
Lustre® 1.6 Operations Manual
Version 1.6_man_v1.9

Lustre 1.6 Operations Manual
Version 1.6_man_v1.9 (November 2, 2007)

This publication is intended to help Cluster File Systems, Inc. (CFS) Customers and Partners who are
involved in installing, configuring, and administering Lustre.

The information contained in this document has not been submitted to any formal CFS test and is distributed
AS IS. The use of this information or the implementation of any of these techniques is the customer’s
responsibility and depends on the customer's ability to evaluate and integrate them into the customer's
operational environment. While each item may have been reviewed by CFS for accuracy in a specific
situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

CFS™ and Cluster File Systems, Inc.™ are trademarks of Cluster File systems, Inc.

Lustre® is a registered trademark of Cluster File Systems, Inc.

The Lustre logo is a trademark of Cluster File Systems, Inc.

Other product names are the trademarks of their respective owners.

Comments may be addressed to:

Cluster File Systems, Inc.
Suite E104 - 288
4800 Baseline Road
Boulder CO 80303

© Cluster File Systems, Inc. 2007 All rights reserved.

Conventions for Command Syntax
All the commands in this manual appear as 9-point, green New Courier font with the sign '| $' at the
beginning. Other conventions used in the manual indicate the following:

Explanation of Symbols
The following symbols appear throughout this manual to emphasize important information.

Convention Description

Vertical Bar | Alternative, mutually-exclusive elements

Square Brackets [] Optional elements

Braces { } A choice is required

Braces within brackets [{ }] A choice is required within an optional element

Backslash \ The command line continues on the next line

Boldface The word/command must be entered exactly as shown

Italics A variable or argument to be replaced by an actual value

WARNING:
Indicates a situation that may possibly cause data loss or damage equipment.

NOTE:
Indicates important information about a specific aspect of Lustre.

TIP:
Indicates helpful information to make it easier or more convenient to use Lustre.
Operations Manual iii

iv

Contents

Part I - Architecture 1
Chapter I - 1. A Cluster with Lustre . 1

1.1 What is Lustre? . 1
1.2 Lustre Software . 2
1.3 Lustre Components. 2

Chapter I - 2. Understanding Lustre Networking . 5
2.1 Introduction to LNET . 5
2.2 Supported Network Types. 6
2.3 Important Terms . 6

Part II - Lustre Administration 7
Chapter II - 1. Prerequisites. 7

1.1 Preparing to Install Lustre . 7
1.2 Using a Pre-packaged Lustre Release . 8
1.3 Environmental Requirements . 11
1.4 Memory Requirements . 13

Chapter II - 2. Lustre Installation . 15
2.1 Installing Lustre . 16
2.2 Quick Configuration of Lustre . 18
2.3 Building from Source. 27
2.4 Building a Lustre Source Tarball . 33

Chapter II - 3. Configuring the Lustre Network . 35
3.1 Designing Your Lustre Network . 35
3.2 Configuring Your Lustre Network . 37
3.3 Starting and Stopping LNET . 41

Chapter II - 4. Configuring Lustre - Examples . 43
4.1 Simple TCP Network. 43

Chapter II - 5. More Complicated Configurations . 55
5.1 Multihomed Servers . 55
5.2 Elan to TCP Routing . 58
Lustre Operations Manual v

Chapter II - 6. Failover. 59
6.1 What is Failover? . 59
6.2 OST Failover Review . 61
6.3 MDS Failover Review . 62
6.4 Configuring MDS and OSTs for Failover. 62
6.5 Setting Up Failover with Heartbeat V1 . 63
6.6 Setting Up Failover with Heartbeat V2 . 72
6.7 Considerations with Failover Software and Solutions . 77

Chapter II - 7. Configuring Quotas. 79
7.1 Working with Quotas . 79

Chapter II - 8. RAID . 85
8.1 Considerations for Backend Storage . 85
8.2 Insights into Disk Performance Measurement . 87
8.3 Creating an External Journal. 92

Chapter II - 9. Kerberos . 95
9.1 What is Kerberos?. 95
9.2 Lustre Setup with Kerberos. 95

Chapter II - 10. Bonding . 105
10.1 Network Bonding. 105
10.2 Requirements . 106
10.3 Using Lustre with Multiple NICs versus Bonding NICs . 108
10.4 Bonding Module Parameters. 108
10.5 Setting Up Bonding . 109
10.6 Configuring Lustre with Bonding . 115
10.7 Bonding References . 115

Chapter II - 11. Upgrading Lustre . 117
11.1 Lustre Interoperability . 117
11.2 Upgrading from Version 1.4.11 to Version 1.6.3 . 118
11.3 Downgrading Lustre from Version 1.6.3 to Version 1.4.11 . 125

Chapter II - 12. Lustre SNMP Module . 127
12.1 Installing the Lustre SNMP Module. 127
12.2 Building the Lustre SNMP Module . 128
12.3 Using the Lustre SNMP Module . 128

Chapter II - 13. Backup and Restore . 129
13.1 Lustre Backups . 129
13.2 Restoring from a File-level Backup . 131

Chapter II - 14. POSIX. 133
14.1 Installing POSIX . 134
14.2 Running the Test Suite Against Lustre . 135
14.3 Isolating and Debugging Failures . 136

Chapter II - 15. Benchmarking. 139
15.1 Bonnie++ Benchmark . 140
15.2 IOR Benchmark. 141
15.3 IOzone Benchmark . 142

Chapter II - 16. Lustre Recovery . 145
16.1 Recovering Lustre . 145
16.2 Types of Failure . 145
vi Contents

Part III - Lustre Tuning, Monitoring and
Troubleshooting 149
Chapter III - 1. Lustre I/O Kit . 149

1.1 Lustre I/O Kit Description and Prerequisites . 149
1.2 Running I/O Kit Tests . 150
1.3 PIOS Test Tool . 157

Chapter III - 2. LustreProc . 161
2.1 Introduction . 161
2.2 Lustre I/O Tunables. 166
2.3 Locking . 175
2.4 Debug Support . 176

Chapter III - 3. Lustre Tuning. 179
3.1 Module Options . 179
3.2 Options for Formatting MDS and OST . 181
3.3 DDN Tuning . 183
3.4 Large-Scale Tuning for Cray XT and Equivalents. 186

Chapter III - 4. Lustre Troubleshooting and Tips . 187
4.1 Lustre Error Messages and Logs . 187
4.1 Lustre Performance Tips. 188

Part IV - Lustre for Users 197
Chapter IV - 1. Free Space and Quotas . 197

1.1 Querying File System Space. 197
1.2 Using Quota . 199

Chapter IV - 2. Striping and Other I/O Options . 201
2.1 File Striping . 201
2.2 Individual Files and Directories Examined with lfs getstripe . 204
2.3 lfs setstripe – Setting Striping Patterns . 205
2.4 Free Space Management . 206
2.5 Performing Direct I/O . 207
2.6 Other I/O Options . 207
2.7 Striping Using ioctl . 208

Chapter IV - 3. Lustre Security . 215
3.1 Using ACLs . 215

Chapter IV - 4. Other Lustre Operating Tips . 217
4.1 Expanding the File System by Adding OSTs . 217
4.2 A Simple Data Migration Script . 220
4.3 Adding Multiple SCSI LUNs on Single HBA . 221
4.4 Failures While Running a Client and an OST on the Same Machine 222
4.5 Improving Lustre Metadata Performance While Using Large Directories 222
Lustre Operations Manual vii

Part V - Reference 223
Chapter V - 1. User Utilities (man1). 223

1.1 lfs. 223
1.2 lfsck . 231
1.3 Mount . 237
1.4 Handling Timeouts . 238

Chapter V - 2. Lustre Programming Interfaces (man3) . 239
2.1 User/Group Cache Upcall . 239

Chapter V - 3. Config Files and Module Parameters (man5) . 241
3.1 Introduction . 241
3.2 Module Options . 242

Chapter V - 4. System Configuration Utilities (man8) . 259
4.1 mkfs.lustre. 259
4.2 tunefs.lustre. 262
4.3 lctl . 264
4.4 mount.lustre . 272
4.5 New Utilities in Lustre 1.6 . 274

Chapter V - 5. System Limits. 277
5.1 Maximum Stripe Count . 277
5.2 Maximum Stripe Size . 277
5.3 Minimum Stripe Size . 278
5.4 Maximum Number of OSTs and MDSs. 278
5.5 Maximum Number of Clients. 278
5.6 Maximum Size of a File System . 278
5.7 Maximum File Size . 278
5.8 Maximum Number of Files or Subdirectories in a Single Directory. 278
5.9 MDS Space Consumption. 279
5.10 Maximum Length of a Filename and Pathname . 279
5.11 Maximum Number of Open Files for Lustre File Systems. 279
5.12 OSS RAM Size for a Single OST . 279

Feature List . 281

Task List . 285

Version Log . 287

Knowledge Base . 291

Glossary . 311

Index . 319
viii Contents

Chapter I - 1. A Cluster with Lustre
This chapter describes Lustre software and components, and includes the following sections:

• What is Lustre?

• Lustre Software

• Lustre Components

1.1 What is Lustre?

Lustre® is a high-performance, multi-network, fault-tolerant, POSIX1-compliant network file system for Linux
clusters.

The key features of Lustre:

• Capacity to run over a wide range of network fabrics

• Fine-grained locking for efficient concurrent file access

• Failover ability to reconstruct the state if a server node fails

• Distributed file object handling for scalable data access

Lustre is a complete, software-only, open-source solution for any hardware that can run Linux. It has native
drivers for many of the fastest networking fabrics. Lustre can use any storage medium that looks like a block
device.

1. Portable Operating System Interface for UNIX (POSIX)
Lustre Operations Manual 1

1.2 Lustre Software

The Lustre software consists of three interactive areas:

• Patched Linux kernel

Lustre requires significant changes from the standard Linux kernel to facilitate some of its
performance improvements. These changes are distributed in the form of patches against specific
kernels. Several specific, pre-patched kernels are available at our download site at
http://www.clusterfs.com/download.html. Additionally, the Lustre client, but not Lustre servers, can
run on certain unmodified kernels (known as "patchless" kernels).

• Lustre modules

Lustre’s kernel modules provide server and client capabilities for the file system.

• Userspace utilities

Several userspace utilities are required for Lustre configuration and the startup and shutdown of
Lustre servers and clients.

1.3 Lustre Components

A Lustre file system consists of four major components:

• Management Server

• Meta Data Target

• Object Storage Targets

• Lustre clients

Lustre clients provide remote access a Lustre file system. The file system is served jointly by the Object
Storage Targets (OSTs) for file contents and the Meta Data Target (MDT) for file meta data (directory
structure, file size, and so on).

A single Lustre file system may have multiple OSTs, each serving a subset of the file data. There is not
necessarily a 1:1 correspondence between a file and an OST; a file may be spread over many OSTs to
optimize performance. Each OST and the MDT may have a failover partner to provide access to the back-
end storage if the server node fails. Figure 1 shows the expected interactions between servers and clients
in a Lustre file system.
2 A Cluster with Lustre

http://www.clusterfs.com/download.html
http://www.clusterfs.com/download.html

Figure 1 Scaling with clustered metadata servers

The MDT, OSTs and Lustre clients can all run concurrently (in any mixture) on a single node. However, a
more typical configuration is an MDT on a dedicated node, two or more OSTs on each Object Storage node,
and a client on each of a large number of computer nodes.

1.3.1 MGS
The Management Server (MGS) defines configuration information for all Lustre file systems at a site. Each
Lustre target contacts the MGS to provide information, and Lustre clients contact the MGS to retrieve
information. The MGS can provide live updates to the configuration of targets and clients. The MGS requires
its own disk for storage. However, there is a provision that allows the MGS to share a disk ("co-locate") with
a single MDT. The MGS is not considered "part" of an individual file system; it provides configuration
mechanisms to other Lustre components.

1.3.2 MDT
The MDT provides back-end storage for metadata for a single file system. The Metadata Server (MDS)
provides the network request handling for one or more local MDTs.1

The metadata managed by the MDT consists of the file hierarchy ("namespace"), along with file attributes
such as permissions and references to the data objects stored on the OSTs.

1. For historical reasons, the term “MDS” traditionally has referred to both the MDS and a single MDT. This manual version
(and future versions) use the more specific meaning.
Lustre Operations Manual 3

1.3.3 OSTs
An OST provides back-end storage for file object data (effectively, chunks of user files). Typically, multiple
OSTs provide access to different file chunks. The MDT tracks the location of the chunks. On a node serving
OSTs, an Object Storage Server (OSS) component provides the network request handling for one or more
local OSTs.

