Sun.

microsystems

Lustre Technical White Paper

Lustre ADIO collective write driver

»—l—o—74— e e —

09/26/08 Sun and ORNL Confidential Page 1 of 16

Author Date

Description of Document Client Approval Client Approval

Change By Date
LiuYing |April 29,2008 Create the document
LiuYing May 28, 2008 Revise per HLD comment
LiuYing June 10,2008 Add the test results
LiuYing July 10, 2008 Add the diagram
LiuYing July 11, 2008 Update the test results
LiuYing July 21, 2008 Revise per Nirant’'s comment
LiuYing July 30, 2008 Add the description of the hints
LiuYing July 30, 2008 Simplify application /O pattern
identification
LiuYing Aug 25, 2008 Update FLASH IO results
LiuYing Sep 26, 2008 Add the Chimera results

09/26/08

oo o 8 8] —e

Sun and ORNL Confidential Page 2 of 16

1. Problem Statement

Numerous studies have shown that many scientific applications need to access a large
number of small pieces of data from file. The I/O performance suffers considerably if
applications access data by making many small 1/O requests. To improve the parallel
I/O performance, the small I/O requests are collected into fewer number of larger size
requests.
MPI-IO ADIO™" is an abstract-device interface for implementing portable parallel-I/O
interfaces. It provides collective I/0® mode to merge the requests of the different
parallel processes and serve the merged requests. It has been implemented on many
parallel file systems, including PVFS, PANFS, PIOFS, NFS and so on. In this report,
Lustre ADIO collective write driver is introduced. It has two perceived advantages,
including

e to saturate the network and disk IO with fewer RPCs, and

e to avoid unnecessary extent lock conflicts.

2. Approach

The main purpose of Lustre ADIO collective write driver is to provide an efficient way to
convert the application I/O patterns to the pattern Lustre prefers with low overhead.

2.1. Lustre 10 pattern

What I/O pattern does Lustre like? There are two choices, file-contiguous and stripe-
contiguous, as shown in Figure1(a).

e File-contiguous: Data is written in file offset sequence. One possible
distribution is given in Figurei(a) that pO0 writes n~(n+3) , p1 writes
(n+4)~(n+7) and p2 writes the remaining. In this pattern, each process might
access all the OSTs.

e Stripe-contiguous: Data belonging to the same OST is collected and then
redistributed to the 1/O clients. Here, I/O client means the process which
performs I/O to file. In Figurei(a), pO writes n, (n+3), (n+6) and (n+9) to
OSTO, p1 writes (n+1), (n+4), (n+7) and (n+10) to OST1 and p2 writes the left

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 3 of 16

to OST2. Usually, in this pattern each I/O client only accesses one OST and
one OST can be accessed by one or more 1/O clients.

File View
(stripe alignment)

Stripe-contiguous

What I/O pattern does Lustre like? I

(a) stripe-contiguous pattern

IOR write performance

14000
% 12000 =3 o8 *., File-contiguous [
a . N\ Stripe-congituous
= 10000 . p g
T 8000 o
S ‘., \/
Q2 6000 T "W
© ",
€ 4000 | %,
2000 = e
0 \ \ \ \
4 8 16 32 64

blocksize(MB)
(b) performance comparison
Figure 1. Lustre I/O pattern
The comparison testing results between file-contiguous and stripe-contiguous
patterns are shown in Figure1(b). The test was performed on the ORNL Jaguar
system. In the test, ost_num=72, nprocs=1024 and stripe_size=4MB. Blocksize
was changed from 4MB to 64MB exponentially. The results show that Lustre can
achieve better performance in stripe-contiguous pattern than file-contiguous
pattern due to fewer extent lock conflicts.

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 4 of 16

2.2. Definitions
For good understanding, we give some definitions here.

CO: In stripe-contiguous 1/O pattern, each OST will be accessed by a group of
clients.(Note: each client will only access 1 OST). CO(Client OST ratio) is the max.
number of clients for each OST. The default CO is 1, which means the data belongs
to one OST will be reorganized to 1 client, then be written.

Data sieving: MPI-1O provides data-sieving technique for single process to improve
I/O performance in independent 1/O mode. It uses read-modify-write to avoid
destroying the data already presented in the holes between contiguous data
segments, and hopefully does one I/O in the MPI-1O layer. When a read-modify-write
happens, the portion to be accessed is locked and read out to the temporary write
buffer, then the temporary buffer is overwritten by the user data, and at last the
temporary buffer is written to the file.

