
CHAPTER 8

Failover

This chapter describes failover in a Lustre system and includes the following
sections:

■ What is Failover?

■ OST Failover

■ MDS Failover

■ Configuring Lustre for Failover

■ Setting Up Failover with Heartbeat V1

■ Using MMP

■ Setting Up Failover with Heartbeat V2

■ Considerations with Failover Software and Solutions

8.1 What is Failover?
A computer system is “highly available” when the services it provides are available
with minimal downtime. In a highly-available system, if a failure condition occurs,
such as loss of a server or a network or software fault, the services provided remain
unaffected. Generally, we measure availability by the percentage of time the system
is required to be available.

Availability is accomplished by providing replicated hardware and/or software, so
failure of the system will be covered by a paired system. The concept of “failover” is
the method of switching an application and its resources to a standby server when
the primary system fails or is unavailable. Failover should be automatic and, in most
cases, completely application-transparent.
8-1

In Lustre, failover means that a client that tries to do I/O to a failed OST continues
to try (forever) until it gets an answer. A userspace sees nothing strange, other than
that I/O takes (potentially) a very long time to complete.

Lustre failover requires two nodes (a failover pair), which must be connected to a
shared storage device. Lustre supports failover for both metadata and object storage
servers. MDS failover is achieved most simply by powering off the MDS node in
failure (to be absolutely sure of no multi-mounts of the MDT) and mounting the
MDT on the partner. When the primary comes back, it MUST NOT mount the MDT
while secondary has it mounted. The secondary can then unmount the MDT and the
primary mount it.

The Lustre file system only supports failover at the server level. Lustre does not
provide the tool set for system-level components that is needed for a complete
failover solution (node failure detection, power control, and so on).1

Lustre OSS failover is dependent on either a primary or backup OST to recover the
file system. You need to set up an external HA mechanism. The recommended choice
is the Heartbeat package, available at:

www.linux-ha.org

Heartbeat is responsible to detect failure of the primary server node and control the
failover. The HA software controls Lustre using its built-in "file system" mechanism
to unmount and mount file systems. Although Heartbeat is recommended, Lustre
works with any HA software that supports resource (I/O) fencing.

The hardware setup requires a pair of servers with a connection to a shared physical
storage (like SAN, NAS, hardware RAID, SCSI and FC). The method of sharing
storage should be essentially transparent at the device level, that is, the same
physical LUN should be visible from both nodes. To ensure high availability at the
level of physical storage, we encourage the use of RAID arrays to protect against
drive-level failures.

To have a fully-automated, highly-available Lustre system, you need power
management software and HA software, which must provide the following -

■ Resource fencing - Physical storage must be protected from simultaneous access
by two nodes.

■ Resource control - Starting and stopping the Lustre processes as a part of failover,
maintaining the cluster state, and so on.

■ Health monitoring - Verifying the availability of hardware and network
resources, responding to health indications given by Lustre.

1. This functionality has been available for some time in third-party tools.
8-2 Lustre 1.8 Operations Manual • October 2009

For proper resource fencing, the Heartbeat software must be able to completely
power off the server or disconnect it from the shared storage device. It is imperative
that no two active nodes access the same storage device, at the risk of severely
corrupting data. When Heartbeat detects a server failure, it calls a process
(STONITH) to power off the failed node; and then starts Lustre on the secondary
node using its built-in "file system" resource manager.

Servers providing Lustre resources are configured in primary/secondary pairs for
the purpose of failover. When a server umount command is issued, the disk device is
set read-only. This allows the second node to start service using that same disk, after
the command completes. This is known as a soft failover, in which case both the
servers can be running and connected to the net. Powering off the node is known as
a hard failover.

8.1.1 The Power Management Software
The Linux-HA package includes a set of power management tools, known as
STONITH (Shoot The Other Node In The Head). STONITH has native support for
many power control devices, and is extensible. It uses expect scripts to automate
control. PowerMan, by the Lawrence Livermore National Laboratory (LLNL), is a
tool for manipulating remote power control (RPC) devices from a central location.
Several RPC varieties are supported natively by PowerMan.

The latest versions of PowerMan are available at:

http://sourceforge.net/projects/powerman

For more information on PowerMan, go to:

https://computing.llnl.gov/linux/powerman.html

8.1.2 Power Equipment
A multi-port, Ethernet addressable RPC is relatively inexpensive. For recommended
products, refer to the list of supported hardware on the PowerMan site. Linux
Network Iceboxes are also very good tools. They combine the remote power control
and the remote serial console into a single unit.
Chapter 8 Failover 8-3

https://computing.llnl.gov/linux/powerman.html
http://sourceforge.net/projects/powerman

8.1.3 Heartbeat
The Heartbeat package is one of the core components of the Linux-HA project.
Heartbeat is highly-portable, and runs on every known Linux platform, as well as
FreeBSD and Solaris. For more information, see:

http://linux-ha.org/HeartbeatProgram

To download Linux-HA, go to:

http://linux-ha.org/download

Lustre supports both Heartbeat V1 and Heartbeat V2. V1 has a simpler configuration
and works very well. V2 adds monitoring and supports more complex cluster
topologies. For additional information, we recommend that you refer to the Linux-
HA website.