1.3.4 Lustre Client Nodes
Lustre clients are the "users" of the file system. Typically, the clients are computation, visualization, or
desktop nodes. Lustre clients require Lustre software to mount a Lustre file system—Lustre is not NFS.

The Lustre client software consists of an interface between the Linux Virtual File System and the Lustre
servers. Each target has a client counterpart: Metadata Client (MDC), Object Storage Client (OSC), and a
Management Client (MGC). A group of OSCs are wrapped into a single Logical Object Volume (LOV).
Working in concert, the OSCs provide transparent access to the file system.

All clients which mount the file system see a single, coherent, synchronized namespace at all times.
Different clients can write to different parts of the same file at the same time, while other clients can read
from the file. This is a common situation for large simulations and is an area in which Lustre excels.

Almost all activity on the Targets is driven by requests from Lustre clients.

1.3.5 LNET
Servers and clients communicate with one another over a custom networking API known as Lustre
Networking (LNET). LNET interoperates with a variety of network transports through Network Abstraction
Layers (NAL).

LNET provides the delivery and event generation in connection with network messages. It also provides
advanced capabilities such as using remote direct memory access (RDMA), if the underlying network
transport layer supports it, and autonomous routing between different network transports on different nodes.
4 A Cluster with Lustre

Chapter I - 2. Understanding Lustre
Networking

This chapter describes LNET and supported networks, and includes the following sections:

• Introduction to LNET

• Supported Network Types

• Important Terms

2.1 Introduction to LNET

In a Lustre network, servers and clients communicate with one another over LNET, a custom networking
API which abstracts away all transport-specific interaction. In turn, LNET operates with a variety of network
transports through Lustre Network Drivers (LNDs).

Key features of LNET include:

• RDMA, when supported by underlying networks such as Elan, Myrinet, and InfiniBand

• Support for many commonly-used network types such as InfiniBand and IP

• High availability and recovery features enabling transparent recovery in conjunction with failover
servers

• Simultaneous availability of multiple network types with routing between them

LNET is designed for complex topologies, superior routing capabilities and simplified configuration.
Lustre Operations Manual 5

2.2 Supported Network Types

Lustre supports the following network types:

• TCP (Ethernet)

• openib (Mellanox-Gold InfiniBand)

• iib (Infinicon InfiniBand)

• vib (Voltaire InfiniBand)

• o2ib (OFED)

• ra (RapidArray)

• Elan (Quadrics Elan)

• gm and mx (Myrinet)

• LNET

2.3 Important Terms

The following terms are important to understanding Lustre networking.

• LND: Lustre network driver. A modular sub-component of LNET that implements one of the network
types. LNDs are implemented as individual Linux modules and, typically, must be compiled against
the network driver software.

• Network: A group of nodes that communicate directly with each other. The network is how LNET
represents a single cluster. Multiple networks can be used to connect clusters together. Each
network has a unique type and number (for example, tcp0, tcp1, or elan0).

• NID: Lustre network identifier. The NID uniquely identifies a Lustre network endpoint, including the
node and the network type. There is an NID for every network which a node uses.
6 Understanding Lustre Networking

Chapter II - 1. Prerequisites
This chapter describes Lustre installation requirements and includes the following sections:

• Preparing to Install Lustre

• Using a Pre-packaged Lustre Release

• Environmental Requirements

• Memory Requirements

1.1 Preparing to Install Lustre

This chapter describes the prerequisites to installing Lustre.

1.1.1 How to Get Lustre
The most current, stable version of Lustre is available at CFS’s download website:
http://www.clusterfs.com/download.html.

The Lustre software is released under the GNU General Public License (GPL). CFS strongly recommends
that you read the complete GPL and release notes before downloading Lustre (if you have not done so
already). The GPL and release notes can also be found at the aforementioned website.
Lustre Operations Manual 7

http://clusterfs.com/download.html

1.1.2 Supported Configurations
CFS supports Lustre on the configurations listed in Table 1.

Table 1 Supported Configurations

Different endians like, i368 and PPC, also support Lustre clients. One limitation is that the PAGE_SIZE on
the client must be as large as the PAGE_SIZE of the server. In particular, ia64 clients with large pages (up
to 64kB pages) can run with i386 servers (4kB pages). If you are running i386 clients with ia64 servers, you
must compile the ia64 kernel with 4kB PAGE_SIZE.

1.2 Using a Pre-packaged Lustre Release

Due to the complexity involved in building and installing Lustre, CFS offers several pre-packaged releases
that cover several of the most common configurations. A pre-packaged release consists of five different
RPM packages (described below). Install these packages in the following order:

• kernel-smp-<release-ver>.rpm – This is the Lustre-patched Linux kernel RPM. Use it with
matching Lustre Utilities and Lustre Modules packages.

• kernel-source-<release-ver>.rpm – This is the Lustre-patched Linux kernel source RPM. This
RPM comes with the kernel package, but is not required to build or use Lustre.

• lustre-modules-<release-ver>.rpm – These are the Lustre kernel modules for the above kernel.

• lustre-<release-ver>.rpm – These are Lustre Utilities or userspace utilities to configure and run
Lustre. Only use them with the matching kernel RPM (referenced above).

• lustre-source-<release-ver>.rpm – This contains the Lustre source code (including the kernel
patches). It is not required to build or use Lustre.

The source package is only required if you need to build your own modules (networking, for
example) against the kernel source.

• lustre-ldiskfs-<release-ver>.rpm - This contains modules for the backend file system used by
Lustre.

Aspect Support Type

Operating Systems Red Hat Enterprise Linux 3+
SuSE Linux Enterprise Server 9 and 10
Linux 2.4 and 2.6

Platforms IA-32, IA-64, x86-64
PowerPC architectures and mixed-endian clusters

Interconnect TCP/IP
Quadrics Elan 3 and 4
Myri-10G and Myrinet - 2000
Mellanox
InfiniBand (Voltaire, OpenIB and Silverstorm)
8 Prerequisites

1.2.1 Choosing a Pre-packaged Kernel
Choosing the most suitable pre-packaged kernel depends largely on the combination of hardware and
software being used where Lustre will be installed. CFS provides pre-packaged releases on our download
website.

1.2.2 Lustre Tools
The lustre-<release-ver>.rpm package, required for proper Lustre setup and monitoring, contains many
tools. The most important tools are:

• lctl - Low-level configuration utility that can also be used for troubleshooting and debugging.

• lfs - Tool to read/set striping information for the cluster, as well as perform other actions specific to
Lustre file systems.

• mount.lustre - Lustre-specific helper for mount(8).

• mfks.lustre - Tool to format Lustre target disks.

WARNING:
Lustre contains kernel modifications, which interact with your storage devices and
may introduce security issues and data loss if not installed, configured, or
administered properly. Before using this software, please exercise caution and
back up ALL data.
Lustre Operations Manual 9

1.2.3 Other Required Software
Although CFS provides some tools and utilities, Lustre also requires several separate software tools to be
installed.

1.2.3.1 Core-Required Tools
• e2fsprogs: Lustre requires very modern e2fsprogs that understand extents—use e2fsprogs-1.38-

cfs1 or later, available at:

ftp://ftp.lustre.org/pub/lustre/other/e2fsprogs/

• Perl: Various userspace utilities are written in Perl. Any modern Perl should work with Lustre.

• build tools: If you are not installing Lustre from RPMs, normally you can use a GCC compiler to
build Lustre. Use GCC 3.0 or later.

1.2.3.2 High-Availability Software
If you plan to enable failover server functionality with Lustre (either on an OSS or an MDS), high-availability
software must be added to your cluster software. Heartbeat is one of the better known high-availability
software packages.

Linux-HA (Heartbeat) supports a redundant system with access to the Shared (Common) Storage with
dedicated connectivity; it can determine the system’s general state. For more information, see Failover on
page 59.

1.2.3.3 Debugging Tools
Things inevitably go wrong—disks fail, packets get dropped, software has bugs, and when they do it is
useful to have debugging tools on hand to help figure out how and why a problem occurred.

In this regard, the most useful tool is GDB, coupled with crash. You can use these tools to investigate live
systems and kernel core dumps. There are also useful kernel patches/ modules, such as netconsole and
netdump, that allow core dumps to be made across the network.

For more information about these tools, see the following websites:

NOTE:
You might have to install e2fsprogs with rpm -ivh --force to override any dependency
issues of your distribution.

Tool URL

GDB http://www.gnu.org/software/gdb/gdb.html

crash http://oss.missioncriticallinux.com/projects/crash/

netconsole http://lwn.net/2001/0927/a/netconsole.php3

netdump http://www.redhat.com/support/wpapers/redhat/netdump/
10 Prerequisites

http://www.gnu.org/software/gdb/gdb.html
http://oss.missioncriticallinux.com/projects/crash/
http://lwn.net/2001/0927/a/netconsole.php3
http://www.redhat.com/support/wpapers/redhat/netdump/
ftp://ftp.lustre.org/pub/lustre/other/e2fsprogs/

1.3 Environmental Requirements

When preparing to install Lustre, make sure the following environmental requirements are met.

1.3.1 SSH Access
Although it is not strictly required, in many cases it is very helpful to have remote SSH1 access to all the
nodes in a cluster. Some Lustre configuration and monitoring scripts depend on SSH (or Pdsh2) access,
although these are not required for running Lustre.

1.3.2 Consistent Clocks
Lustre always uses the client clock for timestamps. If the machine clocks across the cluster are not in sync,
Lustre should not break. However, the unsynchronized clocks in a cluster will always be a headache as it
is very difficult to debug any multi-node issue, or otherwise correlate logs. For this reason, CFS
recommends that you keep machine clocks in sync as much as possible. The standard way to accomplish
this is by using the Network Time Protocol (NTP). All machines in your cluster should synchronize their time
from a local time server (or servers) at a suitable time interval.

For more information about NTP, see: http://www.ntp.org/

1.3.3 Universal UID/GID
To maintain uniform file access permissions on all nodes in your cluster, use the same user IDs (UID) and
group IDs (GID) on all clients. Like most cluster usage, Lustre uses a common UID/GID on all cluster nodes.

1.3.4 Choosing a Proper Kernel I/O Scheduler
One of the many functions of the Linux kernel (indeed of any OS kernel), is to provide access to disk storage.
The algorithm which decides how the kernel provides disk access is known as the "I/O Scheduler," or
"Elevator." In the 2.6 kernel series, there are four interchangeable schedulers:

1. Secure SHell (SSH)
2. Parallel Distributed SHell (Pdsh)

Scheduler Description

cfq "Completely Fair Queuing" makes a good default for most workloads on general-purpose
servers. It is not a good choice for Lustre OSS nodes, however, as it introduces overhead
and I/O latency.

as "Anticipatory Scheduler" is best for workstations and other systems with slow, single-
spindle storage. It is not at all good for OSS nodes, as it attempts to aggregate or batch
requests in order to improve performance for slow disks.

deadline “Deadline” is a relatively simple scheduler which tries to minimize I/O latency by re-
ordering requests to improve performance. Best for OSS nodes with "simple" storage,
that is software RAID, JBOD, LVM, and so on.

noop “NOOP” is the most simple scheduler of all, and is really just a single FIFO queue. It does
not attempt to optimize I/O at all, and is best for OSS nodes that have high-performance
storage, that is DDN, Engenio, and so on. This scheduler may yield the best I/O
performance if the storage controller has been carefully tuned for the I/O patterns of
Lustre
Lustre Operations Manual 11

http://www.ntp.org/

The above observations on the schedulers are just our best advice. CFS strongly suggests that you conduct
local testing to ensure high performance with Lustre. Also, note that most distributions ship with either “cfq”
or “as” configured as the default scheduler. Choosing an alternate scheduler is an absolutely necessary step
to optimally configure Lustre for the best performance. The “cfq” and “as” schedulers should never be used
for server platform.

For more in-depth discussion on choosing an I/O scheduler algorithm for Linux, see:

• http://www.redhat.com/magazine/008jun05/features/schedulers

• http://www.novell.com/brainshare/europe/05_presentations/tut303.pdf

• http://kerneltrap.org/node/3851

1.3.5 Changing the I/O Scheduler
There are two ways to change the I/O scheduler—at boot time or with new kernels at runtime. For all Linux
kernels, appending 'elevator={noop|deadline}' to the kernel boot string sets the I/O elevator.

