DLD of inodebits lock performance improvement

Bobi Jam
2006-12-19

1 Requirements

1.1 Use-Case requirements

Parallel adding, removing, opening, stating files from one directory are much
faster.

1.2 Functional requirements

Avoid O(N~2) lock operations.

2 Functional Specification

2.1 Introduction

This DLD introduces a performance improvement in Lustre DLM plain and
inodebits lock management. Because of modern cluster’s size, linear list of locks
becomes a bottleneck with millions of clients. This improvement is for handle
of large scale usage.

The current implementation of the DLM lock management on the server
(MDS, OST) side is based on a common lock list for all the granted locks on
every resource. This improvement is to optimize the lock compatibility checking
and searching conflicting locks on the granted list.

Skip lists are added into the structure 1dlm_lock to optimize the granted
lock list handling: mode, policy skip lists.

\begin{lstlisting}
struct 1dlm_lock {

struct list_head 1_sl_mode;
struct list_head 1_sl_policy;
s

\end{lstlisting}

2.1 Introduction 2 FUNCTIONAL SPECIFICATION

Refer to the figure above, when lock is not granted, its skip list pointers [sl mode
and sl policy are pointing to NULL, as lock 0 in the figure. When a lock
is granted and inserted into a resource’s granted list (Ir_ granted), some lock’s
skip list pointers will be changed to maintain some invariance, wherein this
document, these invariance is called group integrity, which contains:

1. If a resource’s granted list is empty, the resource’s granted list head
(Ir_granted) points to itself.

2. If a resource’s granted list has lock(s) been granted, and if we start from
resource’s granted list _head (Ir_granted), walking through all locks on
the list by lock’s [_res_link.nezt field, before we encounter the resource’s
granted list _head, and if lock m is encountered before lock n, then we say
lock m is ahead of lock n. And there is only one lock in the list whose
[_res_link.next points to the resource’s granted list head, this lock is
called the tail of the granted list, as lock n in the figure .

3. Locks with the same request mode (lock->I_req mode) are grouped, i.e.
during the walk-through, before hitting the resource’s granted list _head
again, if a lock whose request mode is firstly encountered, all locks with
the same request mode in the granted list will be met one by one after the
firstly met lock, until a lock with different request mode or the resource’s
list _head is met. The lock of the specific request mode firstly met is called
the head of the mode group (as lock I in the figure), the last met lock
of the same request mode is called the tail of the mode group (as lock &
in the figure). Those locks of the specific request mode which is neither
the head nor the tail of the mode group are called in the middle of the
mode group (as lock 2,3,4 in the figure). Some mode group may contain
only one lock, and we call this kind of mode group as single element mode
group (as lock m in the figure).

4. If the resource is a LDLM IBITS resource, for all locks of each mode
group, locks with the same bits policy (lock->1_policy data.l inodebits.bits)
are grouped in the similar way as mode group does. L.e. during the walk-
through in the mode group, before hitting a lock of different request mode
or the resource’s granted list head, if a lock whose bits policy is firstly
encountered, all locks with the same bits policy in the mode group will
be met one by one after the firstly met lock, until a lock with different
bits policy or different request mode is met. The lock of the specific bits
policy firstly met is called the head of the policy group (as lock 2 in the
figure), the last met lock of the same bits policy is called the tail of the
policy group (as lock & in the figure). Those locks of the specific bits
policy which is neither the head nor the tail of the policy group are called
in the middle of the policy group (not showed in the figure). Some policy
group may contain only one lock, and we call this kind of policy group as
single element policy group (as lock 1,4,5 in the figure).

2.2 lock’s insertion into/deletion from 2redoU€T gNAH SRECIFICATION

5. If the resource is a LDLM _PLAIN resource, all lock’s sl _policy point

2.2

to NULL. All lock’s I sl_mode point to NULL except for head lock’s
[sl _mode.next and tail lock’s [sl_mode.prev of mode group which con-
tain more than 1 member locks. The head points to the tail lock using
head lock’s I_sl_mode.next and the tail points to the head lock using tail
lock’s I sl _mode.prev.