8.1.4 Connection Handling During Failover
A connection is alive when it is active and in operation. When a connection request
is sent, a connection is not established until either a reply arrives or a connection
disconnects or fails. If there is no traffic on a given connection, periodically check the
connection to ensure its status.

If an active connection disconnects, it leads to at least one timeout request. New and
old requests are in sleep until:

■ The reply arrives (in case of re-activation of the connection and during the re-send
request asynchronously).

■ The application gets a signal (such as TERM or KILL).

■ The server evicts the client, which gives an I/O error (EIO) for these requests or
the connection becomes "failed."

A timeout is effectively infinite, and Lustre waits as long as it needs to avoid giving
the application an EIO. A client process waits until the OST is back alive, unless
either the process is killed (which should be possible after the Lustre recovery
timeout is exceeded, 100s by default) or the OST is explicitly marked "inactive" on
the clients.
8-4 Lustre 1.8 Operations Manual • October 2009

http://linux-ha.org/download
http://linux-ha.org/HeartbeatProgram

Note – If an OST becomes unavailable, and you want clients to return -EIO if they
access files located on the OST, then deactivate the OSC on the client:

lctl --device <failed OSC device on the client> deactivate

After the OSC is marked inactive, all I/O to this OST should immediately return
with -EIO, and not hang.

Note – Under heavy load, clients may have to wait a long time for requests sent to
the server to complete (100s of seconds in some cases). It is difficult for clients to
distinguish between heavy server load (common) and server death (unlikely).

In the case where a server dies and fails over, the clients have to wait for their
requests to time out, then they re-send and wait again (in the common case the
server is just overloaded), then they try to contact another server listed as a failover
server for that node.

If a connection goes to the "failed" condition, which happens immediately in
"failout" OST mode, new and old requests receive EIOs. In non-failout mode, a
connection can only get into this state by using lctl deactivate, which is the
only option for the client in the event of an OST failure.

Failout means that if an OST becomes unreachable (because it has failed, been taken
off the network, unmounted, turned off, etc.), then I/O to get objects from that OST
cause a Lustre client to get an EIO.

8.1.5 Roles of Nodes in a Failover
A failover pair of nodes can be configured in two ways – active / active and active /
passive. An active node actively serves data while a passive node is idle, standing
by to take over in the event of a failure. In the following example, using two OSTs
(both of which are attached to the same shared disk device), the following failover
configurations are possible:

■ active / passive - This configuration has two nodes out of which only one is
actively serving data all the time.

In case of a failure, the other node takes over.If the active node fails, the OST in
use by the active node will be taken over by the passive node, which now
becomes active. This node serves most services that were on the failed node.
Chapter 8 Failover 8-5

■ active / active - This configuration has two nodes actively serving data all the
time. In case of a failure, one node takes over for the other.

To configure this for the shared disk, the shared disk must provide multiple
partitions; each OST is the primary server for one partition and the secondary
server for the other partition. The active / passive configuration doubles the
hardware cost without improving performance, and is seldom used for OST
servers.

8.2 OST Failover
The OST has two operating modes: failover and failout. The default mode is
failover.

■ Failover - Clients attempt to connect to each OSS node configured to serve the
OST, until one of them responds with it active. Data on the OST is written
synchronously, and the clients replay transactions which were in progress and
uncommitted to disk before the OST failure. In the typical OST failover scenario,
an OSS node fails and the other node mounts the OST (typically done by Linux
HA/Heartbeat). When this happens, no applications see any errors.

■ Failout - When the underlying hardware has failed or the connection to storage
has failed (one reason to use multipath IO), Lustre returns IO errors to the
application.

8.3 MDS Failover
The MDS has only one failover mode: active/passive, as only one MDS may (can?)
be active at a given time. In a failover configuration, there are two MDSs, each of
which have access to the same MDT. Either MDS can mount the MDT, but not both
at the same time.
8-6 Lustre 1.8 Operations Manual • October 2009

8.4 Configuring Lustre for Failover
For OST failover, multiple OSS nodes are configured to be able to serve the same
OST. Only one OSS node can serve the OST at a time. An OST can be moved back
and forth between OSS nodes (using the umount/mount commands), as long as the
OSSs can access the same disk.

Note – Defining an OST for failover does not require that more than OSS be defined
for it. You can provide failover service (i.e., no I/O errors to clients) using a single
OSS. In this configuration, if the OST fails, clients are blocked until the OST becomes
active again.

For MDT failover, two MDSs are configured to serve the same MDT. Only one MDS
node can serve the MDT at a time.

To add a failover partner to a Lustre configuration, use the --failnode option. This
may be done at creation time with mkfs.lustre or at a later time with
tunefs.lustre. For a failover example, see More Complicated Configurations. For
an explanation of the mkfs.lustre and tunefs.lustre utilities, see mkfs.lustre
and tunefs.lustre.

