
Userland proc interfaceAuthor WangDI05/07/20081 IntroductionThis document describes how to implement proc and ioctl mechanisms on theuser base server. The basic ideas are that the user base server maintain aplatform-independent tree(similar as linux proc tree, it will be called parameterstree in this HLD) and lctl will retrieves those parames from the server, insteadof procfs. And the communication between lctl process and user base serverprocess will be implemented by socket, which will be implemented in anothertask.De�nition:
• lctl client: The process running lctl command. when it issues paramsrequests to proc server.
• params server: The handler thread to handle the requests coming fromthe lctl client, which will be only running on the user base server in thisHLD.In this HLD, lctl client and params server are running are the same node.2 Requirements
• The parameters tree must be platform-independent, and the entries inthe tree could be added/deleted/lookup. Each entry in the the tree willassociate with a name, value and read/write function. The value could beretrieved and set by the read/write function.
• The parameters tree is only maintained in user space server, and the cor-respondent lctl can be di�erent from current procfs based lctl.
• The communication between lctl client and proc server is implemented byunix socket.

1

3 Functional speci�cation3.1 API for lctlThese APIs will be used by lctl to communicate with server process.int params_open(char *dev_path);int params_close(int sock_fd);
• parameters,� dev_path: connecting parameters(ports, connecting protocol) for theunix socket.� sock_fd: the descriptor for the socket.
• Return� open >0 the socket descriptor, < 0 error.� close = 0 success, < 0 error.
• Description� Lctl set/get_params will use params_open/close to get/close thesocket descriptor for the communication.int params_read(char *path, int path_len, char *read_buf, int buf_len,int offset);int params_write(char *path, int path_len, char *write_buf, int buf_len,int offset);
• parameters� path: the path for params.� path_len: the length for the path� read_buf, write_buf: input/output bu�er.� buf_len: the bu�er length.� o�set: the o�set for read/write.
• Return� Read, >= 0 the read length, < 0 error.� Write. = 0 success, < 0 error.
• Description 2

� These 2 APIs will be used by lctl get/set_params to retrieve/set procparameters.int params_list(char *path_pattern, void *list_buf, int buf_len, int *real_len,int *eof);
• parameters� path_pattern: The path_pattern of the list.� list_buf: the bu�er to �ll the listed entries.� buf_len: the length of the list_bu�er.� real_len: the list_entry length in the list bu�er.� eof: whether it is the end of listing.
• Return� = 0 success, < 0 error.
• Description� This API is used to get the lists of the entries.int params_ioctl(int dev_id, int opc, void *ioc_buf, int ioc_buf_length);
• parameters� dev_id: the device id for ioctl request. For lustre, it should be aconstant value as original (/dev/obd)� opc: the ioctl command.� ioc_buf: the ioc parameters bu�er (obd_ioctl_data).� ioc_buf_length: the length for ioc_buf
• Return� = 0 success, < 0 error
• Description� This API will be used by lctl ioctl to do ioctl

3

3.2 API for params serverWhen the params server gets the request from the lctl client, it will setup aconnection with lctl client, and then create another thread to handle the request.In the handler thread, it will call correspondent API according to the request.Except those API, all these stu� will be implemented in that communicationtask. int params_server_read(int fd, char *path, int path_len, int offset);int params_server_write(int fd, char *path, int path_len, int offset);int params_server_list(int fd, char *path, int path_len);
• parameters� fd: the fd read/write will use to communicate with client.� path: the path for params, for list, the path might be a path_patternstring.� path_len: the length for the path.� o�set: the o�set for read/write.
• Return� = 0 success, < 0 error.
• Description� These 3 APIs will be used by params server to set/get/list parame-ters.int params_server_ioctl(int fd, int dev_id, void *ioc_buf, int ioc_len);
• parameters� fd: the communication fd for ioctl and list.� dev_id: the dev_id for ioctl, for lustre ioctl, it should be uniquevalue (as /dev/obd)� ioc_buf: ioc buf, same as original implementation.� ioc_len: the length of ioc_bu�er.
• Return� = 0 success, < 0 error.
• Description� The API is used to handle ioctl request.4