If the resource is a LDLM IBITS resource, lock’s I sl mode pointers
will be arranged as describe in invariance item 5, and all lock’s I sl policy
point to NULL except for those head lock’s I sl policy.next and tail lock’s
[sl _policy.prev of policy group which contain at least 2 member locks.
The head and tail locks of the same policy group in the same mode group
will link together with their [sl policy pointers (using [sl policy.next
for head pointing to tail and !_sl_policy.prev for tail pointing to head).

lock’s insertion into/deletion from a resource’s granted
list

The skip list pointers in the Idlm_lock structure only make sense when the lock
is granted, i.e. added into resource’s granted list.

When a lock is created, it’s skip list heads are initialized pointing to NULL.
When a lock is granted, first need to determine where it should be inserted
and then inserted into the resource’s granted list. The position determination
described as follows:

e If the resource is a LDLM_PLAIN resource, (1) the insert position will

be before the head of the mode group whose request mode is the same as
that of the lock to be inserted. (2) If such mode group can not be found,
the lock would be appended after the tail of the granted list, becoming a
single element mode group lock.

If the resource is a LDLM _IBITS resource, first try to find the mode
group whose request mode is the same as that of the lock to be inserted.
(1) If such mode group can not be found, the lock will be appended after
the tail of the granted list, becoming a single element mode/policy group;
(2) if such mode group is found, keep searching in the mode group to find
a policy group whose inodebits are the same as that of the lock to be
inserted, if such policy group can not be found, the lock will be inserted
before the head lock of the mode group, becoming a single element policy
group and the head of the mode group; (3) if such policy group is found,
the lock will be inserted before the head lock of the policy group.

As the lock inserted in the granted list, the group integrity maybe compromised,
so we need adjust some lock’s skip list pointers to maintain the group integrity.

e For LDLM _PLAIN resource. (1) If the insert position is before the head

of a mode group which has at least 2 locks, the new lock will replace the

2.2 lock’s insertion into/deletion from 2redoUr€d gNAH SRECIFICATION

original mode group head lock, becomes the new mode group head lock,
the new mode group head lock and the mode group tail lock will link
together with their | sl mode pointers, the original mode group head
lock’s I_sl_mode.next will set to NULL. (2) If the insert position is before
a single element mode group, the new lock and the single element mode
group lock will link together with their I sl _mode pointers, forming a
mode group. (3) If the insert position is after the tail of the granted list,
the new lock’s skip lists need not change, keeping pointing to NULL as a
single element mode group lock.

e For LDLM _IBITS resource. (1) If the insert position is after the tail of the
granted list, the new lock’s skip lists need not change, keeping pointing
to NULL as a single element mode/policy group lock. (2) If the insert
position is before the head lock of a mode group (two cases is here, one
is the new lock joins a policy group and also becomes the head of the
mode group; another is the new lock belongs to the mode group while no
same policy group is already there). (a) In case 1, the new lock will take
over the original mode group head lock’s role (if it was not a single lock
mode group), or link with the original lock forming a mode group (in the
case the original lock is a single lock group); similar actions applies to
policy skip list. (b) In case 2, mode skip list adjustment will abide by the
description in (a), nothing about policy skip list needs to change. (3) If
the insert position is before the head lock of a policy group which has at
least 2 locks while not the head of mode group , the new lock will take over
the original policy group head lock’s role as the new policy group head
lock . And if the insert position is before a single element policy group
plus the new lock has the same policy bits, they will form a policy group.

When a lock is removed from the granted list, the skip list pointers of removed
lock need to be restored pointing to NULL again, and the locks in the granted
list affected needs adjust their skip list pointers to maintain the group integrity.
Specifically:

e For LDLM _PLAIN resource. (1) If the lock to be removed was the head
of a mode group, the next lock along the [res link list will be the mode
group’s new head lock, it and the mode group tail lock will link together
with their [sl _mode pointers; If the next lock happens to be the mode
group tail lock, just initialize its I sl mode pointers to NULL; (2) If the
lock to be removed was the tail of a mode group, the previous lock along
the [res link list will be the mode group’s new tail lock, it and the mode
group head lock will link together with their [sl mode pointers; If the
previous lock happens to be the mode group head lock, just initialize its
[_sl_mode pointers to NULL; (3) Otherwise other lock’s mode skip list
pointers need not change.

e For LDLM IBITS resource. Beside fix [sl mode pointers as described
above, some lock’s [_sl_policy need to change as follows: (1) If the lock

2.3 Functions to be added and modifie® FUNCTIONAL SPECIFICATION

to be removed was the head of a policy group, the next lock along the
I _res_link list will be the policy group’s new head lock, it and the policy
group tail lock will link together with their sl policy pointers; If the next
lock happens to be the policy group tail lock, just initialize its [sl _policy
pointers to NULL; (2) If the lock to be removed was the tail of a policy
group, the previous lock along the [_res link list will be the policy group’s
new tail lock, it and the policy group head lock will link together with their
[sl _policy pointers; If the previous lock happens to be the policy group
head lock, just initialize its I_sl_policy pointers to NULL; (3) Otherwise
other lock’s policy skip list pointers need not change.