With LILO, you can use the 'append' keyword:

image=/boot/vmlinuz-2.6.14.2

label=14.2

append="elevator=deadline"

read-only

optional

With GRUB, append the string to the end of the kernel command:

title Fedora Core (2.6.9-5.0.3.EL_lustre.1.4.2custom)

root (hd0,0)

kernel /vmlinuz-2.6.9-5.0.3.EL_lustre.1.4.2custom ro

root=/dev/VolGroup00/LogVol00 rhgb noapic quiet elevator=deadline

With newer Linux kernels1 one can change the scheduler while running. If the file /sys/block/<DEVICE>/
queue/scheduler exists (where <DEVICE> is the block device you wish to affect), it contains a list of
available schedulers and can be used to switch the schedulers.

(hda is the <disk>):

[root@cfs2]# cat /sys/block/hda/queue/scheduler

noop [anticipatory] deadline cfq

[root@cfs2 ~]# echo deadline > /sys/block/hda/queue/scheduler

[root@cfs2 ~]# cat /sys/block/hda/queue/scheduler

noop anticipatory [deadline] cfq

For desktop use, the other schedulers (anticipatory and cfq) are better suited.

1. Red Hat Enterprise Linux v3 Update 3 does not have this feature. It is present in the main Linux tree as of 2.6.15.
12 Prerequisites

http://www.redhat.com/magazine/008jun05/features/schedulers
http://www.novell.com/brainshare/europe/05_presentations/tut303.pdf
http://kerneltrap.org/node/3851

1.4 Memory Requirements

This section describes the memory requirements of Lustre.

1.4.1 Determining MDS Memory
Use the following factors to determine the MDS memory:

• Number of clients

• Size of the directories

• Extent of load.

If the number of clients accessing the network at any point of time is very high, you must configure large
number of locks on the scale of the entire cluster. You can tune this down. However, any client can hold
very little metadata as it can hold very few locks. Therefore, decreasing the number of clients cannot
significantly add to the MDS memory.

If there are directories containing 1 million or more files, you may benefit significantly from having more
memory. For example, in an environment where clients randomly access one of 10 million files, having extra
memory for the cache significantly improves performance.
Lustre Operations Manual 13

14 Prerequisites

Chapter II - 2. Lustre Installation
This chapter describes how to install Lustre and includes the following sections:

• Installing Lustre

• Quick Configuration of Lustre

• Building from Source

• Building a Lustre Source Tarball

Currently, all Lustre installations run the ext3 file system internally on service nodes. Lustre servers run on
top of the ext3 file system internally. The ext3 creates a journal for efficient recovery after a system crash
or power outages. For maximum performance on a very large file system, Lustre creates a very large
journal, up to 400 MB per target. If your file system runs on 100 OSTs, a total of 40 GB of space is used for
the journals.
Lustre Operations Manual 15

2.1 Installing Lustre

Use this procedure to install Lustre.

1 Install the Linux base OS per your requirements and installation prerequisites like GCC and Perl,
discussed in Prerequisites on page 7.

2 Install the RPMs (described in Using a Pre-packaged Lustre Release on page 8). The preferred
installation order is:

• Lustre-patched version of the linux kernel (kernel-*)

• Lustre-ldiskfs

• Lustre modules for that kernel (lustre-modules-*)

• Lustre userspace programs (lustre-*). Other packages (optional).

3 Verify that all cluster networking is correct. This may include /etc/hosts or DNS. Set the correct
networking options for Lustre in /etc/modprobe.conf. See Modprobe.conf on page 55.)

TIP:
When installing Lustre with InfiniBand, keep the ibhost, kernel and Lustre all on the same
revision. To do this:

1. Install the kernel source (Lustre-patched).
2. Install the Lustre source and the ibhost source.
3. Compile the ibhost against your kernel.
4. Compile the Linux kernel.
5. Compile Lustre against the ibhost source --with-vib=<path to ibhost>.

Now you can use the RPMs created by the above steps.
16 Lustre Installation

2.1.1 MountConf
MountConf is shorthand for Mount Configuration. The Lustre cluster is configured only by the mkfs.lustre
and mount commands. The MountConf system is one of the important features of Lustre 1.6.x.

MountConf involves userspace utilities (mkfs.lustre, tunefs.lustre, mount.lustre, lctl) and two new OBD
types, the MGC and MGS. The MGS is a configuration management server, which compiles configuration
information about all Lustre file systems running at a site. There should be one MGS per site, not one MGS
per file system. The MGS requires its own disk for storage. However, there is a provision to allow the MGS
to share a disk ("co-locate") with an MDT of one file system.

You must start the MGS first as it manages the configurations. Beyond this, there are no ordering
requirements to when a Target (MDT or OST) can be added to a file system. (However, there should be no
client I/O at addition time, also known as "quiescent ost addition.")

For example, consider the following order of starting the servers.

1 Start the MGS - start mgs

2 Mount OST 1 - mkfs, mount ost #1

3 Mount the MDT - mkfs, mount mdt

4 Mount OST 2 - mkfs, mount ost #2

5 Mount the client - mount client

6 Mount OST 3 - mkfs, mount ost #3

The clients and the MDT are notified that there is a new OST on-line and they can use it immediately.

NOTE:
The MGS must be running before any new servers are added to a file system. After the
servers start the first time, they cache a local copy of their startup logs so that they can
restart with or without the MGS.

Currently, there is nothing actually visible on a server mount point (but 'df' will show free
space). Eventually, the mount point will probably look like Lustre client.
Lustre Operations Manual 17

2.2 Quick Configuration of Lustre

As already discussed, Lustre consists of four types of subsystems – a Management Server (MGS), a Meta
Data Target (MDT), Object Storage Targets (OSTs) and clients. All of these can co-exist on a single system
or can run on different systems. Together the OSSs and MDS together present a Logical Object Volume
(LOV) which is an abstraction that appears in the configuration.

It is possible to set up the Lustre system with many different configurations by using the administrative
utilities provided with Lustre. CFS includes some sample scripts in the directory where Lustre is installed. If
you have installed the source code, the scripts are located in the lustre/tests subdirectory. These scripts
enable quick setup of some simple, standard configurations.

The next section describes how to use these scripts to install a simple Lustre setup.

2.2.1 Simple Configurations
The procedures in this section describe how to set up simple Lustre configurations.

2.2.1.1 Module Setup
Make sure the modules (like LNET) are installed in the appropriate /lib/modules directory. The mkfs.lustre
and mount.lustre utilities automatically load the correct modules.

1 Set up module options for networking should first be set up by adding the following line in
/etc/modprobe.conf –

Networking options, see /sys/module/lnet/parameters NO \
../lnet/parameters dir

2 Add the following line.

options lnet networks=tcp

alias lustre llite -- remove this line from existing modprobe.conf

#(the llite module has been renamed to lustre)

end Lustre modules

The clients and the MDT are notified that there is a new OST on-line and immediately are able to use it.

NOTE:
For a detailed information on formatting an MDS or OST, see Options for Formatting
MDS and OST on page 181.
18 Lustre Installation

2.2.1.2 Making and Starting a File System
Starting Lustre on MGS and MDT Node “mds16”

First, create an MDT for the "spfs" file system that uses the /dev/sda disk. This MDT also acts as the MGS
for the site.

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

Permanent disk data:

Target:spfs-MDTffff

Index:unassigned

Lustre FS:spfs

Mount type:ldiskfs

Flags:0x75

(MDT MGS needs_index first_time update)

Persistent mount opts: errors=remount- ro,iopen_nopriv,user_xattr

Parameters:

checking for existing Lustre data: not found

device size = 4096MB

formatting backing filesystem ldiskfs on /dev/sda

target name spfs-MDTffff

4k blocks0

options-J size=160 -i 4096 -I 512 -q -O dir_index -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L spfs-MDTffff -J \
size=160 -i 4096 -I 512 -q -O dir_index -F /dev/sda

Writing CONFIGS/mountdata

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

$ cat /proc/fs/lustre/devices

0 UP mgs MGS MGS 5

1 UP mgc MGC192.168.16.21@tcp bf0619d6-57e9-865c-551c- \
06cc28f3806c 5

2 UP mdt MDS MDS_uuid 3

3 UP lov spfs-mdtlov spfs-mdtlov_UUID 4

4 UP mds spfs-MDT0000 spfs-MDT0000_UUID 3
Lustre Operations Manual 19

Starting Lustre on any OST Node

Give OSTs the location of the MGS with the --mgsnode parameter.

$ mkfs.lustre --fsname spfs --ost --mgsnode=mds16@tcp0 /dev/sda

Permanent disk data:

Target:spfs-OSTffff

Index:unassigned

Lustre FS:spfs

Mount type:ldiskfs

Flags:0x72

(OST needs_index first_time update)

Persistent mount opts: errors=remount-ro,extents,mballoc

Parameters: mgsnode=192.168.16.21@tcp

device size = 4096MB

formatting backing filesystem ldiskfs on /dev/sda

target namespfs-OSTffff

4k blocks0

options -J size=160 -i 16384 -I 256 -q -O dir_index -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L spfs-OSTffff -J \
size=160 -i 16384 -I 256 -q -O dir_index -F /dev/sda

Writing CONFIGS/mountdata

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0

$ cat /proc/fs/lustre/devices

0 UP mgc MGC192.168.16.21@tcp 7ed113fe-dd48-8518-a387- 5c34eec6fbf4 5

1 UP ost OSS OSS_uuid 3

2 UP obdfilter spfs-OST0000 spfs-OST0000_UUID 5
20 Lustre Installation

Mounting Lustre on a client node

$ mkdir -p /mnt/testfs

$ mount -t lustre cfs21@tcp:0:/testfs /mnt/testfs

The MGS and the MDT can be run on separate devices. With the MGS on node ’mgs16’:

$ mkfs.lustre --mgs /dev/sda1

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda1 /mnt/mgs

$ mkfs.lustre --fsname=spfs --mdt --mgsnode=mgs16@tcp0 /dev/sda2

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda1 /mnt/test/mdt

If the MGS node has multiple interfaces (for example, mgs16 and 1@elan), only the client mount command
has to change. The MGS NID specifier must be an appropriate nettype for the client (for instance, TCP client
could use uml1@tcp0 and Elan client could use 1@elan). Alternatively, a list of all MGS NIDs can be
provided and the client chooses the correct one.

$ mount -t lustre mgs16@tcp0,1@elan:/spfs /mnt/spfs

Reformat a device that has already been formatted with mkfs.lustre

$ mkfs.lustre --fsname=spfs --mdt --mgs --reformat /dev/sda1

2.2.1.3 File System Name
The file system name is limited to 8 characters. CFS has encoded the file system and target information in
the disk label, so that you can mount by label. This allows system administrators to move disks around
without worrying about issues such as SCSI disk reordering or getting the /dev/device wrong for a shared
target. Soon, CFS will make file system naming as fail-safe as possible. Currently, Linux disk labels are
limited to 16 characters. CFS will reserve 8 of those characters to identify the target within the file system,
leaving 8 characters for the file system name:

myfsname-MDT0000 or myfsname-OST0a19

An example of mount-by-label:

$ mount -t lustre -L testfs-MDT0000 /mnt/mdt

Although the file system name is internally limited to 8 characters, you can mount the clients at any mount
point, so file system users are never subjected to short names:

mount -t lustre uml1@tcp0:/shortfs /mnt/my-long-filesystem-name
Lustre Operations Manual 21

2.2.1.4 Starting a Server Automatically
Starting Lustre only involves the mount command, Lustre servers can be added to /etc/fstab:

$ mount -l -t lustre

/dev/sda1 on /mnt/test/mdt type lustre (rw) [testfs-MDT0000]

/dev/sda2 on /mnt/test/ost0 type lustre (rw) [testfs-OST0000]

192.168.0.21@tcp:/testfs on /mnt/testfs type lustre (rw)

Add to /etc/fstab:

LABEL=testfs-MDT0000 /mnt/test/mdt lustre defaults,_netdev,noauto 0 0

LABEL=testfs-OST0000 /mnt/test/ost0 lustre defaults,_netdev,noauto 0 0

In general, it is wise to specify noauto and let your high-availability (HA) package manage when to mount
the device. If you are not using failover, ensure that networking has been started before mounting a Lustre
server. RedHat, SuSe, Debian (maybe others) use the "_netdev" flag to ensure that these disks are
mounted after the network is up.

We are mounting by disk label here -- the label of a device can be read with e2label. The label of a
newly-formatted Lustre server ends in FFFF, meaning that it has yet to be assigned. The assignment takes
place when the server is first started, and the disk label is updated.

2.2.1.5 Stopping a Server
To stop a server:

$ umount -f /mnt/test/ost0

The '-f' flag means "force"; force the server to stop WITHOUT RECOVERY. Without the '-f' flag, "failover" is
implied, meaning the next time the server is started it goes through the recovery procedure.