Caution – Lustre’s OST failover functionality does not protect against corruption
caused by a disk failure. If the storage media (i.e., physical disk) used for an OST
fails, Lustre cannot recover it. This is why we strongly recommended that some form
of RAID be used for OSTs. Lustre assumes that the storage is reliable and it adds no
redundancy to/for OSTs or the MDT.

8.4.1 Starting/Stopping a Resource
You can start a resource with the mount command and stop it with the umount
command. For details, see Mounting a Server and Unmounting a Server.
Chapter 8 Failover 8-7

8.4.2 Active/Active Failover Configuration
With OSSs it is possible to have a load-balanced active/active configuration, which
means that out of all of the OSTs that both machines see/use, you mount 50% of
them on one OSS and the other 50% on the other OSS, with the capability of one
machine taking 100% of them should the other node die.

An OSS is the primary node for a group of OSTs, and the failover node for another
group of OSTs. To expand the simple two-node example, we add ost2 which is
primary on nodeB, and it's device path is /dev/sdc1 on nodeB and /dev/sdd1 on
nodeA. This demonstrates that the /dev/ identity can differ between nodes, but
both devices must map to the same physical LUN. In this type of failover
configuration, you can mount two OSTs on two different nodes. With failover, two
OSSs provide the same service to the Lustre network in parallel. In case of a failure
in one of the nodes, the other OSS can provide uninterrupted file system services.

For an active/active configuration, each OSS provides a subset of the connected
OSTs. In case one of the OSS fails, the other OSS takes over the other OSTs.

Note – The two OSS nodes must have shared disks.

8.4.3 Hardware Requirements for Failover
This section describes hardware requirements that must be met to configure Lustre
for failover.

8.4.3.1 Hardware Preconditions
■ The setup must consist of a failover pair where each node of the pair has access to

shared storage. If possible, the storage paths should be identical
(nodeA:/dev/sda == nodeB:/dev/sda).

Note – A failover pair is a combination of two separate nodes. Each node has access
to the same shared disk(s).

■ Shared storage can be arranged in an active/passive (MDS, OSS) or active/active
(OSS only) configuration. Each shared resource has a primary (default) node.
Heartbeat assumes that the non-primary node is secondary for that resource.
8-8 Lustre 1.8 Operations Manual • October 2009

■ The two nodes must have one or more communication paths for Heartbeat traffic.
A communication path can be:

■ Dedicated Ethernet

■ Serial live (serial crossover cable)

■ Non-dedicated network connection

All Heartbeat communications failing at the same time will result in a so-called
“split-brain” situation. Heartbeat software resolves this situation by powering down
one node.

■ The two nodes must have a method to control one another's state; RPC hardware
is the best choice. The Heartbeat STONITH package provides a number of control
methods to shut nodes down. It is recommended to have OSS/MDS equipped
with service processors to power down these nodes in a failure situation.

■ Heartbeat provides a remote ping service that is used to monitor the health of the
external network. If you wish to use the ipfail service, then you must have a very
reliable external address to use as the ping target. Typically, this is a firewall route
or another very reliable network endpoint external to the cluster.

In Lustre, a disk failure is an unrecoverable error. For this reason, you must have
reliable back-end storage with RAID.

Note – If a disk fails, requiring you to change the disk or resync the RAID, you can
deactivate the affected OST, using lctl on the clients and MDT. This allows access
functions to complete without errors (files on the affected OST will be of 0-length,
however, you can save rest of your files).
Chapter 8 Failover 8-9

8.5 Setting Up Failover with Heartbeat V1
This section describes how to set up failover with Heartbeat V1.

8.5.1 Installing the Software
1. Install Lustre (see Installing Lustre from RPMs).

2. Install the RPMs that are required to configure Heartbeat.

The following packages are needed for Heartbeat V1. We used the 1.2.3-1 version.
RedHat supplies v1.2.3-2. Heartbeat is available as an RPM or source.

The required Heartbeat packages are:

■ heartbeat-stonith -> heartbeat-stonith-1.2.3-1.i586.rpm

■ heartbeat-pils -> heartbeat-pils-1.2.3-1.i586.rpm

■ heartbeat itself -> heartbeat-1.2.3-1.i586.rpm

You can find the above RPMs at:

http://linux-ha.org/download/index.html#1.2.3

3. Satisfy the installation prerequisites.

Heartbeat 1.2.3 installation requires a number of additional packages. It is
recommended to use a package management tool (like yum, yast or aptitude) to
install packages.

Some of the required packages include:

■ python

■ openssl

■ libnet-> libnet-1.1.2.1-19.i586.rpm

■ libpopt -> popt-1.7-274.i586.rpm

■ librpm -> rpm-4.1.1-222.i586.rpm

■ glib -> glib-2.6.1-2.i586.rpm

■ glib-devel -> glib-devel-2.6.1-2.i586.rpm
8-10 Lustre 1.8 Operations Manual • October 2009

http://linux-ha.org/download/index.html#1.2.3

8.5.1.1 Configuring Heartbeat

This section describes basic configuration of Heartbeat with and without STONITH.