2.3. Requirements

Lustre collective write driver should satisfy two requirements, including data
redistribution and low overhead.
e Data redistribution
Reorganize the 1/O requests from application into the pattern Lustre prefers
(stripe-contiguous).
e Low overhead
There are two kinds of overhead. One comes from collective communication and

the other comes from read-modify-write in local I/O phase. They all degrade the
system performance very much.

2.4. Optimizations

Figure 2 depicts the working of the Lustre ADIO collective write driver. Two-phase
/0 is shown, involving communication phase and 1/O phase®. First, the application
I/O pattern is checked whether it can benefit from collective I/O. If so, these 1/0O
requests are converted into stripe-contiguous pattern, otherwise they are written by
ADIO_WriteStrided(). Meanwhile, we optimize collective communication in
communication phase and avoid unnecessary read-modify-write during data sieving

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 5 of 16

in local 1/0O phase, respectively.

Processi| |[rocess2| [processs] [Process4|

Communication phase

File View
data [N [e | cont.

Access Pattern Identift

! _oth buffer type and
Collective?

e type contigo

ADIO_WriteStrided()

re%ad-modify-write in data sievir;g

i data hole data| |
PDEtEREdistribution ADIO_WriteContig() i i
3 (Stripe-contiguous) ! locking overhead]

stripe_size=1M
OST_num=2

STRIPE-CONTIGUOUS not file-contiguous

P1 (om~1m) O

OST1

®3) em-3m W

P2 (1M~2M) JQQ _
(P4) (3M~4M) AAAJ/

PoveEriead reduction:
Calculate (off, len) directly

|Processz‘ |PFOC€SS4|

Poveriead reduction:

Exchange recv/send size

@

At most, write step_size
I0client_num * stripe_size

EASY to calculate recv&send size Exehanneedata

}

Only ntimes=

However, the overhead in communication phase is inevitable!

1/0 phase Write data

Figure 2. Diagram of Lustre ADIO collective write driver

1. Data redistribution

The aim of data redistribution is to generate stripe-contiguous pattern.
of three sub functions.

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential

® Exchange data whole_size/step_size Write data

max_ntimes=

max{nl,n2,n3.,n4}

It consists

Page 6 of 16

a) Stripe alignment

Stripe alignment is a precondition of stripe-contiguous pattern. It has been
proven to be effective to reduce unnecessary extent lock conflicts and get
adequate utilization of network and disk I/O with fewer RPC’s.

b) Application 1/O pattern identification

Before producing stripe-contiguous pattern, Lustre ADIO driver should identify
whether the current application access pattern can benefit from collective /O
mode. We decide this according to the request size, no matter if the data is
interleaved or not. Here, we determine the request size is small or big
according to the hint "big req_size”. (Please refer to Appendix for more

details.) Two typical use cases are discussed in Figure3.
Case1(small size) | Case2(big size)

rrll B W N] |

i
|
2NN I N ; I |
P2 B B B W | | |
Pa[[1 [1 T[] T[]]
Stripe Size | Offset line
% X %Y 77 TN2772722072727%. %Y %Y %Y
File view- m | m+2 | m+3 \
CoIIective\~ Independent

CO=1:P0 | CO=1:P1
CO=2: PO/P2. CO=2: P1/P3. Po. [P1] (P2 (P3|

T < R <
o) [osmt

Figure 3. Application I/O pattern identification

e Casel: small size

This case usually can benefit from collective /0O mode. For this case, the
driver collects the data and redistributes them to the 10 clients as shown in

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 7 of 16

Figure3.

i. When CO = 1, data will be reorganized to 2 10 clients(PO—OSTO
and P1—>Q0ST1), then be written.

i. When CO = 2, data will be reorganized to 4 10 clients(P0, P2 ->OSTO
and P1,P3->0ST1), then be written.

e Case2: big size

Since big size requests can achieve good parallel I/O performance, we

don’t need collect them any more, so independent IO mode is

recommended.

c) Data reorganization

Once the application access pattern passes the check, Lustre ADIO driver will
collect data according to which OST they are located in, and then redistribute
the data to the I/O clients. During the reorganization, some policies to keep
the load balanced between I/O clients and OSTs should be adopted, as
follows.

m Each OST should be accessed by almost the same number(<=CO) of 1/O
clients each time. However, sometimes more 1/O clients will bring higher
bandwidth, so there is a trade-off.

m For the I/O clients to each OST, each 1/O client should send almost the
same amount of 1/O load each time.