3.3 Proc tree on serverAs discussed, a backend tree is maintained in the server, similar as procfs in-ternally in linux, but platform independently. Then other module or obd willadd/delete their proc parameters on the tree and the params server will locatethe parameter entry by the tree.3.3.1 proc tree structureThere will be an unique lustre_params_root (structure lustre_params_entry)for each server node. Each entry is allocated a name, value and correspondentread/write cb, as procfs in linux kernel. The structure is also similar as procentry in linux kernel.\begin{lstlisting}structure lustre_params_entry {struct lustre_params_entry *lpe_subdir; /*point to its �rst children */struct lustre_params_entry *lpe_next; /*point to its sibling, the end ofthis list is NULL*/struct lustre_params_entry *lpe_parent;lustre_params_read_t lpe_cb_read;lustre_params_write_t lpe_cb_write;atomic_t lpe_refcount;char *lpe_name;int lpe_name_len;rw_lock lpe_rw_lock;__u32 lpe_version;void *lpe_data; /* The argument for the read and write callback */int lpe_mode; /* dir, �le or symbol_link*/};typedef int (lustre_params_read_t)(char *page, char **start, o�_t o�, intcount, int *eof, void *data);typedef int (lustre_params_write_t)(struct File *�le, const char __user*bu�er, unsigned long count, void *data);\end{lstlisting}And there are also several APIs associate with the tree. Since the lctl paramswill be used to set/get the parameters, instead of organizing all the parametersas procfs, so these API should be somewhat simple compared with real procfsAPI. int lustre_params_add_entry (struct lustre_params_entry *lpe, char *name,lustre_params_read_t *read_cb,lustre_params_write_t *write_cb, void * data)int lustre_params_delete_entry (struct lustre_params_entry *lpe, char *name);struct lustre_params_entry * lustre_params_lookup_entry(struct lustre_params_entry *lpe, char *name);5

• parameters� lpe: the dir entry.� name: the name of the added/deleted/lookup entry.� read_cb: the read function.� write_cb: the write function.� data: the parameter put to the lpe_data.
• Return� Read, >= 0 the read length, < 0 error.� Write. = 0 success, < 0 error.� lookup, if it can �nd the entry according to the name, if it can not�nd, return NULL.
• Description� These 3 APIs will be used to add/delete/lookup the entry to the proctree.int lustre_params_walk_through_entry (struct lustre_params_entry *lpe_root,lustre_params_walk_cb_t *lpe_cb);typedef_t int (lustre_params_walk_cb_t)(struct lustre_params_entry *lpe);
• parameters� lpe_root: the root of the proc tree.� lpe_cb: the callback for each entry.
• Return� Read, = 0 success, < 0 error.
• Description� The API walks through all the entry of the tree and call the callbackfunction for each entry.int lustre_params_ioctl(int dev_id, void *ioc_buf, int ioc_len);
• parameters� dev_id: for lustre ioctl, the dev_id is unique (as /dev/obd in kernelbase) 6

� ioc_buf: the ioctl bu�er.� ioc_len: the length of ioctl bu�er.
• Return� = 0 success, < 0 error
• Description� This API is used to handle ioctl request on server.4 Use cases1. Set/get/list proc parameters(a) Lctl set/get_params call the params_open to get the socket descrip-tor �rst. And on server side, it will setup the connection with therequest and create another thread to handle the request.(b) It calls params_read/write, to pack the request and send to the serverby the socket descriptor.(c) On server side, the handler thread handle the request by those APIde�ned in 3.2.2. Add/remove param entry(a) Obd or module call lprocfs code to add/delete the entry from thetree.(b) In lprocfs code, lustre_params_add/delete_entry will be called toadd/delete entry of the tree.5 Logic speci�cation5.1 lctl interface5.1.1 open/close/read/write/list/close paramsCurrent lctl implement set/get_params interface based on several posix systemcall open, read, write, glob, close, and all of them are based on local linuxprocfs. But in user base server, the �procfs� is maintained on server, and thereare no local procfs at all, so those posix system calls are needed to be replacedby those lctl API de�ned in 3.1 (open�> params_open, read�>params_read,write�>params_write, glob�>params_list).
• params_open should connect the proc server with de�ned port and proto-cal (dev_path parameter), then on the proc server, the accepting threadcreates a handling thread to handle the following request from the lctlclient. 7

• params_close will send the close request to proc server, then proc serverwill determinate the handling thread, and client will close the socket de-scriptor.
• params_read/write APIs just needs pack requests(parameters) and sendrequests to proc server thread.
• params_list API will retrieve proc entries from the proc server by a con-nected socket stream. Sometimes the path pattern might be provided, soon proc server side, some reg expression lib needs to be used to choose theright entries matched the path_pattern.
• params_ioctl is similar as params_read/write, packing the parametersto proc server, on the server side, it will unpack the request and callobd_class_ioctl directly.5.2 Server proc handlerOn proc server side, there is a socket accept thread to receive the params/ioctlrequest from client, and put the request to the list. Then it will create a threadto handle the request. Current three are �ve requests(close, read, write, list,ioctl) need to be handled. For close, the handler thread will terminate itself.For ioctl, the handler will unpack the request and call obd_class_ioctl directly.For read/write/list, all of them will be based on the �backend� params tree.5.2.1 params treeIn current implementation, all the module call lprocfs API to operate the procfstree. The lprocfs api is implemented by exported linux procfs API, so it willonly be built with linux kernel currently. And lprocfs code will still be usedin the user base proc tree, but those linux kernel exported API and structureneeded to replaced with our own structure and API.Compared with procfs, the params tree is simple, and it only need provides4 APIs, add_entry, remove_entry, lookup_entry, list_entry. And the tree willbe protected by a global read/write lock, so when lookup or listing the entries,the tree will not be modi�ed.1. Add_entry\begin{lstlisting}struct lustre_params_entry * params_add_entry (struct lustre_params_entry*lpe, char *name, lustre_params_read_t *read_cb,lustre_params_write_t *write_cb, void * data){/* create the child entry */obd_alloc_ptr(lpe_child);/* Fill lpe_child with write_cb/read_cb and data *//* lock the whole tree */ 8

