Userland proc interface

Author WangDI
05/07/2008

1 Introduction

This document describes how to implement proc and ioctl mechanisms on the
user base server. The basic ideas are that the user base server maintain a
platform-independent tree(similar as linux proc tree, it will be called parameters
tree in this HLD) and lctl will retrieves those parames from the server, instead
of procfs. And the communication between lctl process and user base server
process will be implemented by socket, which will be implemented in another
task.
Definition:

e Ictl client: The process running lctl command. when it issues params
requests to proc server.

e params server: The handler thread to handle the requests coming from
the lctl client, which will be only running on the user base server in this
HLD.

In this HLD, lctl client and params server are running are the same node.

2 Requirements

e The parameters tree must be platform-independent, and the entries in
the tree could be added/deleted/lookup. Each entry in the the tree will
associate with a name, value and read/write function. The value could be
retrieved and set by the read/write function.

e The parameters tree is only maintained in user space server, and the cor-
respondent Ictl can be different from current procfs based lctl.

e The communication between Ictl client and proc server is implemented by
unix socket.

3 Functional specification
3.1 API for Ictl
These APIs will be used by Ictl to communicate with server process.

int params_open(char *dev_path);
int params_close(int sock_fd);

e parameters,

— dev_path: connecting parameters(ports, connecting protocol) for the
unix socket.

— sock _fd: the descriptor for the socket.
e Return

— open >0 the socket descriptor, < 0 error.

— close = 0 success, < 0 error.
e Description

— Lctl set/get params will use params_open/close to get/close the
socket descriptor for the communication.

int params_read(char *path, int path_len, char *read_buf, int buf_len,
int offset);

int params_write(char *path, int path_len, char *write_buf, int buf_len,
int offset);

e parameters

path: the path for params.

— path_len: the length for the path

— read_buf, write_buf: input/output buffer.
— buf len: the buffer length.

offset: the offset for read/write.

e Return

— Read, >= 0 the read length, < 0 error.

— Write. = 0 success, < 0 error.

e Description

— These 2 APIs will be used by lctl get/set params to retrieve/set proc
parameters.

int params_list(char *path_pattern, void *list_buf, int buf_len, int *real_len,
int *eof);

e parameters

path pattern: The path pattern of the list.
list _buf: the buffer to fill the listed entries.
buf len: the length of the list buffer.

real len: the list entry length in the list buffer.
— eof: whether it is the end of listing.

e Return
— = 0 success, < 0 error.
e Description

— This API is used to get the lists of the entries.

int params_ioctl(int dev_id, int opc, void *ioc_buf, int ioc_buf_length);

e parameters

dev_id: the device id for ioctl request. For lustre, it should be a
constant value as original (/dev/obd)

opc: the ioctl command.

ioc_buf: the ioc parameters buffer (obd ioctl data).

ioc_buf length: the length for ioc_ buf
e Return

— = 0 success, < 0 error
e Description

— This API will be used by lctl ioctl to do ioctl

3.2 API for params server

When the params server gets the request from the lctl client, it will setup a
connection with lctl client, and then create another thread to handle the request.
In the handler thread, it will call correspondent API according to the request.
Except those API, all these stuff will be implemented in that communication
task.

int params_server_read(int fd, char *path, int path_len, int offset);
int params_server_write(int fd, char *path, int path_len, int offset);
int params_server_list(int fd, char *path, int path_len);

e parameters

— fd: the fd read/write will use to communicate with client.

— path: the path for params, for list, the path might be a path _pattern
string.

— path_len: the length for the path.

— offset: the offset for read/write.

e Return
— = 0 success, < 0 error.
e Description

— These 3 APIs will be used by params server to set/get/list parame-
ters.

int params_server_ioctl(int fd, int dev_id, void *ioc_buf, int ioc_lemn);
e parameters

— fd: the communication fd for ioctl and list.

— dev_id: the dev_id for ioctl, for lustre ioctl, it should be unique
value (as /dev/obd)

— ioc_ buf: ioc buf, same as original implementation.

— ioc_len: the length of ioc_buffer.
e Return

— = 0 success, < 0 error.
e Description

— The API is used to handle ioctl request.

3.3 Proc tree on server

As discussed, a backend tree is maintained in the server, similar as procfs in-
ternally in linux, but platform independently. Then other module or obd will
add/delete their proc parameters on the tree and the params server will locate
the parameter entry by the tree.