2. Overhead reduction

09/26/08

a) Data sieving

MPI-IO provides data-sieving technique for single process to improve 1/O
performance in independent I/O mode. It uses read-modify-write by default to
keep the data in the holes from destruction for a single process. But
sometimes, it would cause high locking overhead and extra 1/O operations. To
avoid this, a read-modify-write won't be adopted unless we enable it. We
provide hint “ds_in_coll’ to control it. (Please refer to Appendix for more
details.)

oo o 8 8] —e

Sun and ORNL Confidential Page 8 of 16

09/26/08

b) MPI Collective communication

Collective communication is one of the most important communication types in
MPI®. It is used to transmit data among all processes simultaneously in a
group specified by an intercommunication object. However, complete
exchange from all members to all members, such as MPI_Alltoall(), produces
n® communication operations, which have a great impact on the performance.

There are two places calling MPI_Alltoall in original ADIO driver. We make
optimization for both of them.

i) ADIOI_LUSTRE_Calc_others_req()

In this function, each process calculates which process will access its own
I/O request and then sends the access information to that process.
MPI1_Alltoall is used to exchange the access information among the
processes. During the calculation, if each request 10 size is same and the
request data is contiguous, the access information(offset and length) can
be calculated easily, without MPI_Alltoall(). Here, we judge the size and
continuity by hints “same _io_size” and “contiguous_data”. (Please refer to
Appendix for more details.)

i) ADIOI_LUSTRE_Exch_and_write()
In this function, MPI_Alltoall is used to exchange recv/send size before 10
data communication. Before optimization, each process may have different
file portion, so the communication times depend on the maximum of all the
processes, and MPI_Alltoall called each time makes performance suffer
from unnecessary communication overhead.
As shown in the bottom right of Figure2, we optimize it according to the
following criterias.

o Since the data redistributed to each I/O client is stripe-contiguous not
file-contiguous, all the processes can complete their data size
exchange in the same file portion.

o Through the previous calculation, each process knows clearly about
which process it will receive data from and which process it will send

oo o 8 8] —e

Sun and ORNL Confidential Page 9 of 16

data to, so they don't need MPI_Alltoall() to exchange offset and length
any more.

o And because all the I/O clients write [OclientnumX stripesize size /O
at most in each communication, the whole file portion can be accessed

(maxendoffset— minstartoffset)

+1

ntimes =
(IOclientnum X stripesize)

Here, minstartoffset is aligned with stripe size.

3. Test cases and Results

We use two parallel I/O benchmarks (FLASH 1/O and IOR) and one real scientific appli-
cation (CHIMERA) to test Lustre ADIO driver. And all the tests were performed on
ORNL Jaguar supercomputer.

3.1. IOR benchmark performance

We simulate the collecting 1/0 behavior in IOR source codes instead of Lustre ADIO
driver directly because we can’t access and modify Cray MPI lib on Jaguar.

We compared Lustre ADIO driver(collective/independent) and POSIX on Jaguar in
IOR benchmark with 1024 clients and 72 OSTs. Stripe size was 4MB and blocksize
was set from 1KB to 4MB exponentially. IOR command is: “IOR -a API -b blocksize
-t blocksize -w (-c) -v -0 outfile -q”.

To analyze the communication overhead, we separated communication from 1/O
operation. That means for each collection, information communication completes
first and then 1/0O write. The comparison analysis in Figure 4 shows that with our
optimization for MPI collective communication, the communication overhead was
reduced from 50% to 20% significantly.

before optimization after optimization
100% 100%

O 10_time

75% — io_time
= comm_time °

75% 7

5] comm_time

50% 50% |

25% — 25% —

0% 71 1 1 T T T T T T T T 0%
1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m

4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m

blocksize (bytes) blocksize (bytes)

Figure 4. write time overhead analysis on Jaguar

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 10 of 16

The write performance in Figure 5 proves that after simplifying MPI communication,
the write time of collective 1/0O was much lower than those of independent I/O mode
and POSIX. But when block size became larger, the write time increased too. So, as
mentioned in application access pattern identification, for big size request collective
write driver won’t help much because this kind of 1/0O pattern already can get good
performance itself. But, although write time of collective IO was very small, collective
open time took much, as shown in Figure 5. The collective open time was about 30
times of write time and it had a great impact on the collective 10 performance.