NOTE:
If you are using loopback devices, use the '-d' flag. This flag cleans up loop devices and
can always be safely specified.
22 Lustre Installation

2.2.2 More Complex Configurations
In case of NID/node specification, note that a node is a server box; it may have multiple NIDs if it has multiple
network interfaces. When a node is specified, generally all of its NIDs are required to be listed (delimited by
commas ','), so that other nodes can choose the NID appropriate to their own network interfaces. When
multiple nodes are specified, they are delimited by a colon (':') or by repeating a keyword (--mgsnode= or -
-failnode=). To obtain all the NIDs from a node (while LNET is running), execute this command –

lctl list_nids

2.2.2.1 Failover
This example has a combined MGS/MDT failover pair on uml1 and uml2, and a OST failover pair on uml3
and uml4. There are corresponding Elan addresses on uml1 and uml2.

uml1> mkfs.lustre --fsname=testfs --mdt --mgs \

--failnode=uml2,2@elan /dev/sda1

uml1> mount -t lustre /dev/sda1 /mnt/test/mdt

uml3> mkfs.lustre --fsname=testfs --ost --failnode=uml4 \

--mgsnode=uml1,1@elan --mgsnode=uml2,2@elan /dev/sdb

uml3> mount -t lustre /dev/sdb /mnt/test/ost0

client> mount -t lustre uml1,1@elan:uml2,2@elan:/testfs /mnt/testfs

uml1> umount /mnt/mdt

uml2> mount -t lustre /dev/sda1 /mnt/test/mdt

uml2> cat /proc/fs/lustre/mds/testfs-MDT0000/recovery_status

Where multiple NIDs are specified, comma-separation (for example, uml2,2@elan) means that the two
NIDs refer to the same host, and that Lustre needs to choose the "best" one for communication. Colon-
separation (for example, uml1:uml2) means that the two NIDs refer to two different hosts, and should be
treated as failover locations (Lustre tries the first one, and if that fails, it tries the second one.)

2.2.2.2 Mount with Inactive OSTs
Mounting a client or MDT with known down OSTs (specified targets are treated as "inactive")

client> mount -o exclude=testfs-OST0000 -t lustre uml1:/testfs\
/mnt/testfs

client> cat /proc/fs/lustre/lov/testfs-clilov-*/target_obd

To reactivate an inactive OST on a live client or MDT, use lctl activate on the OSC device, For example:
lctl --device 7 activate.

NOTE:
A colon-separated list can also be specified. For example, exclude=testfs-OST0000:testfs-OST0001.
Lustre Operations Manual 23

2.2.2.3 Without Lustre Service
Only start the MGS or MGC. Do not start the target server (for example, if you do not want to start the MDT
for a combined MGS/MDT)

$ mount -t lustre -L testfs-MDT0000 -o nosvc /mnt/test/mdt

2.2.2.4 Failout
Designate an OST as a "failout", so clients receive errors after a timeout instead of waiting for recovery:

$ mkfs.lustre --fsname=testfs --ost --mgsnode=uml1 \
-- param="failover.mode=failout" /dev/sdb

2.2.2.5 Running Multiple Lustres
The default file system name created by mkfs.lustre is "lustre." For a different file system name, specify
"mkfs.lustre --fsname=foo". The MDT, OSTs and clients that comprise a single file system must share the
same name. For example:

foo-MDT0000

foo-OST0000

foo-OST0001

client mount command: mount -t lustre mgsnode:/foo /mnt/mountpoint

The maximum length of the file system name is 8 characters.

The MGS is universal; there is only one MGS per installation, not per file system. An installation with two
file systems could look like this:

mgsnode# mkfs.lustre --mgs /dev/sda

mdtfoonode# mkfs.lustre --fsname=foo --mdt --mgsnode=mgsnode@tcp0 /dev/sda

ossfoonode# mkfs.lustre --fsname=foo --ost --mgsnode=mgsnode@tcp0 /dev/sda

ossfoonode# mkfs.lustre --fsname=foo --ost --mgsnode=mgsnode@tcp0 /dev/sdb

mdtbarnode# mkfs.lustre --fsname=bar --mdt --mgsnode=mgsnode@tcp0 /dev/sda

ossbarnode# mkfs.lustre --fsname=bar --ost --mgsnode=mgsnode@tcp0 /dev/sda

ossbarnode# mkfs.lustre --fsname=bar --ost --mgsnode=mgsnode@tcp0 /dev/sdb

Client mount for foo:

mount -t lustre mgsnode@tcp0:/foo /mnt/work

Client mount for bar:

mount -t lustre mgsnode@tcp0:/bar /mnt/scratch
24 Lustre Installation

2.2.3 Other Configuration Tasks
This section describes other Lustre configuration tasks.

2.2.3.1 Removing an OST Permanently
In Lustre 1.6, an OST can be permanently removed from a file system. Any files that have stripes on the
removed OST will, in the future, return EIO.

$ mgs> lctl conf_param testfs-OST0001.osc.active=0

This tells any clients of the OST that it should not be contacted; the OSTs current state is irrelevant.

To restore the OST:

1 Make sure the OST is running.

2 Run the following command:

$ mgs> lctl conf_param testfs-OST0001.osc.active=1

2.2.3.2 Writeconf
Run writeconf, first remove all existing config files for a file system. Use the writeconf command on an MDT
to erase all the configuration logs for the file system. The logs are regenerated only as servers restart;
therefore all servers must be restarted before clients can access file system data. The logs are regenerated
as in a new file system; old settings from lctl conf_param are lost, and current server NIDs are used. Only
use this command if:

• The config logs are into a state where the file system cannot start; or

• You are changing the NIDs of one of the servers.

To run writeconf:

1 Unmount all the clients and servers.

2 With every server disk, run:

$ mdt> tunefs.lustre --writeconf /dev/sda1

3 Remount all servers. You must mount the MDT first.
Lustre Operations Manual 25

2.2.3.3 Changing a Server NID
To change a server NID:

1 Update the LNET configuration in /etc/modprobe.conf so the lctl list_nids is correct.

2 Regenerate the configuration logs for every affected file system using the --writeconf flag to
tunefs.lustre, as shown in the second step of the Writeconf section.

3 If the MGS NID is also changing, communicate the new MGS location to each server. Type:

tunefs.lustre --erase-param --mgsnode=<new_nid(s)> --writeconf \
/dev/...

2.2.3.4 Abort Recovery
When starting a target, abort the recovery process. Type:

$ mount -t lustre -L testfs-MDT0000 -o abort_recov /mnt/test/mdt

NOTE:
The recovery process is blocked until all OSTs are available.
26 Lustre Installation

2.3 Building from Source

This section describes how to build Lustre from source code.

2.3.1 Building Your Own Kernel
If you are using non-standard hardware or CFS support has asked you to apply a patch, you will need to
build your own kernel. Lustre requires some changes to the core Linux kernel. These changes are organized
in a set of patches in the kernel_patches directory of the Lustre repository in CVS. If you are building your
kernel from the source code, then you need to apply the appropriate patches.

Managing patches for the kernels is a very involved process, because most patches are intended to work
with several kernels. To facilitate support, CFS maintains tested versions on our FTP site as some versions
may not work properly with CFS patches. CFS recommends that you use the Quilt package developed by
Andreas Gruenbacher, as it simplifies the process considerably. Patch management with Quilt works as
follows:

1 A series file lists a collection of patches.

2 The patches in a series form a stack

3 Using Quilt, you push and pop the patches.

4 You then edit and refresh (update) the patches in the stack that is being managed with Quilt.

5 You can then revert inadvertent changes and fork or clone the patches and conveniently show the
difference in work (before and after).

2.3.1.1 Selecting a Patch Series
Depending on the kernel being used, a different series of patches needs to be applied. CFS maintains a
collection of different patch series files for the various supported kernels in this directory:
lustre/kernel_patches/series/. This directory is in the Lustre tarball distributed by CFS.

For example, the lustre/kernel_patches/series/rh-2.4.20 file lists all patches that should be applied to the
Red Hat 2.4.20 kernel to build a Lustre-compatible kernel.

The current set of all the supported kernels and their corresponding patch series can always be found in the
lustre/kernel_patches/which_patch file.

2.3.1.2 Installing Quilt
A variety of Quilt packages (RPMs, SRPMs and tarballs) are available from various sources. CFS
recommend that you use a recent version of Quilt (version 0.29 or later). If possible, use a Quilt package
from your distribution vendor. If this is not possible, you may download a package from CFS’s FTP site:

ftp://ftp.clusterfs.com/pub/quilt/

If you cannot find an appropriate Quilt package or fulfill its dependencies, CFS suggests building Quilt from
the tarball. You can download the tarball from the main Quilt website:

http://savannah.nongnu.org/projects/quilt
Lustre Operations Manual 27

ftp://ftp.clusterfs.com/pub/quilt/
http://savannah.nongnu.org/projects/quilt

2.3.1.3 Preparing the Kernel Tree Using Quilt
To prepare the kernel tree to use Quilt:

1 After acquiring the Lustre source (CVS or tarball) and choosing a series file to match your kernel
sources, choose a kernel config file.

The supported kernel ".config" files are in the lustre/kernel_patches/kernel_configs folder, and are
named in such a way as to indicate which kernel and architecture with which they are associated. For
example, kernel-2.6.9-2.6-rhel4-x86_64-smp.config is a config file for the 2.6.9 kernel shipped with
RHEL 4 suitable for x86_64 SMP systems.

2 Unpack the appropriate kernel source tree.

For the purposes of illustration, this documentation assumes that the resulting source tree is in /tmp/
kernels/linux-2.6.9, we will refer to this as the destination tree.

You are ready to use Quilt to manage the patching process for your kernel.

3 Perform the following set of commands to set up the necessary symlinks between the Lustre kernel
patches and your kernel sources (assuming the Lustre sources are unpacked under /tmp/lustre-1.4.7.3
and you have chosen the 2.6-rhel4 series):

$ cd /tmp/kernels/linux-2.6.9

$ rm -f patches series

$ ln -s /tmp/lustre-1.5.97/lustre/kernel_patches/series/2.6-\
rhel4.series ./series

$ ln -s /tmp/lustre-1.5.97/lustre/kernel_patches/patches .

4 You can now use Quilt to apply all patches in the chosen series to your kernel sources by using the
following commands:

$ cd /tmp/kernels/linux-2.6.9

$ quilt push -av

If the right series files are chosen, and the patches and the kernel sources are up-to-date, the patched
destination Linux tree should be able to act as a base Linux source tree for Lustre.

You do not need to compile the patched Linux source in order to build Lustre from it. However, you must
compile the same Lustre-patched kernel and then boot it on any node on which you intend to run the version
of Lustre being built using this patched kernel source.
28 Lustre Installation

2.3.2 Building Lustre
You can obtain Lustre source code by registering at CFS’s download site:

http://www.clusterfs.com/download.html

Once registered, you will receive an email with a download link.

The following set of packages are available for each supported Linux distribution and architecture. The files
employ the following naming convention:

kernel-smp-<kernel version>_lustre.<lustre version>.<arch>.rpm

This is an example of binary packages for version 1.5.97:

• kernel-lustre-smp-2.6.9-42.0.3.EL_lustre.1.5.97.i686.rpm contains patched kernel

• lustre-1.5.97-2.6.9_42.0.3.EL_lustre.1.5.97smp.i686.rpm contains Lustre userspace files and
utilities

• lustre-modules-1.5.97-2.6.9_42.0.3.EL_lustre.1.5.97smp.i686.rpm contains Lustre modules
(kernel/fs/lustre and kernel/net/lustre).

Use standard RPM commands to install the binary packages:

$ rpm -ivh kernel-lustre-smp-2.6.9-42.0.3.EL_lustre.1.5.97.i686.rpm

$ rpm -ivh lustre-1.5.97-2.6.9_42.0.3.EL_lustre.1.5.97smp.i686.rpm

$ rpm -ivh lustre-modules-1.5.97-2.6.9_42.0.3.EL_lustre.1.5.97smp.i686.rpm

This is an example of Source packages:

• kernel-lustre-source-2.6.9-42.0.3.EL_lustre.1.5.97.i686.rpm contains source for the patched kernel

• lustre-source-1.5.97-2.6.9_42.0.3.EL_lustre.1.5.97smp.i686.rpm contains source for Lustre
modules and userspace utilities.