2.3 Functions to be added and modified

2.3.1 plain lock compatibility test
Prototype:

\lstinline|static inline int 1dlm_plain_compat_queue(struct list_head *queue, struct 1¢
Parameters:

queue [input]: the queue to be searched, the improvement applies only
on granted list;

req [input]: the lock whose mode compatibility is to be searched,;
work list [input,output]: the list gathering conflicting locks
Return Values: 1 if no conflict found which includes the @Qreq is already in
the list @queue, 0 otherwise.
Description:
This method searches conflicts for the plain lock @req in the @queue list of
plain locks (using lockmode_ compat() to test whether @req’s request mode
is compatible with the lock’s request mode being checked). If @work list
is provided, all the conflicting locks are gathered into this list, otherwise
the @queue is walked through until the first conflicting lock is found.
2.3.2 inodebits lock compatibility test

Prototype:

\1lstinline|static int 1dlm_inodebits_compat_queue(struct list_head *queue, struct ldlm_
Parameters:

queue [input]: the queue to be searched, the improvement applies only
on granted list;

2.3 Functions to be added and modifie® FUNCTIONAL SPECIFICATION

req [input]: the lock whose mode and inodebits compatibility are to be
searched;

work list [input,output]: the list gathering conflicting locks

Return Values: 1 if no conflict found which includes the @req is already in
the list @queue, 0 otherwise.

Description:
This method searches conflicts for the inodebits lock @req in the @queue
list of inodebits locks (using lockmode compat() to check mode compati-
bility and testing whether @req’s request bits are overlapped to lock’s), if
@req’s request mode is not compatible with lock’s request mode while their
bits are overlapped, then the lock is in conflict with @req. If Quwork_list
is provided, all the conflicting locks are gathered into this list, otherwise
the @queue is walked through until the first conflicting lock is found.

2.3.3 grant a lock

Prototype:

\1lstinline|void 1ldlm_grant_lock(struct 1dlm_lock *lock, struct list_head *work_list);|
Parameters:

lock [input]: the lock to be granted,;
work _list [input,output]: the list gathering the lock

Return Values: none

Description:

For plain and inodebits locks call Idlm_ grant lock with_skiplist() to
grant the lock, otherwise call Idlm_resource add_lock().

2.3.4 grant a lock with skip list

Prototype:

\1lstinline|static void 1ldlm_grant_lock_with_skiplist(struct 1dlm_lock *lock); |
Parameters:

lock [input]: the lock to be granted;
Return Values: none

Description:

This method finds the proper position the lock should be inserted, then
inserts it and adjusts relevant lock’s skip list pointers.

2.3 Functions to be added and modifie® FUNCTIONAL SPECIFICATION

2.3.5 search granted lock position

Prototype:

\1lstinline|static int search_granted_lock(struct list_head *queue, struct 1ldlm_lock *re
Parameters:

queue [input]: the grant list where search acts on;
req [input]: the lock whose position to be located;

lockp [output]: the position where lock should be inserted before, or
NULL indicating @req should be appended to @queue.

Return Values:

Bit-masks combination of following values indicating in which way the
lock need to be inserted.

e LDLM JOIN NONE - nothing about skip list needs to be fixed;

e LDLM MODE JOIN_ RIGHT - @req needs join right becoming
the head of a mode group;

e LDLM POLICY JOIN_ RIGHT - @req needs join right becoming
the head of a policy group.

Description:

This method finds a position for insertion. Match is defined as the same
lock mode and the same policy only for inodebits locks.

If the @queue is a LDLM _PLAIN resource’s granted list, this method will

search to find the head lock of the group whose request mode is the same as

that of @req, and assign that lock to @lockp, returns LDLM MODE JOIN RIGHT.
If no such mode group could be found, @lockp returns NULL, mean-

ing @req should be appended to the tail of the granted list, returns
LDLM_JOIN NONE.