Note – LNET does not support virtual IP addresses. The IP address specified in the
haresources file should be a 'dummy' address (valid, but unused). With later releases
of Heartbeat, you may avoid the use of virtual IPs, but it is required in earlier
releases.

Basic Configuration - Without STONITH

The http://linux-ha.org website has several guides covering basic setup and initial
testing of Heartbeat; We suggest that you read them.

1. Configure and test the Heartbeat setup before adding STONITH.

Let us assume there are two nodes, nodeA and nodeB. nodeA owns ost1 and
nodeB owns ost2. Both the nodes are with dedicated Ethernet – eth0 having serial
crossover link – /dev/ttySO. Consider that both nodes are pinging to a remote
host – 192.168.0.3 for health.

2. Create /etc/ha.d/ha.cf

■ This file must be identical on both the nodes.

■ Follow the specific order of the directives.

■ Sample ha.cf file

Suggested fields - logging

debugfile /var/log/ha-debug

logfile /var/log/ha-log

logfacility local0

Required fields - Timing

keepalive 2

deadtime 30

initdead 120

If using serial Heartbeat

baud 19200

serial /dev/ttyS0

For Ethernet broadcast

udpport 694

bcast eth0

Use manual failback

auto_failback off
Chapter 8 Failover 8-11

http://linux-ha.org

Cluster members - name must match `hostname`

node oss161.clusterfs.com oss162. clusterfs.com

remote health ping

ping 192.168.16.1

respawn hacluster /usr/lib/heartbeat/ipfail

3. Create /etc/ha.d/haresources

■ This file must be identical on both the nodes.

■ It specifies a virtual IP address and a service.

■ Sample haresources

oss161.clusterfs.com 192.168.16.35 \
Filesystem::/dev/sda::/ost1::lustre

oss162.clusterfs.com 192.168.16.36 \
Filesystem::/dev/sda::/ost1::lustre

4. Create /etc/ha.d/authkeys

■ Copy the example from /usr/share/doc/heartbeat-<version>.

■ chmod the file '0600' – Heartbeat does not start if the permissions on this file
are incorrect.

■ Sample authkeys files

auth 1

1 sha1 PutYourSuperSecretKeyHere

a. Start Heartbeat.

[root@oss161 ha.d]# service heartbeat start

Starting High-Availability services:
[OK]
8-12 Lustre 1.8 Operations Manual • October 2009

b. Monitor the syslog on both nodes. After the initial deadtime interval, you
should see the nodes discovering each other's state, and then they start the
Lustre resources they own. You should see the startup command in the log:

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to
<null> (<null>)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Election check: vote from oss162.clusterfs.com

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to
<null> (<null>)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_check:
Still waiting on 2 non-votes (2 total)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Updated voted hash for oss161.clusterfs.com to vote

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Election ignore: our vote (oss161.clusterfs.com)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_check:
Still waiting on 1 non-votes (2 total)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_state_transition:
State transition S_ELECTION -> S_PENDING [input=I_PENDING cause=
C_FSA_INTERNAL origin=do_election_count_vote]

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to
<null> (<null>)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_dc_release: DC role
released

Aug 9 09:50:45 oss161 crmd: [4733]: info: do_election_count_vote:
Election check: vote from oss162.clusterfs.com

Aug 9 09:50:45 oss161 crmd: [4733]: info: update_dc: Set DC to
<null> (<null>)

Aug 9 09:50:46 oss161 crmd: [4733]: info: update_dc: Set DC to
oss162.clusterfs.com (1.0.9)

Aug 9 09:50:47 oss161 crmd: [4733]: info: update_dc: Set DC to
oss161.clusterfs.com (1.0.9)

Aug 9 09:50:47 oss161 cib: [4729]: info: cib_replace_notify:
Local-only Replace: 0.0.1 from <null>

Aug 9 09:50:47 oss161 crmd: [4733]: info: do_state_transition:
State transition S_PENDING -> S_NOT_DC [input=I_NOT_DC cause=
C_HA_MESSAGE origin=do_cl_join_finalize_respond]

Aug 9 09:50:47 oss161 crmd: [4733]: info: populate_cib_nodes:
Requesting the list of configured nodes

Aug 9 09:50:48 oss161 crmd: [4733]: notice: populate_cib_nodes:
Node: oss162.clusterfs.com (uuid: 00e8c292-2a28-4492-bcfc-
fb2625ab1c61)

Sep 7 10:42:40 d1_q_0 heartbeat: info: Running \
/etc/ha.d/resource.d/ost1 start
Chapter 8 Failover 8-13

In this example, ost1 is the shared resource. Common things to watch out for:

■ If you configure two nodes as primary for one resource, then you will see
both nodes attempt to start it. This is very bad. Shut down immediately
and correct your HA resources files.