Once you have your Lustre source tree run these commands to build Lustre:

$ cd <path to kernel tree>

$ cp /boot/config-'uname -r' .config

$ make oldconfig || make menuconfig

• For 2.6 kernels, run these commands:

$ make include/asm

$ make include/linux/version.h

$ make SUBDIRS=scripts

• For 2.4 kernels, run:

$ make dep

NOTE:
Kernel-source and lustre-source packages are provided in case you need to build external
kernel modules or use additional network types. They are not required to run Lustre.
Lustre Operations Manual 29

http://www.clusterfs.com/download.html

To configure Lustre and to build Lustre RPMs, go into the Lustre source directory and run these commands:

$./configure --with-linux=<path to kernel tree>

$ make rpms

This creates a set of .rpms in /usr/src/redhat/RPMS/<arch> with a date-stamp appended (the SUSE path is
/usr/src/packages).

Example:

lustre-1.5.97-\
2.6.9_42.xx.xx.EL_lustre.1.5.97.custom_200609072009.i686.rpm

lustre-debuginfo-1.5.97-\
2.6.9_42.xx.xx.EL_lustre.1.5.97.custom_200609072009.i686.rpm

lustre-modules-1.5.97-\
2.6.9_42.xx.xxEL_lustre.1.5.97.custom_200609072009.i686.rpm

lustre-source-1.5.97-\
2.6.9_42.xx.xx.EL_lustre.1.5.97.custom_200609072009.i686.rpm

Change directory (cd) into the kernel source directory and run:

$ make rpm

This creates a kernel RPM suitable for the installation.

Example:

kernel-2.6.95.0.3.EL_lustre.1.5.97custom-1.i386.rpm

2.3.2.1 Configuration Options
Lustre supports several different features and packages that extend the core functionality of Lustre. These
features/packages can be enabled at the build time by issuing appropriate arguments to the configure
command. A complete list of supported features and packages can be obtained by issuing the command
“./configure –help” in the Lustre source directory. The config files matching the kernel version are in the
configs/ directory of the kernel source. Copy one to .config at the root of the kernel tree.
30 Lustre Installation

2.3.2.2 Liblustre
The Lustre library client, liblustre, relies on libsysio, which is a library that provides POSIX-like file and name
space support for remote file systems from the application program address space. Libsysio can be
obtained at the SourceForge website:

http://sourceforge.net/projects/libsysio/

Development of libsysio has continued ever since it was first targeted for use with Lustre. First, check out
the b_lustre branch from the libsysio repository on CVS. This gives the version of libsysio compatible with
Lustre.

• To build libsysio, run:

$ sh autogen.sh

$./configure --with-sockets

$ make

• To build liblustre, run:

$./configure --with-lib –with-sysio=/path/to/libsysio/source

$ make

Compiler Choice
The compiler must be greater than GCC version 3.3.4. Currently, GCC v4.0 is not supported. GCC v3.3.4
has been used to successfully compile all of the pre-packaged releases made available by CFS, and it is
the only officially-supported compiler. Your mileage may vary with other compilers, or even with other
versions of GCC.

WARNING:
Remember that liblustre is not for general use. It was created to work with specific
hardware (Cray) and should NEVER be used with other hardware.

NOTE:
GCC v3.3.4 was used to build 2.6 series kernels.
Lustre Operations Manual 31

http://sourceforge.net/projects/libsysio/

2.3.3 Building From Source
Currently, the kernels distributed by CFS do not include third-party InfiniBand modules. Lustre packages
cannot include IB network drivers for Lustre, however, Lustre does distribute the source code. Build your
InfiniBand software stack against the CFS kernel, and then build new Lustre packages. This includes
following procedures.

InfiniBand
To build Lustre with Voltaire InfiniBand sources, add:

--with-vib=<path-to-voltaire-sources>

as an argument to the configure script.

To configure Lustre, use:

--nettype vib --nid <IPoIB address>

OpenIB generation 1 / Mellanox Gold
To build Lustre with OpenIB InfiniBand sources, add:

--with-openib=<path_to_openib sources>

as an argument to the configure script.

To configure Lustre, use:

--nettype openib --nid <IPoIB address>

Silverstorm
To build Silverstorm with Lustre, configure Lustre with:

--iib=<path to silverstorm sources>

OpenIB 1.0

NOTE:
Currently (v1.4.5), the Voltaire IB module (kvibnal) does not work on the Altix system.
This is due to hardware differences in the Altix system.
32 Lustre Installation

2.4 Building a Lustre Source Tarball

This section describes how to build tarballs from RPMs.

2.4.1 Lustre Source Tarball from Lustre Source RPM
To build a proper Lustre source tarball from the Lustre source RPM:

1 Install the RPM.

2 Configure the resulting Lustre tree.

3 Run 'make dist'

This produces a proper Lustre tarball. Untar it and name the resulting directory: 'lustre-<extraversion>'.

The lbuild script requires a working directory. This directory must be empty prior to starting lbuild. If the build
fails, clean out the working directory before attempting to restart.

The following example shows a local build with no downloading. The name of the 'target' (kernel version)
must match one of the files in lustre/kernel_patches/targets. If you do not specify --target-arch (the hardware
platform), then all architectures will be built.

This example is for the RHEL 2.6 kernel.

$ lustre/build/lbuild--extraversion=1.4.9 \

--target=2.6-rhel4 \

 --target-archs=i686 \

 --release \

 --kerneldir=/path_to_tarball/ \

 --stage=/path_to_working_dir/ \

 --lustre=/path_to_lustre_tarball/ \

 --nodownload
Lustre Operations Manual 33

2.4.2 Lustre Source Tarball from CVS
The following example shows how to build a tarball from CVS,1 and includes the building of additional
network drivers (gm and vib).

You must properly configure the network driver tree prior to starting lbuild. The network drivers are compiled
as part of the Lustre build. Options after the '--' separator are passed directly to the Lustre ./configure script.

In the example:

• Replace CVSROOT with the proper CVS string

• --tag is the CVS tag for the version you are building

$ lustre/build/lbuild --extraversion=1.4.7.1 \

--target=2.6-rhel4

 --target-archs=i686 \

--release \

--kerneldir=/path_to_tarball/ \

 --stage=/path_to_working_dir/ \

-d:ext:$CVSROOT

 --tag=b_release_1_4_7 \

--disable-datestamp \

 -- /* following options will be passed to lustre */ \

 --with-gm=/path_to_gm/gm-2.1.23_Linux \

 --with-vib=/path_to_vib/ibhost-3.5.0_13

1. CVS is not generally available. If you need CVS access or additional information, contact CFS.
34 Lustre Installation

Chapter II - 3. Configuring the Lustre Network
This chapter describes how to configure Lustre and includes the following sections:

• Designing Your Lustre Network

• Configuring Your Lustre Network

• Starting and Stopping LNET

3.1 Designing Your Lustre Network

Before you configure Lustre, it is essential to have a clear understanding of the Lustre network topologies.

3.1.1 Identify All Lustre Networks
A network is a group of nodes that communicate directly with one another. As previously mentioned in this
manual, Lustre supports a variety of network types and hardware, including TCP/IP, Elan, varieties of
InfiniBand, Myrinet and others. The normal rules for specifying networks apply to Lustre networks. For
example, two TCP networks on two different subnets (tcp0 and tcp1) would be considered two different
Lustre networks.

3.1.2 Identify Nodes to Route Between Networks
Any node with appropriate interfaces can route LNET between different networks—the node may be a
server, a client, or a standalone router. LNET can route across different network types (such as
TCP-to-Elan) or across different topologies (such as bridging two InfiniBand or TCP/IP networks).

3.1.3 Identify Network Interfaces to Include/Exclude from LNET
By default, LNET uses all interfaces for a given network type. If there are interfaces it should not use, (such
as administrative networks, IP over IB, and so on), then the included interfaces should be explicitly listed.
Lustre Operations Manual 35

3.1.4 Determine Cluster-wide Module Configuration
The LNET configuration is managed via module options, typically specified in /etc/modprobe.conf or
/etc/modprobe.conf.local (depending on the distribution). To help ease the maintenance of large clusters, it
is possible to configure the networking setup for all nodes through a single, unified set of options in the
modprobe.conf file on each node. For more information, see the ip2nets option in Modprobe.conf on
page 55.

Users of liblustre should set the accept=all parameter. For details, see Module Parameters on page 37.

3.1.5 Determine Appropriate Mount Parameters for Clients
In their mount commands, clients use the NID of the MDS host to retrieve their configuration information.
Since an MDS may have more than one NID, a client should use the appropriate NID for its local network.
If you are unsure which NID to use, there is a lctl command that can help.

MDS
On the MDS, run:

lctl list_nids

This displays the server's NIDs.

Client
On a client, run:

lctl which_nid <NID list>

This displays the closest NID for the client.

Client with SSH Access
From a client with SSH access to the MDS, run these commands:

mds_nids=`ssh the_mds lctl list_nids`

lctl which_nid $mds_nids

This displays, generally, the correct NID to use for the MDS in the mount command.
36 Configuring the Lustre Network

3.2 Configuring Your Lustre Network

This section describes how to configure your Lustre network.

3.2.1 Module Parameters
LNET network hardware and routing are now configured via module parameters of the LNET and
LND-specific modules. Parameters should be specified in the /etc/modprobe.conf or /etc/modules.conf file,
for example:

options lnet networks=tcp0,elan0

This specifies that this node should use all available TCP and Elan interfaces.

• Under Linux 2.6, the LNET configuration parameters can be viewed under /sys/module/; generic
and acceptor parameters under lnet and LND-specific parameters under the corresponding LND's
name.

• Under Linux 2.4, sysfs is not available, but the LND-specific parameters are accessible via
equivalent paths under /proc.

The liblustre network parameters may be set by exporting the environment variables LNET_NETWORKS,
LNET_IP2NETS and LNET_ROUTES. Each of these variables uses the same parameters as the
corresponding modprobe option.

NOTE:
CFS recommends using dotted-quad IP addressing rather than host names. We have
found this aids in reading debug logs, and helps greatly when debugging configurations
with multiple interfaces.

NOTE:
Depending on the Linux distribution, options with included commas may need to be
escaped by using single and/or double quotes. Worst-case quotes look like this:

options lnet 'networks="tcp0,elan0"' 'routes="tcp [2,10]@elan0"'

But the additional quotes may confuse some distributions. Check for messages such as:

lnet: Unknown parameter ‘'networks'

After modprobe LNET, the additional single quotes should be removed from
modprobe.conf in this case. Additionally, the message "refusing connection - no
matching NID" generally points to an error in the LNET module configuration

NOTE:
By default, Lustre ignores the loopback (lo0) interface. Lustre does not ignore IP
addresses aliased to the loopback. In this case, specify all Lustre networks.
Lustre Operations Manual 37

Note, it is very important that a liblustre client includes ALL the routers in its setting of LNET_ROUTES. A
liblustre client cannot accept connections, it can only create connections. If a server sends remote
procedure call (RPC) replies via a router to which the liblustre client has not already connected, then these
RPC replies are lost.

3.2.1.1 SilverStorm InfiniBand Options
For the SilverStorm/Infinicon InfiniBand LND (iiblnd), the network and HCA may be specified, as in this
example:

options lnet networks="iib3(2)"

This says that this node is on iib network number 3, using HCA[2] == ib3.

3.2.1.2 Setting Up the Default Debug Level
If you are using zeroconf (mount -t lustre), add a line to your modules.conf as follows:

post-install portals sysctl -w portals.debug=0x3f0400

This sets the debug level to the value you specify, whenever the portals module is loaded.

NOTE:
liblustre is not for general use. It was created to work with specific hardware (Cray) and
should never be used with other hardware.

NOTE:
The value above is the default value in Lustre, as it provides useful information for
diagnosing problems without materially impairing the performance.
38 Configuring the Lustre Network

3.2.2 Module Parameters - Routing
The following parameter specifies a colon-separated list of router definitions. Each route is defined as a
network type, followed by a list of routers.

route=<net type> <router NID(s)>

Examples:

options lnet ’networks="tcp0, elan0"' 'routes="tcp[2,10]@elan0"'

This identifies the Elan NIDs 2@elan0 and 10@elan0 as routers for the TCP network.

This is a more complicated example:

options lnet 'ip2nets="tcp0 192.168.0.*; elan0 132.6.1.*"' \
'routes="tcp [2,10]@elan0; elan 192.168.0.[2,10]@tcp0"

This specifies bi-directional routing - Elan clients can reach Lustre resources on the TCP networks and TCP
clients can access the Elan networks. (For more information on ip2nets, see Modprobe.conf on page 55.)