If the @queue is a LDLM IBITS resource’s granted list, this method will
firstly find the head lock of the mode group whose request mode is the same
as that of @req, and further search all locks in the mode group to find the
head lock of the policy group whose inodebits is the same as that of @reg,
and assign that lock to @lockp, returns LDLM POLICY JOIN RIGHT;
if the lock is also the head of a mode group or a single mode group lock, re-
turns LDLM_POLICY JOIN RIGHT |LDLM_ MODE_JOIN RIGHT.
If no such mode group can be found @lockp returns NULL and function
returns LDLM_JOIN NONE; If find such mode group while does not
find such policy group, the head of the mode group will be assigned to
@lockp, function returns LDLM MODE JOIN RIGHT.

4 LOGIC SPECIFICATION

3 Use Cases

3.1 Enqueue a lock

When alock is enqueued, ldim_lock enqueue() calls ldlm_ processing policy_table[]
methods to process the lock.

3.2 Reprocess a queue

Reprocess locks on the converting and/or waiting list, it calls ldlm_ processing _policy table[]
methods to check if some waiting locks are to be granted.

3.3 Grant a lock

Grants a lock. There are no conflicting locks by that time.

3.4 Handle completion callback

It calls ldlm__ grant_lock to grant the lock on the client when the server confirms
the lock is obtained.

3.5 Cancel a lock

It cancels a granted lock.

4 Logic Specification

4.1 Determining a lock’s position

According the HLD, skip lists are added to struct ldlm_lock to optimize the
granted lock list compatibility checking and searching conflicting locks.

The sl {mode/[policy} is used to link the head and the tail lock of a group
of the same request mode/inodebits. And locks in the middle of the group have
their I sl_ {mode[policy} point to NULL.

So there should be a way to judge whether a lock in the group is the head
or tail of the group.

\begin{lstlisting}

#define LDLM_SL_HEAD(skip_list) ((skip_list)->next != NULL)

#define LDLM_SL_TAIL(skip_list) ((skip_list)->prev != NULL)

#define LDLM_SL_EMPTY(skip_list) ((skip_list)->next == NULL && (skip_list)->prev == NUL
\end{lstlisting}

4.2 Find lock compatibility from a list 4 LOGIC SPECIFICATION

4.2 Find lock compatibility from a list

\1lstinlinel|int 1dlm_plain_compat_queue(struct list_head *queue, struct 1dlm_lock *req,

e if the @queue is a granted list, check the head of
the first mode group, if it’s mode is compatible
with the @req, jump over to the tail of the mode
group (via l_sl_mode.nexzt) and check next group.

e if the Q@work_list exists, we need collect all
incompatible locks on the @queue. And when the head
lock of a group is found to be incompatible with the
Oreq, all members in this mode group will be
collected.

\begin{lstlisting}

static inline int 1ldlm_plain_compat_queue (struct
list_head *queue, struct ldlm_lock *req, struct
list_head *work_list)

{

list_head *tmp;

struct 1ldlm_lock *lock;

int compat = 1;

list_for_each(tmp, queue){

lock = list_entry(tmp, struct 1dlm_lock, 1_res_link);
if (lockmode_compat(lock->1_req_mode, req->1_req_mode))
{

/* jump to next mode group */

if (LDLM_SL_HEAD(&lock->1_sl_mode))

tmp = &list_entry(lock->1_sl_mode.next, struct
1dlm_lock, 1_sl_mode)->1_res_link;

continue;

}

if (!work_list)

RETURN (0) ;

compat = 0;

if (lock->1_blocking_ast)
1ldlm_add_ast_work_item(lock, req, work_list);

if (LDLM_SL_HEAD(&lock->1_sl_mode)) {

/* add all members of the mode group */

do {

tmp = lock->1_res_link.next;

lock = list_entry(tmp, struct 1ldlm_lock, 1_res_link);
if (lock->1_blocking ast)
1ldlm_add_ast_work_item(lock, req, work_list);

} while (!'LDLM_SL_TAIL(&lock->1_sl_mode));

4.2 Find lock compatibility from a list 4 LOGIC SPECIFICATION

X

X

RETURN (compat) ;

3

\end{lstlisting}

\lstinline|int ldlm_inodebits_compat_queue(struct list_head *queue, struct ldlm_lock *r

e if the @queue is a granted list, check the head of
the first mode group, if it’s mode is compatible
with the @req, jump over to the tail of the mode
group (via l_sl_mode.next) and check next mode
group.