3.3.1 proc tree structure

There will be an unique lustre params_root (structure lustre params_entry)
for each server node. Each entry is allocated a name, value and correspondent
read/write cb, as procfs in linux kernel. The structure is also similar as proc
entry in linux kernel.

\begin{lstlisting}

structure lustre params_entry {

struct lustre params_entry *Ipe subdir; /*point to its first children */

struct lustre params _entry *lpe next; /*point to its sibling, the end of
this list is NULL*/

struct lustre _params__entry *lpe parent;

lustre params read tlpe cb_read;

lustre params write t Ipe cb_write;

atomic_t lpe refcount;

char *lpe name;

int lpe_name_len;

rw_lock lpe rw_lock;

__u32 lpe_version;

void *Ipe data; /* The argument for the read and write callback */

int lpe_mode; /* dir, file or symbol link*/

};

typedef int (lustre params read t)(char *page, char **start, off t off, int
count, int *eof, void *data);

typedef int (lustre params_write t)(struct File *file, const char _ user
*buffer, unsigned long count, void *data);

\end{lIstlisting }

And there are also several APIs associate with the tree. Since the lctl params
will be used to set/get the parameters, instead of organizing all the parameters
as procfs, so these API should be somewhat simple compared with real procfs
APL

int lustre_params_add_entry (struct lustre_params_entry *lpe, char *name,
lustre_params_read_t *read_cb,

lustre_params_write_t *write_cb, void * data)

int lustre_params_delete_entry (struct lustre_params_entry *lpe, char *name);
struct lustre_params_entry * lustre_params_lookup_entry

(struct lustre_params_entry *lpe, char *name);

e parameters

Ipe: the dir entry.

— name: the name of the added/deleted /lookup entry.
— read__cb: the read function.

— write_cb: the write function.

— data: the parameter put to the lpe data.
e Return

— Read, >= 0 the read length, < 0 error.
— Write. = 0 success, < 0 error.

— lookup, if it can find the entry according to the name, if it can not
find, return NULL.

e Description

— These 3 APIs will be used to add/delete/lookup the entry to the proc
tree.

int lustre_params_walk_through_entry (struct lustre_params_entry *lpe_root,
lustre_params_walk_cb_t *lpe_cb);
typedef_t int (lustre_params_walk_cb_t) (struct lustre_params_entry *lpe);

e parameters

— Ipe_root: the root of the proc tree.

— Ipe_cb: the callback for each entry.
e Return

— Read, = 0 success, < 0 error.
e Description

— The API walks through all the entry of the tree and call the callback
function for each entry.

int lustre_params_ioctl(int dev_id, void *ioc_buf, int ioc_len);
e parameters

— dev_id: for lustre ioctl, the dev_id is unique (as /dev/obd in kernel
base)

— ioc_ buf: the ioctl buffer.
— ioc_len: the length of ioctl buffer.

e Return
— = 0 success, < 0 error
e Description

— This API is used to handle ioctl request on server.

4 Use cases

1. Set/get/list proc parameters

(a) Lctl set/get params call the params_open to get the socket descrip-
tor first. And on server side, it will setup the connection with the
request and create another thread to handle the request.

(b) It calls params_read/write, to pack the request and send to the server
by the socket descriptor.

(c) On server side, the handler thread handle the request by those API
defined in 3.2.

2. Add/remove param entry

(a) Obd or module call lprocfs code to add/delete the entry from the
tree.

(b) In Iprocfs code, lustre params_add/delete entry will be called to
add/delete entry of the tree.

5 Logic specification

5.1 Ictl interface
5.1.1 open/close/read/write/list/close params

Current Ictl implement set/get params interface based on several posix system
call open, read, write, glob, close, and all of them are based on local linux
procfs. But in user base server, the “procfs” is maintained on server, and there
are no local procfs at all, so those posix system calls are needed to be replaced
by those lctl API defined in 3.1 (open—> params_open, read—>params_read,
write—>params_ write, glob—>params_ list).

e params_open should connect the proc server with defined port and proto-
cal (dev_ path parameter), then on the proc server, the accepting thread
creates a handling thread to handle the following request from the lctl
client.

e params_ close will send the close request to proc server, then proc server
will determinate the handling thread, and client will close the socket de-
scriptor.

e params_read/write APIs just needs pack requests(parameters) and send
requests to proc server thread.

e params_list API will retrieve proc entries from the proc server by a con-
nected socket stream. Sometimes the path pattern might be provided, so
on proc server side, some reg expression lib needs to be used to choose the
right entries matched the path pattern.

e params_ioctl is similar as params_read/write, packing the parameters
to proc server, on the server side, it will unpack the request and call
obd class_ioctl directly.

5.2 Server proc handler

On proc server side, there is a socket accept thread to receive the params/ioctl
request from client, and put the request to the list. Then it will create a thread
to handle the request. Current three are five requests(close, read, write, list,
ioctl) need to be handled. For close, the handler thread will terminate itself.
For ioctl, the handler will unpack the request and call obd _class _ioctl directly.
For read/write/list, all of them will be based on the “backend” params tree.

5.2.1 params tree

In current implementation, all the module call Iprocfs API to operate the procfs
tree. The Iprocfs api is implemented by exported linux procfs API, so it will
only be built with linux kernel currently. And lprocfs code will still be used
in the user base proc tree, but those linux kernel exported API and structure
needed to replaced with our own structure and API.

Compared with procfs, the params tree is simple, and it only need provides
4 APIs, add_entry, remove _entry, lookup _entry, list _entry. And the tree will
be protected by a global read/write lock, so when lookup or listing the entries,
the tree will not be modified.