Write time Open time

.600 050

__ -500 ® Lustre_coll A . ® Lustre_coll A

3 400 © Lustre_indp A 2] » 0.40 ® |ustre_indp

E B ¥ POSIX /\ \/ g Y POSIX / \

= .300 £ 030

£ / // v /\ = ——— 7 ——b———

£ .200 v ¥ S)

B e el A IR -
.000 T - . 0.10

! T i ' i T T T T T T T T T T 1
4Bk sk 32k Gdk 128k 266k 512k im 2m 4m 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m

blocksize (bytes) blocksize (bytes)

Figure 5. write time and open time on Jaguar

3.2. FLASH I/0 benchmark performance

FLASH /0 benchmark® is a popular HPC scientific application benchmark. It
measures the performance of the FLASH parallel HDF5 output. It recreates the
primary data structures in FLASH and produces a checkpoint file, a plotfile with
centered data, and a plotfile with corner data. The plotfiles have single precision
data. The purpose of this routine is to tune the I/O performance in a controlled
environment. The I/O routines are identical to the routines used by FLASH, so any
performance improvements made to the benchmark program will be shared by
FLASH.

In FLASH I/O benchmark, each client could have different block size. By default,
each 3 clients write 320k, 324k and 328k data respectively, which would cause
extent lock conflicts. To observe the behavior of collecting small I/O requests, we
shrink block size from 8X8X8 to 4x4X4 and enlarge the iteration by increasing
the number of the variables from 24 to 1024 per array element. In our test, each 3
processes should write 40k, 40.25k and 40.5k data respectively. In this I/O pattern,
each about 26 processes send their data to one I/O client. The number of the

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 11 of 16

processes scaled from 4 to 1024 exponentially. We set stripe_size=1MB and CO=4,
which means each OST will be accessed by 4 I/O clients. Also, POSIX was used for
performance comparison.

The results in Figure 6 show that for the different system scale, the output runtime of
our driver was always half of the one of POSIX, except that when nprocs=128. Since
the number of blocks is fixed in each process, as we increase the number of MPI
processes, the aggregated 1/0O amount linearly increases as well. When nprocs=512,
Lustre ADIO collective write driver achieved its best write bandwidth of 624MB/s,
which was much higher than 368MB/s POSIX done.

of procs Lustre_coll(s) POSIX(s) File size(MB) FLASH 10 Performance: time
4 2.03 9.87 160.75 1o E— ,
. L] Luslrefcoll(s)‘
o 75 © POSIX(s) —
8 2.74 10.3 3215 g |o Posxs | o 7
16 4.21 10.78 643 2 " - " p—
0 [[[[[[|
32 5.32 12.26 1286 FLASH 10 Performance: write bandwidth
64 6.6 13.04 2572 5 %
g 600 " Lustre_coll S
128 203 2324 5144 E . roon | e
] °
256 23.55 36.07 10288 £ 200 7704°\‘/
512 30.07 55.88 20576 0 ! ‘ ‘ ‘ ‘ ‘ ‘ ‘
4 8 16 32 64 128 256 512 1024
1024 65.88 106.86 41152

of procs

Figure 6. FLASH I/O performance on Jaguar

3.3. CHIMERA

CHIMERAP is a multi-dimensional radiation hydrodynamics code designed to study
core-collapse supernovae, one of the major applications in ORNL. The code is made
up of three essentially independent parts: hydrodynamics, nuclear burning, and a
neutrino transport solver combined within an operator-split approach. The multi-
physics nature of the problem, and the specific implementation of that physics in
CHIMERA, provide a rather straight-forward path to effective use of multi-core
platforms in the near future.

We ran CHIMERA with 512 processes and 1MB stripe size. In our test, CHIMERA
output 8 restart files in HDF5 format. Figure 7 describes the 1/O pattern conversion.
Obviously, the original lots of small size 1/0O requests were merged into the fewer
bigger size I/0O by Lustre ADIO collective write driver.

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 12 of 16

I/O size analysis for CHIMERA

1 2e+06-
b o Lustre_coll
QOriginal

1.06:+06- w O o

8.0e+007

&)
o
o

s oz

6.0e+05 @

Iengin{oyies)

innl (=] a oo

2 e+ 05 |, iy

e . -E—
0 0e+00 T
0.0e+00

T T T 1
2.0e+08 3.0e+08 4.0e+08 5.0e+08

offset
Figure 7. CHIMERA performance on Jaguar

T
1.0e+08

Table 1 gave the output time of 8 restart files. Iltem 2 showed a 100x speedup and
the overall did a 10x speedup from original 362(s) to the current 32(s). It proves the
performance was improved significantly.