e if a incompatible mode group is found, then check
policy group in the same way as processing the mode
group.

e if the Q@work_list exists, we need collect all
incompatible locks on the @queue. And when the head
lock of a policy group is found to be incompatible
with the @req, all members in the policy group will
be collected.

\begin{lstlisting}

static int 1dlm_inodebits_compat_queue(struct list_head
*queue, struct ldlm_lock *req, struct list_head
xwork_list)

{

struct list_head *tmp, *tmp_tail;

struct 1ldlm_lock *lock;

int compat = 1;

ldlm_mode_t req_mode = req->1_req_mode;

_u64 req_bits = req->1_policy_data.l_inodebits.bits;

list_for_each(tmp, queue) {

lock = list_entry(tmp, struct 1dlm_lock, 1_res_link);
if (lockmode_compat(lock->1_req_mode, req->1_req_mode))
{

/* jump to next mode group */

if (LDLM_SL_HEAD(&lock->1_sl_mode))

tmp = &list_entry(lock->1_sl_mode.next, struct
1dlm_lock, 1_sl_mode)->1_res_link;

continue;

}

tmp_tail = tmp;

if (LDLM_SL_HEAD(&lock->1_sl_mode))

tmp_tail = &list_entry(lock->1_sl_mode.next, struct
1dlm_lock, 1_sl_mode)->1_res_link;

for (5;) {

10

4.3 Search position a new granted lock should bt ids@/¢dd’ SPECIFICATION

/* locks whose bits overlapped are conflicting locks */
if (lock->1_policy_data.l_inodebits.bits & req_bits) {
/* found conflicting policy */

if (!'work_list)

RETURN (0) ;

compat = 0;

if (lock->1_blocking ast)
1dlm_add_ast_work_item(lock, req, work_list);

/* add all members of the policy group */

if (LDLM_SL_HEAD(&lock->1_sl_policy)) {

do {

tmp = lock->1_res_link.next;

lock = list_entry(tmp, struct 1ldlm_lock, 1_res_link);
if (lock->1_blocking_ast)
1dlm_add_ast_work_item(lock, req, work_list);

} while(!LDLM_SL_TAIL(&lock->1_sl_policy));

}

} else {

/* jump to next policy group */

if (LDLM_SL_HEAD(&lock->1_sl_policy))

tmp = &list_entry(lock->1_sl_policy.next, struct
1dlm_lock, l_sl_policy)->1_res_link;

}

if (tmp == tmp_tail)

break;

else

tmp = tmp->next;

lock = list_entry(tmp, struct 1ldlm_lock, 1_res_link);
} // for locks in a mode group

} // for each lock in the granted queue

RETURN (compat) ;

}

\end{lstlisting}

4.3 Search position a new granted lock should be inserted

\1lstinline|static int search_granted_lock(struct list_head *queue, struct 1dlm_lock *re
e Only defines plain lock and inodebits lock.

— plain lock: finds the head lock of the @req
mode group. If the to-be-checked lock’s request
mode differs from that of @req, jumps over all
locks in the mode group until the @queue is met,
meaning no such request mode locks are found in
the list, assign NULL to @lockp indicating @regq

11

4.3 Search position a new granted lock should bt ids@/¢dd’ SPECIFICATION

should be appended to the queue; if the head
lock of such mode group is found, assign the
head lock to @lockp.

— inodebits lock: first search for the same
request mode group the way as describe above in
plain lock section. If no such same request
mode group is found, assign NULL to @lockp; if a
same mode group is found, search through the
mode group by inodebits. If no same inodebits
is found, assign the head lock of the mode group
to @lockp, otherwise assign the head lock of the
found policy group to @lockp.

\begin{lstlisting}

#define LDLM_JOIN_NONE O

#define LDLM_MODE_JOIN_RIGHT 1

#define LDLM_MODE_JOIN_LEFT (1 << 1)
#define LDLM_POLICY_JOIN_RIGHT (1 << 2)
#define LDLM_POLICY_JOIN_LEFT (1 << 3)

int search_granted_lock(struct list_head *queue,
struct 1dlm_lock *req, struct 1ldlm_lock **xlockp)