Here is a very complex, routed configuration with Voltaire InfiniBand and Myrinet (GM) systems, with four
systems configured as routers:

options lnet\

ip2nets="gm10.10.3.*# aa*-i0;\

vib10.10.131.[11-18]# aa[11-18]-ipoib0;\

vib10.10.132.*# cc*-ipoib0;"\

routes="gm10.10.131.[11-18]@vib# vib->gm via aa[11-13];\

vib0xdd7f813b@gm# gm->vib via aa11;\

vib0xdd7f81c7@gm# gm->vib via aa12;\

vib0xdd7f81c2@gm# gm->vib via aa13"

live_router_check_interval, dead_router_check_interval, auto_down, check_routers_before_use
and router_ping_timeout

In a routed Lustre setup with nodes on different networks such as TCP/IP and Elan, the router checker
checks the status of a router. Currently, only the clients using the sock LND and Elan LND avoid failed
routers. CFS is working on extending this behavior to include all types of LNDs. The auto_down parameter
enables/disables (1/0) the automatic marking of router state.

The parameter live_router_check_interval specifies a time interval in seconds after which the router
checker will ping the live routers.

In the same way, you can set the parameter dead_router_check_interval for checking dead routers.

You can set the timeout for the router checker to check the live or dead routers by setting the parameter
router_ping_timeout. The Router pinger sends a ping message to a dead/live router once every
dead/live_router_check_interval seconds, and if it does not get a reply message from the router within
router_ping_timeout seconds, it believes the router is down.

The last parameter is check_routers_before_use, which is off by default. If it is turned on, you must also
give dead_router_check_interval a positive integer value.
Lustre Operations Manual 39

The router checker gets the following variables for each router:

• Last time that it was disabled

• Duration of time for which it is disabled

The initial time to disable a router should be one minute (enough to plug in a cable after removing it). If the
router is administratively marked as "up", then the router checker clears the timeout. When a route is
disabled (and possibly new), the "sent packets" counter is set to 0. When the route is first re-used (that is
an elapsed disable time is found), the sent packets counter is incremented to 1, and incremented for all
further uses of the route. If the route has been used for 100 packets successfully, then the sent-packets
counter should be with a value of 100. Set the timeout to 0 (zero), so future errors no longer double the
timeout.

3.2.2.1 LNET Routers
All LNET routers that bridge two networks are equivalent. They are not configured as primary or secondary,
and load is balanced across all available routers.

Router fault tolerance only works from Linux nodes, that is, service nodes and application nodes if they are
running Compute Node Linux (CNL). For this, LNET routing must correspond exactly with the Linux nodes’
map of alive routers.1

There are no hard requirements on the number of LNET routers, although there should enough to handle
the required file serving bandwidth (and a 25% margin for headroom).

3.2.3 Downed Routers
There are two mechanisms to update the health status of a peer or a router:

• LNET can actively check health status of all routers and mark them as dead or alive automatically.
By default, this is off. To enable it set auto_down and if desired check_routers_before_use. This
initial check may cause a pause equal to router_ping_timeout at system startup, if there are dead
routers in the system.

• When there is a communication error, all LNDs notify LNET that the peer (not necessarily a router)
is down. This mechanism is always on, and there is no parameter to turn it off. However, if you set
the LNET module parameter auto_down to 0, LNET ignores all such peer-down notifications.

Several key differences in both mechanisms:

• The router pinger only checks routers for their health, while LNDs notices all dead peers, regardless
of whether they are a router or not.

• The router pinger actively checks the router health by sending pings, but LNDs only notice a dead
peer when there is network traffic going on.

• The router pinger can bring a router from alive to dead or vice versa, but LNDs can only bring a peer
down.

NOTE:
The router_ping_timeout is consistent with the default LND timeouts. You may have to
increase it on very large clusters if the LND timeout is also increased. For larger clusters,
CFS suggests increasing the check interval.

1. Catamount applications need an environmental variable set to configure LNET routing, which much correspond exactly
with the Linux nodes’ map of aliver routers. The Catamount application must establish connections to all routers before the
server replies (load-balanced over available routers), to be guaranteed to be routed back to them.
40 Configuring the Lustre Network

3.3 Starting and Stopping LNET

Lustre automatically starts and stops LNET, but it can also be manually started in a standalone manner.
This is particularly useful to verify that your networking setup is working correctly before you attempt to start
Lustre.

3.3.1 Starting LNET
To start LNET, run:

$ modprobe lnet

$ lctl network up

To see the list of local NIDs, run:

$ lctl list_nids

This command tells you if the local node's networks are set up correctly.

If the networks are not correctly setup, see the modules.conf "networks=" line and make sure the network
layer modules are correctly installed and configured.

To get the best remote NID, run:

$ lctl which_nid <NID list>

where <NID list> is the list of available NIDs.

This command takes the "best" NID from a list of the NIDs of a remote host. The "best" NID is the one that
the local node uses when trying to communicate with the remote node.

3.3.1.1 Starting Clients
To start a TCP client, run:

mount -t lustre mdsnode:/mdsA/client /mnt/lustre/

To start an Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre
Lustre Operations Manual 41

3.3.2 Stopping LNET
Before the LNET modules can be removed, LNET references must be removed. In general, these
references are removed automatically during Lustre shutdown, but for standalone routers, an explicit step
is necessary to stop LNET. Run this command:

lctl network unconfigure

To unconfigure the lctl network, run:

modprobe –r <any lnd and the lnet modules>

NOTE:
Attempting to remove the Lustre modules prior to stopping the network may result in a
crash, or an LNET hang. If this occurs, the node must be rebooted (in most cases). Be
certain the Lustre network and Lustre are stopped prior to module unloading. Be
extremely careful using rmmod -f

TIP:
To remove all the Lustre modules, run:

$ lctl modules | awk '{print $2}' | xargs rmmod
42 Configuring the Lustre Network

Chapter II - 4. Configuring Lustre - Examples
This chapter provides configuration examples and includes the following section:

• Simple TCP Network

4.1 Simple TCP Network

This chapter presents several examples of Lustre configurations on a simple TCP network.

4.1.1 Lustre with Combined MGS/MDT
Below is an example is of a Lustre setup “datafs” having combined MDT/MGS with four OSTs and a number
of Lustre clients.

4.1.1.1 Installation Summary
• Combined (co-located) MDT/MGS

• Four OSTs

• Any number of Lustre clients
Lustre Operations Manual 43

4.1.1.2 Configuration Generation and Application
1 Install the Lustre RPMS (per Installing Lustre on page 16) on all nodes that are going to be a part of the

Lustre file system. Boot the nodes in Lustre kernel, including the clients.

2 Change modprobe.conf by adding the following line to it.

options lnet networks=tcp

3 Configuring Lustre on MGS and MDT node.

$ mkfs.lustre --fsname datafs --mdt --mgs /dev/sda

4 Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt

$ mount -t lustre /dev/sda /mnt/data/mdt

5 Configuring Lustre on all four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp1 /dev/sdd

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp2 /dev/sda1

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp3 /dev/sdb

6 Make a mount point on all the OSTs for the file system and mount it.

$ mkdir -p /mnt/data/ost0

$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ost1

$ mount -t lustre /dev/sdd /mnt/data/ost1

$ mkdir -p /mnt/data/ost2

$ mount -t lustre /dev/sda1 /mnt/data/ost2

$ mkdir -p /mnt/data/ost3

$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdt16@tcp0:/datafs /mnt/datafs
44 Configuring Lustre - Examples

4.1.2 Lustre with Separate MGS and MDT
The following example describes a Lustre file system “datafs” having an MGS and an MDT on separate
nodes, four OSTs, and a number of Lustre clients.

4.1.2.1 Installation Summary
• One MGS

• One MDT

• Four OSTs

• Any number of Lustre clients

4.1.2.2 Configuration Generation and Application
1 Install the Lustre RPMs (per Installing Lustre on page 16) on all the nodes that are going to be a part of

the Lustre file system. Boot the nodes in the Lustre kernel, including the clients.

2 Change the modprobe.conf by adding the following line to it.

options lnet networks=tcp

3 Start Lustre on the MGS node.

$ mkfs.lustre --mgs /dev/sda

4 Make a mount point on MGS for the file system and mount it.

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda1 /mnt/mgs

5 Start Lustre on the MDT node.

$ mkfs.lustre --fsname=datafs --mdt --mgsnode=mgsnode@tcp0 \
/dev/sda2

6 Make a mount point on MDT/MGS for the file system and mount it.

$ mkdir -p /mnt/data/mdt

$ mount -t lustre /dev/sda /mnt/data/mdt
Lustre Operations Manual 45

7 Start Lustre on all the four OSTs.

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp0 /dev/sda

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp1 /dev/sdd

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp2 /dev/sda1

mkfs.lustre --fsname datafs --ost --mgsnode=mds16@tcp3 /dev/sdb

8 Make a mount point on all the OSTs for the file system and mount it

$ mkdir -p /mnt/data/ost0

$ mount -t lustre /dev/sda /mnt/data/ost0

$ mkdir -p /mnt/data/ost1

$ mount -t lustre /dev/sdd /mnt/data/ost1

$ mkdir -p /mnt/data/ost2

$ mount -t lustre /dev/sda1 /mnt/data/ost2

$ mkdir -p /mnt/data/ost3

$ mount -t lustre /dev/sdb /mnt/data/ost3

$ mount -t lustre mdsnode@tcp0:/datafs /mnt/datafs
46 Configuring Lustre - Examples

4.1.2.3 Configuring Lustre with a CSV File
You can configure Lustre 1.6 with a new utility (script) - /usr/sbin/lustre_config. This script enables you to
automate the formatting and setup of disks on multiple nodes.

Describe your entire installation in a Comma Separated Values (CSV) file and pass it to the script. The script
contacts multiple Lustre targets simultaneously, formats the drives, updates modprobe.conf, and produces
HA configuration files using definitions in the CSV file. (The lustre_config -h option shows several samples
of CSV files.)

How lustre_config Works
The lustre_config script parses each line of the CSV file and executes remote commands like mkfs.lustre
to format every Lustre target that is a part of your Lustre cluster.

Optionally, the lustre_config script can also:

• Verify network connectivity and hostnames in the cluster

• Configure Linux MD/LVM devices

• Modify /etc/modprobe.conf to add Lustre networking information

• Add the Lustre server information to /etc/fstab

• Produce configurations for Heartbeat or CluManager

How to Create a CSV File
Five different types of line formats are available to create a CSV file. Each line format represents a target.
The list of targets with the respective line formats are described below:

Linux MD device

The CSV line format is:

hostname, MD, md name, operation mode, options, raid level, component devices

Where:

NOTE:
The CSV file format is a file type that stores tabular data. Many popular spreadsheet
programs, such as Microsoft Excel, can read/write CSV files.

Variable Description

hostname Hostname of the node in the cluster

MD Marker of the MD device line

md name MD device name, for example: /dev/md0

operation mode Create or remove. Default is create

options A "catchall" for other mdadm options, for example: "-c 128"

raid level RAID level: 0,1,4,5,6,10, linear and multipath

component devices Block devices to be combined into the MD device.
Multiple devices are separated by space or by using shell expansions, for
example: "/dev/sd{a,b,c}"
Lustre Operations Manual 47

Linux LVM PV (Physical Volume)

The CSV line format is:

hostname, PV, pv names, operation mode, options

Where:

Linux LVM VG (Volume Group)

The CSV line format is:

hostname, VG, vg name, operation mode, options, pv paths

Where:

Variable Description

hostname Hostname of the node in the cluster

PV Marker of the PV line

pv names Devices or loopback files to be initialized for later use by LVM or to wipe the label,
for example: /dev/sda
Multiple devices or files are separated by space or by using shell expansions, for
example: "/dev/sd{a,b,c}"

operation mode Create or remove. Default is create

options A "catchall" for other pvcreate/pvremove options, for example: "-vv"

Variable Description

hostname Hostname of the node in the cluster

VG Marker of the VG line

vg name Name of the volume group, for example: ost_vg

operation mode Create or remove. Default is create

options A "catchall" for other vgcreate/vgremove options, for example: "-s 32M"

pv paths Physical volumes to construct this VG, required by the create mode; multiple PVs
are separated by space or by using shell expansions, for example: "/dev/sd[k-m]1"
48 Configuring Lustre - Examples

Linux LVM LV (Logical Volume)

The CSV line format is:

hostname, LV, lv name, operation mode, options, lv size, vg name

Where:

Lustre target

The CSV line format is:

hostname, module_opts, device name, mount point, device type, fsname, mgs nids, index, format options,
mkfs options, mount options, failover nids

Where:

Variable Description

hostname Hostname of the node in the cluster

LV Marker of the LV line

lv name Name of the logical volume to be created (optional) or path of the logical volume to be
removed (required by the remove mode)

operation
mode

Create or remove. Default is create

options A "catchall" for other lvcreate/lvremove options, for example: "-i 2 -I 128"

lv size Size [kKmMgGtT] to be allocated for the new LV. Default is megabytes (MBs)

vg name Name of the VG in which the new LV is created

Variable Description

hostname Hostname of the node in the cluster. It must match "uname -n"

module_opts Lustre networking module options. Use the newline character (\n) to delimit multiple
options.

device name Lustre target (block device or loopback file)

mount point Lustre target mount point

device type Lustre target type (mgs, mdt, ost, mgs|mdt, mdt|mgs)

fsname Lustre file system name (limit to 8 characters)

mgs nids NID(s) of the remote mgs node, required for mdt and ost targets; if this item is not
given for an mdt, it is assumed that the mdt is also an mgs, according to mkfs.lustre

Index Lustre target index

format options A "catchall" contains options to be passed to mkfs.lustre.
For example: "--device-size", "--param", and so on

mkfs options Format options to be wrapped with --mkfsoptions="" and passed to mkfs.lustre

mount options If this script is invoked with "-m" option, then the value of this item is wrapped with --
mountfsoptions="" and passed to mkfs.lustre; otherwise, the value is added into /etc/
fstab

failover nids NID(s) of the failover partner node
Lustre Operations Manual 49

The lustre_config.csv file looks like:

{mdtname}.{domainname},options lnet networks=tcp,/dev/sdb,/mnt/mdt,mgs|mdt

{ost2name}.{domainname},options lnet networks=tcp,/dev/sda,/mnt/
ost1,ost,,192.168.16.34@tcp0

{ost1name}.{domainname},options lnet networks=tcp,/dev/sda,/mnt/
ost0,ost,,192.168.16.34@tcp0

NOTE:
In one node, all NIDs are delimited by commas (','). To use comma-separated NIDs in a
CSV file, they must be enclosed in quotation marks, for example: "lustre-mgs2,2@elan"

When multiple nodes are specified, they are delimited by a colon (':').

