
Adaptive RPC TimeoutsEric Barton, Nathan RutmanMarch 28, 20071 IntroductionLustre clients use RPC timeouts to trigger recovery strategies. A �xed timeoutis su�cient to detect server failure promptly if RPC round-trip times are rea-sonably constant. However this is not the case in clusters with many thousandsof nodes since the average time a server takes to handle an RPC scales approx-imately linearly with the number of clients contending for it. In this situationa �xed timeout has to be set high enough to account for worst-case congestion,making prompt server failover impossible, even under light load.2 Functional Speci�cation1. Scale the client's RPC timeout with server congestion.The main aim of adaptive timeouts is to distinguish server congestion fromserver death. As servers become congested, RPC round-trip times increase, andthe client's timeout must grow to match. Similarly, as server load decreases,RPC round-trip times decrease and the client's timeout must reduce.2. Scale the server's lock callback timeout with network congestion andclient progress.With network congestion or slow server response, a lock called back from aclient may require more time than the server callback timeout allows. Theseshould also use adaptive timeouts.3. No signi�cant negative impact on performance under all cluster loads.Adaptive timeouts must not deliver prompt failover at the expense of sus-tained performance or substantially increased cluster boot times. For example,additional message passing used to implement adaptive timeouts must not ex-acerbate network congestion. While it may be acceptable for individual clientstartup times to increase measurably, these delays must not serialize betweenclients.4. Integrate with lustre recovery strategy.The RPC timeout is not the only component of lustre recovery - it simplysignals the likelihood that further RPCs to the same server may fail. Networkfailure on one path to the server could be the real cause of the timeout and1



lustre recovery should therefore not immediately assume that a timeout meansthat the server is unreachable.5. No impact on LNET in the �rst implementation.Adaptive timeouts should account for additional latencies introduced by net-work loading and router congestion, and can be accounted for at the ptlrpc level.Changes to LNET (e.g. true out-of-band signaling or complete integration ofLNET and lustre timeouts) will be avoided to ensure a timely implementation.6. Minimize site tuning.Adaptive timeouts should reduce the need for site tuning either by elim-inating tuneables or setting defaults which are appropriate across the widestpossible cluster types and con�gurations.3 Use Cases3.1 Heavy loadA large cluster under heavy loading causes servers to get �backed up� processingRPC requests. The server realizes that it is unlike to be able to reply withinthe client's stated timeout and sends an early reply to the client giving a moreaccurate estimatation of completion time. The client will then wait that amountof time for a response, rather than an arbitrary �xed value.3.2 Slow lock callbackA lock revocation callback on a client requires the client to �ush some largebu�ers. The I/O is proceeding slowly (due to e.g. heavy server loading). Theclient sends an early reply back to the server stating its estimated completiontime.3.3 RecoveryRecovery times for large clusters have been slow due to large obd_timeoutvalues, which were required to handle server congestion. Adaptive timeoutsdecouple the network and server loading from the obd_timeout value, leadingto its reduction back down to a more responsive value and subsequently fasterrecovery.4 Logic Speci�cationThe initial implementation adapts RPC timeouts and lock callback timeouts tobecome independent of server and network performance. Timeout tuning maystill be required to account for network congestion at the server and on LNETrouters. However this should be the exception rather than the rule - experienceshows that network latency is much lower than current RPC round-trip timeson a congested cluster. 2