lustre_params_write_lock(params_tree_lock);/* link the lpe_child to the lpe children list */lpe_child->lpe_next = lpe->lpe_subdir;lpe_child->lpe_parent = lpe;lpe->lpe_subdir = lpe_child;/* increase the refcount of the parentlustre_params_write_unlock(params_tree_lock);return 0;}\end{lstlisting}1. remove_entry\begin{lstlisting}static struct lustre_params_entry * lookup_entry (struct lustre_params_entry*parent, char *name, int length);{for(entry = parent->lpe_subdir; entry ; entry = parent->lpe_next) {if (!strncmp(entry->lpe_name, name, length))return entry;}return NULL;}struct lustre_params_entry * params_remove_entry (struct lustre_params_entry*lpe, char *name){/* lock the whole tree */lustre_params_write_lock(params_tree_lock);/* Remove the lpe_child to the lpe children list */for(entry = parent->lpe_subdir; entry ; entry = parent->lpe_next) {pre = entry;if (strncmp(entry->lpe_name, name, strlen(name)))continue;pre->lpe_next = entry->next;/* decrease the refcount of the parent */}lustre_params_write_unlock(params_tree_lock);return 0;}\end{lstlisting}1. lookup_entry (similar as link_walk_path process in linux kernel)\begin{lstlisting}struct lustre_params_entry * params_lookup_entry (char *path){ 9

/*Got the name from each entry */struct lustre_params_entry *parent;struct lustre_params_entry *child = NULL;char *lookup_name;int lookup_name_length = 0, last_component = 0;parent = &lustre_params_root_entry; /*initialize the root entry */name = path;lustre_params_read_lock(params_tree_lock);for (;;) {/*Get lookup_name lookup_name_length*/lookup_name = name;do {c = *name++;} while (c && (c != '.')); /* path format looks xxx.yyy.zzzlookup_name_length = name - lookup_name;if (!c)last_component = 1;child = lookup_entry(parent, lookup_name, lookup_name_length);if (child == NULL)break;if (IS_Symblol(child)) {child = lookup_entry(parent, lookup_name, lookup_name_length);}/* If it is a symbol link, read name from the lpe_data and lookup againif (last_component)break;elseparent = child;lustre_params_read_unlock(params_tree_lock);}return child;}\end{lstlisting}1. list_entry\begin{lstlisting}static int match (char *path_pattern, int path_pattern_len, char *path_name,int name_len){/* check whether the name is matched with path_pattern *//* Use regcompile to format the name *//* Use regexec to check whether the name is matched with path_pattern *//* matched return 1, other_wise return 0.}/* The stack will be used to help walk through all the entries */10

int params_list_entry (struct lustre_params_entry *root, char *path_pattern,params_list_cb_t *callback_t){/*Got the name from each entry */struct lustre_params_entry *parent;struct lustre_params_entry *child;char *lookup_name, *match_string;int lookup_name_length = 0;parent = &lustre_params_root_entry; /*initialize the root entry */match_string = name = path;lustre_params_read_lock(params_tree_lock);/* Use stack to help listing the entries */entry = root;push_stack (stack, entry);while (stack_not_empty(stack)) {if (entry->lpe_subdir) {/* Push to the stack */push_stack(entry);entry = entry->lpe_subdir;} else {/* handle the leaves of the tree*/callback (entry);for(entry = entry->lpe_next; entry; entry = entry->lpe_next)callback (entry);/* pop the entry and move to next entry */pop_stack(entry);entry = entry->lpe_next;}}lustre_params_read_unlock(params_tree_lock);return 0;}\end{lstlisting}5.2.2 The server proc/ioctl handlerThe handler will handle three request, read, write and list. For read/write,it will locate the entry �rst by lustre_params_lookup_entry, then get/set theentry by the read/write callback function attached by the entry.\begin{lstlisting}int params_server_read(int fd, char *path, int path_len, int o�set){obd_alloc(buf);entry = params_lookup_entry (path);entry->read_cb(entry, buf);/* write the bu�er to fd */ 11

}\end{lstlisting}For list:\begin{lstlisting}int params_server_list(int fd, char *path_pattern, int path_len, int o�set){obd_alloc(buf);/* locate the �rst the name which is not path_pattern,* for example, for ldlm.namespaces.*mdc*.lock_count, ldlm.namespaces is* located �rst. then the left of the path_pattern will be put to list API*/entry = params_list_entry (left, list_cb);}\end{lstlisting}6 State ManagementAs discussed, a global read/write lock will protect the tree being modi�ed whenlookup or list the entries.7 AlternativesAnother alternative way for communication between lctl client and proc server

12