NOTE:
If you leave an item blank, it is set to default.

NOTE:
Provide a Fully Qualified Domain Name (FQDN) for all nodes that are a part of the file
system in the first parameter of all the rows starting in a new line. For example,
mdt1.clusterfs.com,options lnet networks=tcp,/dev/sdb,/mnt/mdt,mgs|mdt

- AND -

ost1.clusterfs.com,options lnet\ networks=tcp,/dev/sda,/mnt/
ost1,ost,,192.168.16.34@tcp0
50 Configuring Lustre - Examples

Using CSV with lustre_config
Once you created the CSV file, you can start to configure the file system by using the lustre_config script.

1 List the available parameters. At the command prompt. Type:

$ lustre_config

lustre_config: Missing csv file!

Usage: lustre_config [options] <csv file>

This script is used to format and set up multiple lustre servers from a
csv file.

 Options:

 -h help and examples

 -a select all the nodes from the csv file to operate on

 -w hostname,hostname,...

select the specified list of nodes (separated by commas) to
operate on rather than all the nodes in the csv file

 -x hostname,hostname,... exclude the specified list of nodes
(separated by commas)

 -t HAtype produce High-Availability software configurations

The argument following -t is used to indicate the High-
Availability software type. The HA software types which are
currently supported are: hbv1 (Heartbeat version 1) and hbv2
(Heartbeat version 2).

 -n no net - don't verify network connectivity and hostnames in
the cluster

 -d configure Linux MD/LVM devices before formatting the Lustre
targets

 -f force-format the Lustre targets using --reformat option OR you
can specify --reformat in the ninth field of the target line
in the csv file

 -m no fstab change - don't modify /etc/fstab to add the new
Lustre targets. If using this option, then the value of "mount
options" item in the csv file will be passed to mkfs.lustre,
else the value will be added into the /etc/fstab.

 -v verbose mode

csv file is a spreadsheet that contains configuration parameters
(separated by commas) for each target in a Lustre cluster

Example 1: Simple Lustre configuration with CSV (use the following command):

$ lustre_config -v -a -f lustre_config.csv

This command starts the execution and configuration on the nodes or targets in lustre_config.csv,
prompting you for the password to log in with root access to the nodes. To avoid this prompt, configure a
shell like pdsh or ssh.
Lustre Operations Manual 51

After completing the above steps, the script makes Lustre target entries in the /etc/fstab file on Lustre server
nodes, such as:

/dev/sdb /mnt/mdtlustre defaults 0 0

/dev/sda /mnt/ostlustre defaults 0 0

2 Run "mount /dev/sdb" and "mount /dev/sda" to start the Lustre services.

Example 2: More complicated Lustre configuration with CSV (use the following command):

For RAID and LVM-based configuration, the lustre_config.csv file looks like this:

Configuring RAID 5 on mds16.clusterfs.com

mds16.clusterfs.com,MD,/dev/md0,,-c 128,5,/dev/sdb /dev/sdc /dev/sdd

configuring multiple RAID5 on oss161.clusterfs.com

oss161.clusterfs.com,MD,/dev/md0,,-c 128,5,/dev/sdb /dev/sdc /dev/sdd

oss161.clusterfs.com,MD,/dev/md1,,-c 128,5,/dev/sde /dev/sdf /dev/sdg

configuring LVM2-PV from the RAID5 from the above steps on
oss161.clusterfs.com

oss161.clusterfs.com,PV,/dev/md0 /dev/md1

configuring LVM2-VG from the PV and RAID5 from the above steps on
oss161.clusterfs.com

oss161.clusterfs.com,VG,oss_data,,-s 32M,/dev/md0 /dev/md1

configuring LVM2-LV from the VG, PV and RAID5 from the above steps on
oss161.clusterfs.com

oss161.clusterfs.com,LV,ost0,,-i 2 -I 128,2G,oss_data

oss161.clusterfs.com,LV,ost1,,-i 2 -I 128,2G,oss_data

configuring LVM2-PV on oss162.clusterfs.com

oss162.clusterfs.com,PV, /dev/sdb /dev/sdc /dev/sdd /dev/sde /dev/sdf /dev/
sdg

configuring LVM2-VG from the PV from the above steps on
oss162.clusterfs.com

oss162.clusterfs.com,VG,vg_oss1,,-s 32M,/dev/sdb /dev/sdc /dev/sdd

oss162.clusterfs.com,VG,vg_oss2,,-s 32M,/dev/sde /dev/sdf /dev/sdg

configuring LVM2-LV from the VG and PV from the above steps on
oss162.clusterfs.com

oss162.clusterfs.com,LV,ost3,,-i 3 -I 64,1G,vg_oss2

NOTE:
You can use a script, /usr/sbin/lustre_createcsv, to collect the information on Lustre
targets from a running Lustre cluster and generating a CSV file. It is a reverse utility as
compared to lustre_config and should be run on the MGS node.
52 Configuring Lustre - Examples

oss162.clusterfs.com,LV,ost2,,-i 3 -I 64,1G,vg_oss1

#configuring Lustre File System on MDS/MGS, OSS and OST with RAID and LVM
created above

mds16.clusterfs.com,options lnet networks=tcp,/dev/md0,/mnt/
mdt,mgs|mdt,,,,,,,

oss161.clusterfs.com,options lnet networks=tcp,/dev/oss_data/ost0,/mnt/
ost0,ost,,192.168.16.34@tcp0,,,,

oss161.clusterfs.com,options lnet networks=tcp,/dev/oss_data/ost1,/mnt/
ost1,ost,,192.168.16.34@tcp0,,,,

oss162.clusterfs.com,options lnet networks=tcp,/dev/pv_oss1/ost2,/mnt/
ost2,ost,,192.168.16.34@tcp0,,,,

oss162.clusterfs.com,options lnet networks=tcp,/dev/pv_oss2/ost3,/mnt/
ost3,ost,,192.168.16.34@tcp0,,,,

$ lustre_config -v -a -d -f lustre_config.csv

This command creates RAID and LVM, and then configures Lustre on the nodes or targets specified in
lustre_config.csv. The script prompts you for the password to log in with root access to the nodes.

After completing the above steps, the script makes Lustre target entries in the /etc/fstab file on Lustre server
nodes, such as:

For MDS | MDT:

/dev/md0 /mnt/mdt lustre defaults 0 0

For OSS:

/pv_oss1/ost2 /mnt/ost2 lustre defaults 0 0

3 Run "mount /dev/sdb" and "mount /dev/sda" to start the Lustre services.
Lustre Operations Manual 53

54 Configuring Lustre - Examples

Chapter II - 5. More Complicated
Configurations

This chapter describes more complicated Lustre configurations and includes the following sections:

• Multihomed Servers

• Elan to TCP Routing

5.1 Multihomed Servers

Servers megan and oscar each have three TCP NICs (eth0, eth1, and eth2) and an Elan NIC. The eth2 NIC
is used for management purposes and should not be used by LNET. TCP clients have a single TCP
interface and Elan clients have a single Elan interface.

5.1.1 Modprobe.conf
Options under modprobe.conf are used to specify the networks available to a node. You have the choice of
two different options – the networks option, which explicitly lists the networks available and the ip2nets
option, which provides a list-matching lookup. Only one option can be used at any one time. The order of
LNET lines in modprobe.conf is important when configuring multi-homed servers. If a server node can be
reached using more than one network, the first network specified in modprobe.conf will be used.

Networks
On the servers:

options lnet 'networks="tcp0(eth0,eth1),elan0"'

Elan-only clients:

options lnet networks=elan0

TCP-only clients:

options lnet networks=tcp0
Lustre Operations Manual 55

IB-only clients:

options lnet networks="iib0"

options kiiblnd ipif_basename=ib0

ip2nets
The ip2nets option is typically used to provide a single, universal modprobe.conf file that can be run on all
servers and clients. An individual node identifies the locally available networks based on the listed IP
address patterns that match the node's local IP addresses. Note that the IP address patterns listed in this
option (ip2nets) are only used to identify the networks that an individual node should instantiate. They are
not used by LNET for any other communications purpose. The servers megan and oscar have eth0 IP
addresses 192.168.0.2 and .4. They also have IP over Elan (eip) addresses of 132.6.1.2 and .4. TCP clients
have IP addresses 192.168.0.5-255. Elan clients have eip addresses of 132.6.[2-3].2, .4, .6, .8.

Modprobe.conf is identical on all nodes:

options lnet 'ip2nets="tcp0(eth0,eth1)192.168.0.[2,4]; tcp0 \
192.168.0.*; elan0 132.6.[1-3].[2-8/2]"'

Because megan and oscar match the first rule, LNET uses eth0 and eth1 for tcp0 on those machines.
Although they also match the second rule, it is the first matching rule for a particular network that is used.
The servers also match the (only) Elan rule. The [2-8/2] format matches the range 2-8 stepping by 2; that is
2,4,6,8. For example, clients at 132.6.3.5 would not find a matching Elan network.

NOTE:
In the case of TCP-only clients, all available IP interfaces are used for tcp0 since the
interfaces are not specified. If there is more than one, the IP of the first one found is used
to construct the tcp0 NID.

NOTE:
LNET lines in modprobe.conf are used by the local node only to determine what to call its
interfaces. They are not used for routing decisions.
56 More Complicated Configurations

5.1.2 Start Servers
For the combined MGS/MDT with TCP network, run these commands:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/test/mdt

- OR -

For the MGS on the separate node with TCP network, run these commands:

$ mkfs.lustre --mgs /dev/sda

$ mkdir -p /mnt/mgs

$ mount -t lustre /dev/sda /mnt/mgs

For starting the MDT on node mds16 with MGS on node mgs16, run these commands:

$ mkfs.lustre --fsname=spfs --mdt --mgsnode=mgs16@tcp0 /dev/sda

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda2 /mnt/test/mdt

For starting the OST on TCP-based network, run these commands:

$ mkfs.lustre --fsname spfs --ost --mgsnode=mgs16@tcp0 /dev/sda$

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0

5.1.3 Start Clients
TCP clients can use the host name or IP address of the MDS, run:

mount –t lustre megan@tcp0:/mdsA/client /mnt/lustre

Use this command to start the Elan clients:

mount –t lustre 2@elan0:/mdsA/client /mnt/lustre

NOTE:
If the MGS node has multiple interfaces (for instance, cfs21 and 1@elan), only the client
mount command has to change. The MGS NID specifier must be an appropriate nettype
for the client (for example, TCP client could use uml1@tcp0, and Elan client could use
1@elan). Alternatively, a list of all MGS NIDs can be given, and the client chooses the
correct one. For example:

$ mount -t lustre mgs16@tcp0,1@elan:/testfs /mnt/testfs
Lustre Operations Manual 57

5.2 Elan to TCP Routing

Servers megan and oscar are on the Elan network with eip addresses 132.6.1.2 and .4. Megan is also on
the TCP network at 192.168.0.2 and routes between TCP and Elan. There is also a standalone router,
router1, at Elan 132.6.1.10 and TCP 192.168.0.10. Clients are on either Elan or TCP.