■ If the commutation between nodes is not correct, both nodes may also
attempt to mount the same resource, or will attempt to STONITH each
other. There should be many error messages in syslog indicating a
communication fault.

■ When in doubt, you can set a Heartbeat debug level in ha.cf—levels
above 5 produce huge volumes of data.

c. Try some manual failover/ failback. Heartbeat provides two tools for this
purpose (by default they are installed in /usr/lib/heartbeat) –

■ hb_standby [local|foreign] - Causes a node to yield resources to
another node—if a resource is running on its primary node it is local,
otherwise it is foreign.

■ hb_takeover [local|foreign] - Causes a node to grab resources
from another node.

Basic Configuration - With STONITH

STONITH automates the process of power control with the expect package. Expect
scripts are very dependent on the exact set of commands provided by each hardware
vendor, and as a result any change made in the power control hardware/firmware
requires tweaking STONITH.

Much must be deduced by running the STONITH package by hand. STONITH has
some supplied packages, but can also run with an external script. There are two
STONITH modes:

■ Single STONITH command for all nodes found in ha.cf:

-------/etc/ha.d/ha.cf-------------------

stonith <type> <config file>

■ STONITH command per-node:

-------/etc/ha.d/ha.cf--------------------

stonith_host <hostfrom> <stonith_type> <params...>

You can use an external script to kill each node:

stonith_host nodeA external foo /etc/ha.d/reset-nodeB

stonith_host nodeB external foo /etc/ha.d/reset-nodeA

Here, foo is a placeholder for an unused parameter.
8-14 Lustre 1.8 Operations Manual • October 2009

To get the proper syntax, run:

$ stonith -L

The above command lists supported models.

To list required parameters and specify the config file name, run:

$ stonith -l -t <model>

To attempt a test, run:

$ stonith -l -t <mode1> <fake host name>

This command also gives data on what is required. To test, use a real hostname. The
external STONITH scripts should take the parameters {start|stop|status} and
return 0 or 1.

STONITH _only happens when the cluster cannot do things in an orderly manner. If
two cluster nodes can communicate, they usually shut down properly. This means
many tests do not produce a STONITH, for example:

■ Calling init 0 or shutdown or reboot on a node, orderly halt, no STONITH

■ Stopping the heartbeat service on a node, again, orderly halt, no STONITH

You have to do something drastic (for example, killall -9 heartbeat) like pulling
cables, or so on before you trigger STONITH.

Also, the alert script does a software failover, which halts Lustre but does not halt or
STONITH the system. To use STONITH, edit the fail_lustre.alert script and
add your preferred shutdown command after the line:

`/usr/lib/heartbeat/hb_standby local &`;
Chapter 8 Failover 8-15

A simple method to halt the system is the sysrq method. Run:

$!/bin/bash

This script forces a boot. Run:

$ 'echo s' = sync

$ 'echo u' = remount read-only

$ 'echo b' = reboot

$

SYST="/proc/sysrq-trigger"

if [! -f $SYST]; then

echo "$SYST not found!"

exit 1

fi

$ sync, unmount, sync, reboot

echo s > $SYST

echo u > $SYST

echo s > $SYST

echo b > $SYST

exit 0
8-16 Lustre 1.8 Operations Manual • October 2009

8.6 Using MMP
The multiple mount protection (MMP) feature protects the file system from being
mounted more than one time simultaneously. If the file system is mounted, MMP
also protects changes by e2fsprogs to the file system. This feature is very important
in a shared storage environment (for example, when an OST and a failover OST
share a partition).

The backing file system for Lustre, ldiskfs, supports the MMP mechanism. A
block in the file system is updated by a kmmpd daemon at one second intervals, and
a monotonically increasing sequence number is written in this block. If the file
system is cleanly unmounted, then a special "clean" sequence is written in this block.
When mounting a file system, ldiskfs checks if the MMP block has a clean sequence
or not.

Even if the MMP block holds a clean sequence, ldiskfs waits for some interval to
guard against the following situations:

■ Under heavy I/O, it may take longer for the MMP block to be updated

■ If another node is also trying to mount the same file system, there may be a ’race’

With MMP enabled, mounting a clean file system takes at least 10 seconds. If the file
system was not cleanly unmounted, then mounting the file system may require
additional time.

Note – The MMP feature is only supported on Linux kernel versions >= 2.6.9.
Chapter 8 Failover 8-17

Note – The MMP feature is automatically enabled by mkfs.lustre for new file
systems at format time if failover is being used and the kernel and e2fsprogs support
it. Otherwise, the Lustre administrator has to manually enable this feature when the
file system is unmounted. If failover is being used, the MMP feature is automatically
enabled by mkfs.lustre.