1. Add_entry

\begin{lstlisting}

struct lustre params_entry * params_add_entry (struct lustre params_entry
*lpe, char *name, lustre params read t *read cb,

lustre params_write t *write cb, void * data)

{

/* create the child entry */

obd_alloc_ptr(lpe_child);

/* Fill Ipe_ child with write cb/read cb and data */

/* lock the whole tree */

lustre params_write lock(params _tree lock);
/* link the lpe child to the lpe children list */

Ipe child->lpe next = Ipe->Ipe_subdir;

Ipe child->1lpe parent = lpe;

Ipe->Ipe subdir = lpe child;

/* increase the refcount of the parent

lustre params_write unlock(params_tree lock);
return 0;

}
\end{lstlisting }

1. remove_entry

\begin{lstlisting}

static struct lustre_params_entry * lookup _entry (struct lustre params_entry
*parent, char *name, int length);

{

for(entry = parent->lpe subdir; entry ; entry = parent->lpe next) {

if (Istrncmp(entry->lpe name, name, length))

return entry;

}

return NULL;

}

struct lustre params_entry * params_remove_entry (struct lustre params_entry
*Ipe, char *name)

/* lock the whole tree */

lustre params_write lock(params tree lock);

/* Remove the Ipe_ child to the Ipe children list */
for(entry = parent->lpe subdir; entry ; entry = parent->lpe next) {
pre = entry;

if (strncmp(entry->lpe name, name, strlen(name)))
continue;

pre->lpe next = entry->next;

/* decrease the refcount of the parent */

}

lustre params_write unlock(params_tree lock);
return 0;

\end{lIstlisting }
1. lookup entry (similar as link walk path process in linux kernel)

\begin{lstlisting}
struct lustre params _entry * params lookup entry (char *path)

{

/*Got the name from each entry */

struct lustre params__entry *parent;

struct lustre params _entry *child = NULL;

char *lookup name;

int lookup name length = 0, last _component = 0;

parent = &lustre params_root_entry; /*initialize the root entry */
name = path;

lustre params_read lock(params _tree lock);

for (3;) {

/*Get lookup name lookup name length*/

lookup name = name;

do {

¢ = *name+-+;

} while (¢ && (c !=".")); /* path format looks xxx.yyy.zzz

lookup name length = name - lookup name;

if (Ic)

last _component = 1;

child = lookup entry(parent, lookup name, lookup name_length);
if (child == NULL)

break;

if (IS_ Symblol(child)) {

child = lookup entry(parent, lookup name, lookup name_length);

/* If it is a symbol link, read name from the lpe data and lookup again
if (last_component)

break;

else

parent = child;

lustre params_read unlock(params _tree lock);

return child;

}
\end{lIstlisting }

1. list_entry

\begin{lstlisting}

static int match (char *path _pattern, int path _pattern len, char *path name,
int name_len)

{

/* check whether the name is matched with path pattern */

/* Use regcompile to format the name */

/* Use regexec to check whether the name is matched with path pattern */

/* matched return 1, other wise return 0.

}

/* The stack will be used to help walk through all the entries */

10

int params_list_entry (struct lustre params_entry *root, char *path _pattern,
params_list cb_t *callback t)

/*Got the name from each entry */

struct lustre params _entry *parent;

struct lustre _params__entry *child;

char *lookup name, *match _string;

int lookup name length = 0;

parent = &lustre params_root_entry; /*initialize the root entry */
match _string = name = path;

lustre params_read lock(params tree lock);
/* Use stack to help listing the entries */

entry = root;

push _stack (stack, entry);

while (stack not_empty(stack)) {

if (entry->lpe_subdir) {

/* Push to the stack */

push _stack(entry);

entry = entry->Ipe_subdir;

} else {

/* handle the leaves of the tree*/

callback (entry);

for(entry = entry->lpe next; entry; entry = entry->lpe next)
callback (entry);

/* pop the entry and move to next entry */
pop_ stack(entry);

entry = entry->lpe next;

}

}

lustre params_read unlock(params tree lock);
return 0;

}
\end{lIstlisting }

5.2.2 The server proc/ioctl handler

The handler will handle three request, read, write and list. For read/write,
it will locate the entry first by lustre params_lookup entry, then get/set the
entry by the read/write callback function attached by the entry.

\begin{lstlisting}

int params_server read(int fd, char *path, int path len, int offset)

{

obd _alloc(buf);

entry = params_ lookup entry (path);

entry->read cb(entry, buf);

/* write the buffer to fd */

11

}
\end{lIstlisting }

For list:
\begin{lstlisting}
int params_server list(int fd, char *path pattern, int path len, int offset)

{
obd _alloc(buf);

/* locate the first the name which is not path _pattern,

* for example, for ldlm.namespaces.*mdc*.lock _count, ldlm.namespaces is
* located first. then the left of the path pattern will be put to list API
*/

entry = params_ list _entry (left, list_cb);

\end{lstlisting }

6 State Management

As discussed, a global read /write lock will protect the tree being modified when
lookup or list the entries.

7 Alternatives

Another alternative way for communication between lctl client and proc server

12