{

struct list_head *tmp, *tmp_tail;

struct 1dlm_lock *lock, *mode_head_lock;
__ub4 req_bits =
req->1_policy_data.l_inodebits.bits;

int rc = LDLM_JOIN_NONE;

list_for_each(tmp, queue) {

lock = list_entry(tmp, struct 1ldlm_lock,
1_res_link);

if (lock->1_req_mode != req->1_req_mode) {

if (LDLM_SL_HEAD(&lock->1_s1_mode))

tmp = &list_entry(lock->1_sl_mode.next, struct
1dlm_lock, 1_sl_mode)->1_res_link;

continue;

}

/* found the same mode group */

if (lock->1_resource->1lr_type == LDLM_PLAIN) {
*lockp = lock;

return LDLM_MODE_JOIN_RIGHT;

}

12

4.3 Search position a new granted lock should bt ids@/¢dd’ SPECIFICATION

if (lock->1_resource->1lr_type == LDLM_IBITS) {
tmp_tail = tmp;

if (LDLM_SL_HEAD(&lock->1_sl_mode))

tmp_tail = &list_entry(lock->1_sl_mode.next, struct
1dlm_lock, 1_sl_mode)->1_res_link;
mode_head_lock = lock;

for (5;5) {

if (lock->1_policy_data.l_inodebits.bits ==
req_bits) {

/* lock of matched policy is found */

*lockp = lock;

rc |= LDLM_POLICY_JOIN_RIGHT;

/* the policy group head is also a mode group head
or a single mode group lock */

if (LDLM_SL_HEAD(&lock->1_sl_mode) || (tmp ==
tmp_tail && LDLM_SL_EMPTY (&lock->1_s1l_mode)))

rc |= LDLM_MODE_JOIN_RIGHT;

return rc;

}

if (LDLM_SL_HEAD(&lock->1_sl_policy))

tmp = &list_entry(lock->1_sl_policy.next, struct
1ldlm_lock, l_sl_policy)->1_res_link;

if (tmp == tmp_tail) /* reached the end of the mode
group */

break;

else /* next policy group */

tmp = tmp->next;

lock = list_entry(tmp, struct 1ldlm_lock,
1_res_link);

} /* for all locks in the matched mode group */

/* no matched policy group is found, insert before
the mode group head lock */

*lockp = mode_head_lock;
return LDLM_MODE_JOIN_RIGHT;
} // inodebits lock

} // for locks in queue
*lockp = NULL;

return LDLM_JOIN_NONE;

}

\end{lstlisting}

13

4.4 Grant a lock 4 LOGIC SPECIFICATION

4.4 Grant a lock

\1lstinline|void 1ldlm_grant_lock(struct 1dlm_lock *lock, struct list_head *work_list) |

e If the resource type of the lock is plain lock or
inodebits lock, call ldlm_grant_lock_with_skiplist()
to grant the lock;

e Otherwise just add the lock to the resource.

\begin{lstlisting}

void 1ldlm_grant_lock(struct 1dlm_lock *lock, struct
list_head *work_list)

{

struct 1ldlm_resource *res = lock->1_resource;

lock->1_granted_mode = lock->1_req_mode;

if (res->lr_type == LDLM_PLAIN || res->lr_type ==
LDLM_IBITS)

1dlm_grant_lock_with_skiplist(lock);

else

1dlm_resource_add_lock(res, &res->1r_granted, lock);

}
\end{lstlisting}
\1lstinline|void ldlm_grant_lock_with_skiplist(struct 1dlm_lock *lock) |

e call search_granted_lock() to find the position
(assigned to @lockp) the lock should be inserted,
search_granted_lock() also returns the way in which
skip lists needs to change;

e insert the @lock before @lockp if @lockp is not
NULL, otherwise @lock is appended to the tail of
the granted list;

e adjust skip lists according to what
search_granted_lock() returns.

\begin{lstlisting}

static void ldlm_grant_lock_with_skiplist(struct
1dlm_lock *lock)

{

int join = LDLM_JOIN_NONE;

struct 1dlm_lock *lockp = NULL;

join =
search_granted_lock(&lock->1_resource->1lr_granted, lock,

&lockp);
if (!lockp)