- To determine if MMP is enabled: dumpe2fs -h <device>|grep features

Example:

dumpe2fs -h /dev/sdc | grep features
Filesystem features: has_journal ext_attr resize_inode dir_index
filetype extent mmp sparse_super large_file uninit_bg

- To manually disable MMP: tune2fs -O ^mmp <device>
- To manually enable MMP: tune2fs -O mmp <device>

If ldiskfs detects that a file system is being mounted multiple times, it reports the
time when the MMP block was last updated, the node name and the device name.
8-18 Lustre 1.8 Operations Manual • October 2009

8.7 Setting Up Failover with Heartbeat V2
This section describes how to set up failover with Heartbeat V2.

8.7.1 Installing the Software
1. Install Lustre (see Installing Lustre from RPMs).

2. Install RPMs required for configuring Heartbeat.

The following packages are needed for Heartbeat (v2). We used the 2.0.4 version
of Heartbeat.

The required Heartbeat packages are:

■ heartbeat-stonith -> heartbeat-stonith-2.0.4-1.i586.rpm

■ heartbeat-pils -> heartbeat-pils-2.0.4-1.i586.rpm

■ heartbeat itself -> heartbeat-2.0.4-1.i586.rpm

You can find all the RPMs at the following location:

http://linux-ha.org/download/index.html#2.0.4

3. Satisfy the installation prerequisites.

Heartbeat 1.2.3 installation requires a number of additional packages. It is
recommended to use a package management tool (like yum, yast or aptitude) to
install packages.

Some of the required packages include:

■ Python

■ openssl

■ libnet-> libnet-1.1.2.1-19.i586.rpm

■ libpopt -> popt-1.7-274.i586.rpm

■ librpm -> rpm-4.1.1-222.i586.rpm

■ libtld- > libtool-ltdl-1.5.16.multilib2-3.i386.rpm

■ lingnutls -> gnutls-1.2.10-1.i386.rpm

■ Libzo -> lzo2-2.02-1.1.fc3.rf.i386.rpm

■ glib -> glib-2.6.1-2.i586.rpm

■ glib-devel -> glib-devel-2.6.1-2.i586.rpm
Chapter 8 Failover 8-19

http://linux-ha.org/download/index.html#2.0.4

8.7.2 Configuring the Hardware
Heartbeat v2 runs well with an un-altered v1 configuration. This makes upgrading
simple. You can test the basic function and quickly roll back if issues appear.
Heartbeat v2 does not require a virtual IP address to be associated with a resource.
This is good since we do not use virtual IPs.

Heartbeat v2 supports multi-node clusters (of more than two nodes), though it has
not been tested for a multi-node cluster. This section describes only the two-node
case. The multi-node setup adds a score value to the resource configuration. This
value is used to decide the proper node for a resource when failover occurs.

Heartbeat v2 adds a resource manager (crm). The resource configuration is
maintained as an XML file. This file is re-written by the cluster frequently. Any
alterations to the configuration should be made with the HA tools or when the
cluster is stopped.

8.7.2.1 Hardware Preconditions
■ The basic cluster assumptions are the same as those for Heartbeat v1. For the sake

of clarity, here are the preconditions:

■ The setup must consist of a failover pair where each node of the pair has access to
shared storage. If possible, the storage paths should be identical
(d1_q_0:/dev/sda == d2_q_0:/dev/sda).

■ Shared storage can be arranged in an active/passive (MDS,OSS) or active/active
(OSS only) configuration. Each shared resource will have a primary (default)
node. The secondary node is assumed.

■ The two nodes must have one or more communication paths for heartbeat traffic.
A communication path can be:

■ Dedicated Ethernet

■ Serial live (serial crossover cable)

Failure of all heartbeat communication is not good. This condition is called “split-
brain” and the heartbeat software will resolve this situation by powering down
one node.

■ The two nodes must have a method to control each other's state. The Remote
Power Control hardware is the best. There must be a script to start and stop a
given node from the other node. STONITH provides soft power control methods
(ssh, meatware) but these cannot be used in a production situation.

■ Heartbeat provides a remote ping service that is used to monitor the health of the
external network. If you wish to use the ipfail service, you must have a very
reliable external address to use as the ping target.
8-20 Lustre 1.8 Operations Manual • October 2009

8.7.2.2 Configuring Lustre

Configuring Lustre for Heartbeat V2 is identical to the V1 case.

8.7.2.3 Configuring Heartbeat

For details on all configuration options, refer to the Linux HA website:

http://linux-ha.org/ha.cf

As mentioned earlier, you can run Heartbeat V2 using the V1 configuration. To
convert from the V1 configuration to V2, use the haresources2cib.py script
(typically found in /usr/lib/heartbeat).

If you are starting with V2, we recommend that you create a V1-style configuration
and converting it, as the V1 style is human-readable. The heartbeat XML
configuration is located at /var/lib/heartbeat/cib.xml and the new resource
manager is enabled with the crm yes directive in /etc/ha.d/ha.cf. For additional
information on CiB, refer to:

http://linux-ha.org/ClusterInformationBase/UserGuide

Heartbeat log daemon

Heartbeat V2 adds a logging daemon, which manages logging on behalf of cluster
clients. The UNIX syslog API makes calls that can block, Heartbeat requires log
writes to complete as a sign of health. This daemon prevents a busy syslog from
triggering a false failover. The logging configuration has been moved to
/etc/logd.cf, while the directives are essentially unchanged.