Table 1. The output time of all CHIMERA restart files

Restart File No. Lustre_coll(s) Original(s)

09/26/08

1

N o o A wWwoDN

total

7.431355953216553
2.910053014755249
2.853060960769653
3.058269977569580
4.030251979827881
3.008349895477295
2.960572004318237
5.498844146728516
31.750757932663

o — = o o o

16.74987316131592
224.6195049285889
15.89030098915100
24.44141197204590
15.76727080345154
17.22050786018372
21.45163202285767
25.52246379852295
361.662965536118

Sun and ORNL Confidential

Page 13 of 16

4. Conclusions & Future work

In this report, implementation and performance evaluation of Lustre ADIO collective
write driver is introduced. Lustre ADIO collective write driver can collect and reorganize
data to produce the pattern(stripe-contiguous) Lustre prefers with low overhead. To
improve it, we provide several MPI hints to check application I/O pattern, keep load
balancing between clients and OSTs, and reduce communication overhead, effectively.
The benchmark results show that Lustre ADIO collective write driver can achieve much
better parallel 1/0O performance independent I/O and POSIX with proper stripe size and
hints setting, especially for small size 1/0. However, for other ones, due to high
collective open time and inevitable barrier operations (MPI_Waitall) between each data
collection, its performance still needs to improve. At last, the CHIMERA results prove
Lustre ADIO collective write driver did improve significant performance for some real
scientific applications.

At present we only focus on the collective write, in the future we will investigate
collective read, and some /O optimization features™ will also be exported to Lustre. We
hope Lustre ADIO driver can contribute to more scientific applications.

5. References

[1] MPI-IO documents for ROMIO and ADIO

[2] Thakur, R. Gropp, W. Lusk, E. "Data sieving and collective 1/0 in ROMIQ". In the Proceedings of
the 7th Symposium on the Frontiers of Massively Parallel Computation, 1999. Frontiers '99.

[3] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra, "MPI: The
complete reference". The MIT Press

[4] FLASH IO Benchmark:http://www.ucolick.org/~zingale/flash_benchmark_io/

[5] Supernova simulation with CHIMERA,

http://nccs.gov/wp-content/uploads/2007/08/ messer_paper_thursday.pdf
[6] "HLD of exporting I/O features" by WangDi

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 14 of 16

http://www.ucolick.org/~zingale/flash_benchmark_io/

Appendix

We add several hints to Lustre ADIO collective write driver for performance tuning. They
are listed as follows:

directlO

Enable/disable direct 10 by setting "enable"/"disable"

CcO

In stripe-contiguous 10 pattern, each OST will be accessed by a group of 10
clients. CO stands for Client OST ratio, the max. number of IO clients for each
group.

ds_in_coll

Collective 10 will apply read-modify-write to deal with non-contiguous data by
default. However, it will introduce more overhead(lO operation and locking). To
avoid this, we can use the hint to disable this processing.

Here, we use ds(data sieving) instead of read-modify-write in the hint name
because data sieving is used more commonly than read-modify-write.
big_req_size

During 10 pattern identification, we won't collect the data if its size is big.

We give this hint to define big request size.

Usually, for Lustre, when request size is no larger than 4k or 8k, the performance
of collective 10 will be better than POSIX. Of course, the users can define it as
they like.

same_io_size and contiguous_data

These are two hints to tell the driver whether each request 10 size is same and
whether the request data is contiguous. If they are both "yes", we can optimize
ADIOI_LUSTRE_Calc_others req() by removing MPI_Alltoall(), because each
process can easily calculate the pairs of offset and length according to
continuous and same size data without collective communication.

What's more, currently only when they are both positive, the optimization can
work. In the near future, maybe some efforts will be made to other conditions.

You can use these hints in IOR hint file by option “-U”. For example,

09/26/08

oo o 8 8] —e

Sun and ORNL Confidential Page 15 of 16

IOR_HINT__MPI__directlO=disable
IOR_HINT__MPI__CO=1
IOR_HINT__MPI__same_io_size=no
IOR_HINT__MPI__contiguous_data=yes
IOR_HINT__MPI__ds_in_coll=disable
IOR_HINT__MPI__big_req_size=40960

oo o 8 8] —e

09/26/08 Sun and ORNL Confidential Page 16 of 16

	1.Problem Statement
	2.Approach
	2.1.Lustre IO pattern
	2.2.Definitions
	2.3.Requirements
	2.4.Optimizations

	3.Test cases and Results
	3.1.IOR benchmark performance
	3.2.FLASH I/O benchmark performance
	3.3.CHIMERA

	4.Conclusions & Future work
	5.References

