT - don't report multiple consecutive similar entries.The feed setup remains persistent across reboots (in e.g. a feed database), untilit is explicitly destroyed:int llapi_feed_destroy(char *feedname)Feed setup info and status is available for retrieval from an existing feed:int llapi_feed_getinfo(char *feedname, struct feed_policy *policy, struct feed_status *status)17

Two functions for converting FID to �lename or full path name are also provided.Full path name is at the �lesystem's disgression for hard-linked �les.int llapi_fid2file(ll_fid fid, char *filename);int llapi_fid2path(ll_fid fid, char *pathname);5.4.3 Feed I/OThe feed output data stream is presented as a FIFO �le (see mk�fo) under$MNT/.lustre/feed/<feedname>. A feed may be open(2)ed by only a singlereader at a time. Feed entries are retrieved using read(2) on the �le. Reads willblock until new entries are available, or poll(2) or select(2) may be used.Feed entries are removed from the feed according to the following policy:The �le descriptor will make available only full feed entry records. With eachread(2) (or close(2)) of the fd, all of the entries from the previous read(2) aremarked as consumed. For example: read1 reads fe_seq 1-5, nothing is markedconsumed; read2 reads fe_seq 6-7, seq 1-5 are marked consumed; close1, seq 6-7are marked consumed.Upon recovery, we restart the feed from the �rst unconsumed entry. The feedconsumers are responsible for skipping any replayed feed entries they may havealready processed (identi�ed by repeated fe_seq).5.4.4 Feed entry orderingFor consumers combining the data from multiple feeds (e.g. database), partialordering of operations is required. Since clients synchronize the epoch amongservers for sequential transactions, using the epoch is su�cient to order �beforerelations�, while unrelated transactions may be reported in a random order.Distributed transactions are linked via a common cookie contained in all a�ectedchangelogs and reported in all a�ected feeds. Consumers are reponsible forlinking/ignoring distributed transaction entries internally.

18

6 State management6.1 State invariants6.2 Scalability & performance6.3 Recovery changes6.4 Locking changes6.5 Disk format changes6.6 Wire format changes6.7 Protocol changes6.8 API changes6.9 RPCs order changes7 AlternativesFeeds may be de�ned as regular �les instead of FIFOs, which allows multiplereaders and multiple clients. However, this complicates entry cancellation (weneed an explicit cancel), but more signi�cantly the �le would grow withoutbound. The beginning of the �le would be empty where entries were cancelledout of it, but the �le size would still have to grow for seek(), etc. A FIFOpresents a less confusing picture to users.8 Focus for inspections

19