Basic configuration (No STONITH or monitor)

Assuming two nodes, d1_q_0 and d21_q_0:

■ d1_q_0 owns ost-alpha

■ d2_q_0 owns ost-beta

■ dedicated Ethernet - eth0

■ serial crossover link - /dev/ttySO

■ remote host for health ping - 192.168.0.3
Chapter 8 Failover 8-21

http://linux-ha.org/ha.cf
http://linux-ha.org/ClusterInformationBase/UserGuide

Use this procedure:

1. Create the basic ha.cf and haresources files.

haresources no longer requires the dummy virtual IP address.

This is an example of /etc/ha.d/haresouces

oss161.clusterfs.com 192.168.16.35 \ Filesystem::/dev/sda::/ost1::lustre
oss162.clusterfs.com 192.168.16.36 \ Filesystem::/dev/sda::/ost1::lustre

Once you have these files created, you can run the conversion tool:

$ /usr/lib/heartbeat/haresources2cib.py -c basic.ha.cf \
basic.haresources > basic.cib.xml

2. Examine the cib.xml file

The first section in the XML file is <attributes>. The default values should be fine
for most installations.

The actual resources are defined in the <primitive> section. The default behavior
of Heartbeat is an automatic failback of resources when a server is restored. To
avoid this, you must add a parameter to the <primitive> definition. You may also
like to reduce the timeouts. In addition, the current version of the script does not
correctly name the parameters.

<cib generated="true" admin_epoch="0" epoch="0" num_updates="0" \

have_quorum="true" ignore_dtd="false" num_peers="2"
ccm_transition="1" cib-last- \ written="Thu Aug 9 09:50:12 2007">

<configuration>

<crm_config/>

<nodes>

<node id="00e8c292-2a28-4492-bcfs-fb2625ab1c61" \

uname="oss162.spsoftware.com" type="normal" />

<node id="e370be9a-24f4-46a5-99ac-41a88c5fa344" \

uname="oss161.spsoftware.com" type="normal"/>

</nodes>

<resources/>

<constraints/>

</configuration>

</cib>

a. Copy the modified resource file to /var/lib/heartbeat/crm/cib.xml

b. Start the Heartbeat software.

c. After startup, Heartbeat re-writes the cib.xml, adding a <node> section and
status information. Do not alter those fields.
8-22 Lustre 1.8 Operations Manual • October 2009

Basic Configuration – Adding STONITH

As per Basic configuration (No STONITH or monitor), the best way to do this is to
add the STONITH options to ha.cf and run the conversion script. For more
information, see:

http://linux-ha.org/ExternalStonithPlugins

8.7.3 Operation
In normal operation, Lustre should be controlled by the Heartbeat software. Start
Heartbeat at the boot time. It starts Lustre after the initial dead time.

8.7.3.1 Initial startup

1. Stop the Heartbeat software (if running).

If this is a new Lustre file system:

$ mkfs.lustre --fsname=spfs --ost --failnode=oss162 \
--mgsnode=mds16@tcp0 /dev/sdb (one)

2. mount -t lustre /dev/sdb /mnt/spfs/ost/

3. /etc/init.d/heartbeat start on one node.

4. tail -f /var/log/ha-log to see progress.

5. After initdead, this node should start all Lustre objects.

6. /etc/init.d/heartbeat start on second node.

7. After heartbeat is up on both the nodes, failback the resources to the second
node. On the second node, run:

$ /usr/lib/heartbeart/hb_takeover local

You should see the resources stop on the first node, and start up on the second
node
Chapter 8 Failover 8-23

http://linux-ha.org/ExternalStonithPlugins

8.7.3.2 Testing

1. Pull power from one node.

2. Pull networking from one node.

3. After Mon is setup, pull the connection between the OST and the backend
storage.

8.7.3.3 Failback

Normally, do the failback manually after determining that the failed node is now
good. Lustre clients can work during a failback, but they are momentarily blocked.

Note – When formatting the MGS, the --failnode option is not available. This is
because MGSs do not need to be told about a failover MGS; they do not
communicate with other MGSs at any time. However, OSSs, MDSs and Lustre clients
need to know about failover MGSs. MDSs and OSSs are told about failover MGSs
with the --mgsnode parameter and/or using multi-NID mgsspec specifications. At
mount time, clients are told about all MGSs with a multi-NID mgsspec specification.
For more details on the multi-NID mgsspec specification and how to tell clients
about failover MGSs, see the mount.lustre man page.

8.8 Considerations with Failover Software
and Solutions
The failover mechanisms used by Lustre and tools such as Heartbeat are soft failover
mechanisms. They check system and/or application health at a regular interval,
typically measured in seconds. This, combined with the data protection mechanisms
of Lustre, is usually sufficient for most user applications.