14

4.5 Cancel a lock 4 LOGIC SPECIFICATION

4.5

list_add_tail(&lock->1_res_link,
&lock->1_resource->lr_granted);

else

list_add_tail(&lock->1_res_link, &lockp->1_res_link);
/* fix skip lists */

if (join & LDLM_MODE_JOIN_RIGHT) {

if (LDLM_SL_EMPTY (&lockp->1_sl_mode)) {
lock->1_sl_mode.next = &lockp->1_sl_mode;
lockp->1_sl_mode.prev = &lock->1_sl_mode;

} else if (LDLM_SL_HEAD(&lockp->1_sl_mode)) {
lock->1_sl_mode.next = lockp->1_sl_mode.next;
lockp->1_sl_mode.next = NULL;
lock->1_sl_mode.next->prev = &lock->1_sl_mode;

X

X

if (join & LDLM_POLICY_JOIN_RIGHT) {

if (LDLM_SL_EMPTY (&lockp->1_sl_policy)) {
lock->1_sl_policy.next = &lockp->1_sl_policy;
lockp->1_sl_policy.prev = &lock->1_sl_policy;

} else if (LDLM_SL_HEAD(&lockp->1_sl_policy)) {
lock->1_sl_policy.next = lockp->1_sl_policy.next;
lockp->1_sl_policy.next = NULL;
lock->1_sl_policy.next->prev = &lock->1_sl_policy;
¥

¥

}
\end{lstlisting}

Cancel a lock

\1lstinline|void 1dlm_lock_cancel(struct ldlm_lock *req) |

e If to-be-canceled lock is the head of a mode group,
set @req->l_sl_mode to the @reg->l_res_link.next
lock, if it happens to point to itself, NULL it;
adjust @req->l_sl_mode.next’s lock’s l_sl_mode.prev
also.

e If to-be-canceled lock is the tail of a mode group,
set @req->l_sl_mode to the @req->l_sl_mode.prev
lock, if it happens to point to itself, NULL it;
adjust @req->l_sl_mode.prev’s lock’s l_sl_mode.next
also.

e The similar thing happens with l_sl_policy.

e Remove @req from the granted list.

15

4.5 Cancel a lock 4 LOGIC SPECIFICATION

\begin{lstlisting}

void 1dlm_lock_cancel(struct ldlm_lock *req)
{

struct 1ldlm_lock *lock;

if (LDLM_SL_HEAD(&req->1_sl_mode)) {

lock = list_entry(req->1_res_link.next, struct
1dlm_lock, l_res_link);

if (req->1_sl_mode.next == &lock->1_sl_mode) {
lock->1_sl_mode.prev = NULL;

} else {

lock->1_sl_mode.next = req->1_sl_mode.next;
lock->1_sl_mode.next->prev = &lock->1_sl_mode;
3

req->1_sl_mode.next = NULL;

} else if (LDLM_SL_TAIL(&req->1_sl_mode)) {
lock = list_entry(req->1_res_link.prev, struct
1d1lm_lock, 1l_res_link);

if (req->1_sl_mode.prev == &lock->1_sl_mode) {
lock->1_sl_mode.next = NULL;

} else {

lock->1_sl_mode.prev = req->1_sl_mode.prev;
lock->1_sl_mode.prev->next = &lock->1_sl_mode;
¥

req->1_sl_mode.prev = NULL;

3

if (LDLM_SL_HEAD(&req->1_sl_policy)) {

lock = list_entry(req->1_res_link.next, struct
1dlm_lock, l_res_link);

if (req->1_sl_policy.next == &lock->1_sl_policy) {
lock->1_sl_policy.prev = NULL;

} else {

lock->1_sl_policy.next = req->1_sl_policy.next;
lock->1_sl_policy.next->prev = &lock->1_sl_policy;
¥

req->1_sl_policy.next = NULL;

} else if (LDLM_SL_TAIL(&req->1_sl_policy)) {
lock = list_entry(req->1_res_link.prev, struct
1d1lm_lock, l_res_link);

if (req->1_sl_policy.prev == &lock->1_sl_policy) {
lock->1_sl_policy.next = NULL;

} else {

lock->1_sl_policy.prev = req->1_sl_policy.prev;
lock->1_sl_policy.prev->next = &lock->1_sl_policy;
X

req->1_sl_policy.prev = NULL;

16

5 STATE SPECIFICATION

}

1d1lm_resource_unlink_lock(lock) ;

}
\end{1lstlisting}

5 State Specification

5.1 Locking

All the lock list operations are performed under Ir lock held.

5.2 Recovery

No recovery implications are involved.

17