There are three basic mechanisms. Firstly, the client bases its RPC timeouton recent RPC round-trip times and also on recent RPC service times which theserver includes in all replies. Secondly, the server may send a keepalive replyto adjust the client's timeout if it will not be able to deliver the normal RPCreply before the client will time out. Thirdly, if the client times out an RPC, itshould fall back to a lighter-weight reconnection strategy rather than assumingthe server is actually down. This third mechanism is beyond the scope of thisdocument. The �rst two are implemented as follows.(Take �client� to mean the initiator of an RPC request, and �server� to bethe handler of that request. E.g. an MDT may be a �client� of an ldlm �server�running on a Lustre compute node.)
• The server maintains a current worst-case RPC service time. RPC ser-vice time is measured from when LNET delivers the RPC request (arrivalevent) to when the server posts the normal RPC reply. The current worst-case RPC service time is the maximum service time computed over thelast last N RPCs.
• The initial connection request RPC uses a site-tunable timeout that ac-counts for worst-case network congestion. This ensures the client does notgive up before the server has any hope of replying. The default is goodfor the vast majority of clusters (e.g. 10 seconds caters for a server witha 1GigE NIC with over 1,000 clients or an XT3 server with nearly 10,000clients).
• The client keeps 2 logically separate reply bu�ers - the normal RPC replyand the early �busy� reply. These will be allocated contiguously and postedwith a single ME/MD for the lowest performance impact. This requiresa change in the ptlrpc layer to allow it to unlink the ME/MD only whenthe normal reply is received.
• The client computes an RPC service timeout based on the most recentRPC service times it has seen. This could use a tunable factor (e.g. 110%)and/or a tunable increment (e.g. 2 seconds) - the defaults should be goodfor all sites. This timeout is sent in the RPC request. The RPC timeoutis computed by adding the service timeout to the worst-case network con-gestion timeout. The client must maintain a history of RPC service timesfor each portal on each server.
• The server checks the service timeout in the RPC request when it arrives.If it is less than the server's current maximum, an early reply message issent immediately stating the server's current value.
• Both client and server's RPC service timeouts are visible via /proc vari-ables. The client also publishes its current and worst-ever network laten-cies (i.e. round-trip time minus RPC service time).3



5 State ManagementThere is no persistant data; obd_timeout will be used for initial values beforeany measured data is known.Servers maintain a worst-case RPC service time for each service.Clients maintain an estimated max service time per portal per importME/MD must now accomodate two reply messages, so we must maintain apointer to the real reply.5.1 obd_timeoutDecoupling the RPC timeouts from obd_timeout will lead to a much less de-terministic sequence of timeouts. Notably, if the adaptive timeouts grow largerthan the �xed obd_timeout, it is quite possible that processes will give up toosoon, even though the RPCs will successfully complete. We make the assump-tion in code that if we have waited longer than obd_timeout, that somethingfailed or will fail � this is no longer the case. We also make the assumptionthat some things (ldlm_callback) should take much less time than a �full�obd_timeout - this is also no longer the case with adaptive timeouts, as theregular RPC timeout may now be very short, on the same order as an ldlmtimeout.Therefore, we will have to replace many of the obd_timeout based wait in-tervals with an appropriate adaptive interval (based on the import or exportmeasured latencies). All multipliers should be removed, since they are mean-ingless with decoupled timings.
• ldlm_timeout = ot/3, ADAPTIVE
• PING_INTERVAL - ot/4. The relevancy of the pinger becomes less clearwith adaptive timeouts (the ping_evictor may still be useful). The intervalshould remain constant.
• RECONNECT_INTERVAL - ot/10, remove throttling in import_select_conn.
• OBD_RECOVERY_TIMEOUT - ot*5/2. Old clients may be slow toreconnect (are using a large adaptive timeout). For this case, track themaximum timeout reported in the reconnect attempts and reset the re-covery completion timer based on this value every time a client rejoins.
• ptlrpc_connect_import (initial connect) = ot/20, ADAPTIVE
• ldlm_completion_ast - ot, ADAPTIVE
• __ldlm_add_waiting_lock - ot/2, ADAPTIVE
• fs�lt_check_slow - ot/2, DISK_TIMEOUT
• �lter_precreate - ot/4, DISK_TIMEOUT
• mds_sendpage - ot/4, ADAPTIVE4



• ptlrpc_invalidate_import - ot, use the timeout at the head of the imp_sending_list;keep resetting the timeout as long as the head keeps changing.6 AlternativesCalculation of the server times and the client times may have to be adjusted -e.g.:
• use moving-average + n*stdev instead of worst-case
• clients timeout is some function of the reported server time and the mea-sured total RPC round-trip time7 Focus for inspection
• insure timeouts are robust against 0/in�nite/failed cases.
• insure unit test gives good coverage.
• insure a thread is available for sending early replies under all conditions.

5