However, these soft mechanisms are not perfect. The Heartbeat poll interval is
typically 30 seconds. To avoid a false failover, Heartbeat waits for a deadtime interval
before triggering a failover. In normal case, a user I/O request should block and
recover after the failover completes. But this may not always be the case, given the
delay imposed by Heartbeat.
8-24 Lustre 1.8 Operations Manual • October 2009

Likewise, the Lustre health_check mechanism does not provide perfect protection
against any or all failures. It is a sample taken at a time interval, not something that
brackets each and every I/O request.2 There are a few places where health_check
could generate a bad status:

■ On a device basis if there are requests that have not been processed in a very long
time (more than the maximum allowed timeout), a CERROR is printed:

{service}: unhealthy - request has been waiting Ns

Ns is the number of seconds. The CERROR displays a true value for Ns, for
example ''... request has been waiting 100s''

■ If the backing file system has gone read-only due to file system errors

■ On a per-device basis if any of the above failed, it is reported in the
/proc/fs/lustre/health_check file:

device {device} reported unhealthy

■ If ANY device or service on the node is unhealthy, it also prints:

NOT HEALTHY

■ If ALL devices and services on the node are healthy, it prints:

healthy

There will be cases where a user job will die prior to the HA software triggering a
failover. You can certainly shorten timeouts, add monitoring, and take other steps to
decrease this probability. But there is a serious trade-off – shortening timeouts
increases the probability of false-triggering a busy system. Increasing monitoring
takes the system resources, and can likewise cause a false trigger.

Unfortunately, hard failover solutions capable of catching failures in the sub-second
range generally require special hardware. As a result, they are quite expensive.

Tip – Failover of the Lustre client is dependent on the obd_timeout parameter. The
Lustre client does not attempt failover until the request times out. Then, the client
tries to re-send the request to the original server (if again, an obd_timeout occurs).
After that, the Lustre client refers to the import list for that target and tries to
connect (in a round-robin manner) until one of the nodes replies. The timeouts for
the connection are much lower (obd_timeout / 20, 5).

2. This is true for every HA monitor, not just the Lustre health_check.
Chapter 8 Failover 8-25

8-26 Lustre 1.8 Operations Manual • October 2009

	8
	Failover
	8.1 What is Failover?
	8.1.1 The Power Management Software
	8.1.2 Power Equipment
	8.1.3 Heartbeat
	8.1.4 Connection Handling During Failover
	8.1.5 Roles of Nodes in a Failover

	8.2 OST Failover
	8.3 MDS Failover
	8.4 Configuring Lustre for Failover
	8.4.1 Starting/Stopping a Resource
	8.4.2 Active/Active Failover Configuration
	8.4.3 Hardware Requirements for Failover
	8.4.3.1 Hardware Preconditions

	8.5 Setting Up Failover with Heartbeat V1
	8.5.1 Installing the Software
	1. Install Lustre (see Installing Lustre from RPMs).
	2. Install the RPMs that are required to configure Heartbeat.
	3. Satisfy the installation prerequisites.
	8.5.1.1 Configuring Heartbeat
	1. Configure and test the Heartbeat setup before adding STONITH.
	2. Create /etc/ha.d/ha.cf
	3. Create /etc/ha.d/haresources
	4. Create /etc/ha.d/authkeys
	a. Start Heartbeat.
	b. Monitor the syslog on both nodes. After the initial deadtime interval, you should see the nodes discovering each other's state, and then they start the Lustre resources they own. You should see the startup command in the log:
	c. Try some manual failover/ failback. Heartbeat provides two tools for this purpose (by default they are installed in /usr/lib/heartbeat) -

	8.6 Using MMP
	8.7 Setting Up Failover with Heartbeat V2
	8.7.1 Installing the Software
	1. Install Lustre (see Installing Lustre from RPMs).
	2. Install RPMs required for configuring Heartbeat.
	3. Satisfy the installation prerequisites.

	8.7.2 Configuring the Hardware
	8.7.2.1 Hardware Preconditions
	8.7.2.2 Configuring Lustre
	8.7.2.3 Configuring Heartbeat
	1. Create the basic ha.cf and haresources files.
	2. Examine the cib.xml file
	a. Copy the modified resource file to /var/lib/heartbeat/crm/cib.xml
	b. Start the Heartbeat software.
	c. After startup, Heartbeat re-writes the cib.xml, adding a <node> section and status information. Do not alter those fields.

	Basic Configuration - Adding STONITH

	8.7.3 Operation
	8.7.3.1 Initial startup
	1. Stop the Heartbeat software (if running).
	2. mount -t lustre /dev/sdb /mnt/spfs/ost/
	3. /etc/init.d/heartbeat start on one node.
	4. tail -f /var/log/ha-log to see progress.
	5. After initdead, this node should start all Lustre objects.
	6. /etc/init.d/heartbeat start on second node.
	7. After heartbeat is up on both the nodes, failback the resources to the second node. On the second node, run:

	8.7.3.2 Testing
	1. Pull power from one node.
	2. Pull networking from one node.
	3. After Mon is setup, pull the connection between the OST and the backend storage.

	8.7.3.3 Failback

	8.8 Considerations with Failover Software and Solutions