5.2.1 Modprobe.conf
Modprobe.conf is identical on all nodes, run:

options lnet 'ip2nets="tcp0 192.168.0.*; elan0 132.6.1.*"' \
'routes="tcp [2,10]@elan0; elan 192.168.0.[2,10]@tcp0"'

5.2.2 Start servers
To start router1, run:

modprobe lnet

lctl network configure

To start megan and oscar, run:

FIXME

5.2.3 Start clients
For the TCP client, run:

mount -t lustre megan:/mdsA/client /mnt/lustre/

For the Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre
58 More Complicated Configurations

Chapter II - 6. Failover
This chapter describes failover in a Lustre system and includes the following sections:

• What is Failover?

• OST Failover Review

• MDS Failover Review

• Configuring MDS and OSTs for Failover

• Setting Up Failover with Heartbeat V1

• Setting Up Failover with Heartbeat V2

• Considerations with Failover Software and Solutions

6.1 What is Failover?

We say a computer system is Highly Available when the services it provides are available with minimum
downtime. In a highly-available system, if a failure condition occurs, such as loss of a server or a network
or software fault, the services provided remain unaffected. Generally, we measure availability by the
percentage of time the system is required to be available.

Availability is accomplished by providing replicated hardware and/or software, so failure of the system will
be covered by a paired system. The concept of “failover” is the method of switching an application and its
resources to a standby server when the primary system fails or is unavailable. Failover should be automatic
and, in most cases, completely application-transparent.

Lustre failover requires two nodes (a failover pair), which must be connected to a shared storage device.
Lustre supports failover for both metadata and object storage servers.

The Lustre file system supports failover at the server level. Lustre does not provide the tool set for system-
level components that is needed for a complete failover solution (node failure detection, power control, and
so on)1. CFS does provide the necessary scripts to interact with these packages, and exposes health
information for system monitoring. The recommended choice is the Heartbeat package (from
www.linux-ha.org). Heartbeat is responsible for detecting failure of the primary server node and controlling
the failover. Lustre works with any HA software that supports resource (I/O) fencing.

1. This functionality has been available for some time in third-party tools.
Lustre Operations Manual 59

www.linux-ha.org

The hardware setup requires a pair of servers with a shared connection to a physical storage (like SAN,
NAS, hardware RAID, SCSI and FC). The method of sharing storage should be essentially transparent at
the device level, that is, the same physical LUN should be visible from both nodes. To ensure high
availability at the level of physical storage, we encourage the use of RAID arrays to protect against
drive-level failures.

To have a fully-automated, highly-available Lustre system, you need power management software and HA
software, which must provide the following -

• Resource fencing - Physical storage must be protected from simultaneous access by two nodes.

• Resource control - Starting and stopping the Lustre processes as a part of failover, maintaining
the cluster state, and so on.

• Health monitoring - Verifying the availability of hardware and network resources, responding to
health indications given by Lustre.

For proper resource fencing, the Heartbeat software must be able to completely power off the server or
disconnect it from the shared storage device. It is absolutely vital that no two active nodes access the same
partition, at the risk of severely corrupting data. When Heartbeat detects a server failure, it calls a process
(STONITH) to power off the failed node; and then starts Lustre on the secondary node. HA software controls
the Lustre resources with a service script. CFS provides /etc/init.d/lustre for this purpose.

Servers providing Lustre resources are configured in primary/secondary pairs for the purpose of failover.
When a server “umount” command is issued, the disk device is set read-only. This allows the second node
to start service using that same disk, after the command completes. This is known as a soft failover, in
which case both the servers can be running and connected to the net. Powering off the node is known as a
hard failover.

6.1.1 The Power Management Software
The Linux-HA package includes a set of power management tools, known as STONITH (Shoot The Other
Node In The Head). STONITH has native support for many power control devices, and is extensible. It uses
expect scripts to automate control. PowerMan, by the Lawrence Livermore National Laboratory (LLNL), is
a tool for manipulating remote power control (RPC) devices from a central location. Several RPC varieties
are supported natively by PowerMan. The latest version is available at:

http://www.llnl.gov/linux/powerman/

6.1.2 Power Equipment
A multi-port, Ethernet addressable RPC is relatively inexpensive. For recommended products, refer to the
list of supported hardware on the PowerMan site. Linux Network Iceboxes are also very good tools. They
combine the remote power control and the remote serial console into a single unit.

6.1.3 Heartbeat
The Heartbeat package is one of the core components of the Linux-HA project. Heartbeat is highly-portable,
and runs on every known Linux platform, as well as FreeBSD and Solaris. For more information, see:

http://linux-ha.org/HeartbeatProgram

To download Linux-HA, go to:

http://linux-ha.org/download

CFS supports both Heartbeat V1 and Heartbeat V2. V1 has a simpler configuration and works very well. V2
adds monitoring and supports more complex cluster topologies. CFS recommends that you refer to the
Linux-HA website for additional information.
60 Failover

http://www.llnl.gov/linux/powerman/
http://linux-ha.org/HeartbeatProgram
http://linux-ha.org/download

6.1.4 Connection Handling During Failover
A connection is alive when it is active and in operation. While sending a new request this type of connection,
the connection does not develop until either the reply arrives or the connection becomes disconnected or
failed. If there is no traffic on a given connection, you should check the connection periodically to ensure its
status.

If an active connection disconnects, then it leads to at least one timed-out request. New and old requests
alike are in sleep until:

• The reply arrives (in case of reactivation of the connection and during the re-send request
asynchronously).

• The application gets a signal (such as TERM or KILL).

• The server evicts the client (which gives -EIO for these requests) or the connection becomes
"failed."

Therefore, the timeout is effectively infinite. Lustre waits as long as it needs to and avoids giving the
application an -EIO error.

Finally, if a connection goes to "failed" condition, which happens immediately in the "failout" OST mode, new
and old requests receive -EIO immediately. In non-failout mode, a connection can only get into this state by
using "lctl deactivate", which is the only option for the client in the event of an OST failure.

6.1.5 Roles of Nodes in a Failover
A failover pair of nodes can be configured in two ways – active / active and active / passive. An active
node actively serves data while a passive node is idle, standing by to take over in the event of a failure. In
the following example, using two OSTs (both of which are attached to the same shared disk device), the
following failover configurations are possible:

• active / passive - This configuration has two nodes out of which only one is actively serving data
all the time. In case of a failure, the other node takes over.

If the active node fails, the OST in use by the active node will be taken over by the passive node,
which now becomes active. This node serves most of the services that were on the failed node.

• active / active - This configuration has two nodes actively serving data all the time. In case of a
failure, one node takes over for the other.

To configure this with respect to the shared disk, the shared disk needs to provide multiple
partitions, and each OST is the primary server for one partition and the secondary server for the
other partition. The active / passive configuration doubles the hardware cost without improving
performance, and is seldom used for OST servers.

6.2 OST Failover Review

The OST has two operating modes: failover and failout. The default mode is failover. In this mode, the
clients reconnect after a failure, and the transactions, which were in progress, are completed. Data on the
OST is written synchronously, and the client replays uncommitted transactions after the failure.

In the failout mode, when any communication error occurs, the client attempts to reconnect, but is unable
to continue with the transactions that were in progress during the failure. Also, if the OST actually fails, data
that has not been written to the disk (still cached on the client) is lost. Applications usually see an -EIO for
operations done on that OST until the connection is reestablished. However, the LOV layer on the client
avoids using that OST. Hence, the operations such as file creates and fsstat still succeed. The failover mode
is the current default, while the failout mode is seldom used.
Lustre Operations Manual 61

6.3 MDS Failover Review

The MDS has only one failover mode: active / passive, as only one MDS may be active at a given time.

6.4 Configuring MDS and OSTs for Failover

6.4.1 Starting / Stopping a Resource
You can start a resource with the “mount” command and stop it with the “umount” command. For details,
see Stopping a Server on page 22.

6.4.2 Active / Active Failover Configuration
With OST servers it is possible to have a load-balanced active / active configuration. Each node is the
primary node for a group of OSTs, and the failover node for other groups. To expand the simple two-node
example, we add ost2 which is primary on nodeB, and is on the LUNs nodeB:/dev/sdc1 and nodeA:/dev/
sdd1. This demonstrates that the /dev/ identify can differ between nodes, but both devices must map to the
same physical LUN.

For an active / active configuration, mount one OST on one node and another OST on the other node. You
can format them from either node.

6.4.3 Hardware Requirements for Failover
This section describes hardware requirements that must be met to configure Lustre for failover.

6.4.3.1 Hardware Preconditions
• The setup must consist of a failover pair where each node of the pair has access to shared storage.

If possible, the storage paths should be identical (nodeA:/dev/sda == nodeB:/dev/sda).

• Shared storage can be arranged in an active / passive (MDS, OSS) or active / active (OSS only)
configuration. Each shared resource has a primary (default) node. Heartbeat assumes that the
non-primary node is secondary for that resource.

• The two nodes must have one or more communication paths for Heartbeat traffic. A communication
path can be:

• Dedicated Ethernet

• Serial live (serial crossover cable)

Failure of all Heartbeat communication is not good. This condition is called “split-brain”. The
Heartbeat software resolves this situation by powering down one node.

• The two nodes must have a method to control one another's state; RPC hardware is the best
choice. There must be a script to start and stop a given node from the other node. STONITH
provides soft power control methods (SSH, meatware), but these cannot be used in a production
situation.

• Heartbeat provides a remote ping service that is used to monitor the health of the external network.
If you wish to use the ipfail service, then you must have a very reliable external address to use as
the ping target. Typically, this is a firewall route or another very reliable network endpoint external
to the cluster.
62 Failover

6.5 Setting Up Failover with Heartbeat V1

This section describes how to set up failover with Heartbeat V1.

6.5.1 Installing the Software
1 Install Lustre (see Lustre Installation on page 15).

2 Install the RPMs that are required to configure Heartbeat.

The following packages are needed for Heartbeat V1. CFS used the 1.2.3-1 version. RedHat supplies
v1.2.3-2. Heartbeat is available as an RPM or source.

These are the Heartbeat packages, in order:

• heartbeat-stonith -> heartbeat-stonith-1.2.3-1.i586.rpm

• heartbeat-pils -> heartbeat-pils-1.2.3-1.i586.rpm

• heartbeat itself -> heartbeat-1.2.3-1.i586.rpm

You can find the above RPMs at:

http://linux-ha.org/download/index.html#1.2.3

3 Satisfy the installation prerequisites.

Heartbeat 1.2.3 installation requires following:

• python

• openssl

• libnet-> libnet-1.1.2.1-19.i586.rpm

• libpopt -> popt-1.7-274.i586.rpm

• librpm -> rpm-4.1.1-222.i586.rpm

• glib -> glib-2.6.1-2.i586.rpm

• glib-devel -> glib-devel-2.6.1-2.i586.rpm
Lustre Operations Manual 63

http://linux-ha.org/download/index.html#1.2.3

6.5.1.1 Configuring Heartbeat
This section describes basic configuration of Heartbeat with and without STONITH.

Basic Configuration - Without STONITH
The http://linux-ha.org website has several guides covering basic setup and initial testing of Heartbeat; CFS
suggests that you read them.

1 Configure and test the Heartbeat setup before adding STONITH.

Let us assume there are two nodes, nodeA and nodeB. nodeA owns ost1 and nodeB owns ost2. Both
the nodes are with dedicated Ethernet – eth0 having serial crossover link – /dev/ttySO. Consider that
both nodes are pinging to a remote host – 192.168.0.3 for health.

2 Create /etc/ha.d/ha.cf

• This file must be identical on both the nodes.

• Follow the specific order of the directives..

• Sample ha.cf file

Suggested fields - logging

debugfile /var/log/ha-debug

logfile /var/log/ha-log

logfacility local0

Required fields - Timing

keepalive 2

deadtime 30

initdead 120

If using serial Heartbeat

baud 19200

serial /dev/ttyS0

For Ethernet broadcast

udpport 694

bcast eth0

Use manual failback

auto_failback off

Cluster members - name must match `hostname`

node oss161.clusterfs.com oss162. clusterfs.com

remote health ping

ping 192.168.16.1

respawn hacluster /usr/lib/heartbeat/ipfail
64 Failover

http://linux-ha.org

3 Create /etc/ha.d/haresources

• This file must be identical on both the nodes.

• It specifies a virtual IP address and a service.

• Sample haresources

oss161.clusterfs.com 192.168.16.35 \
Filesystem::/dev/sda::/ost1::lustre

oss162.clusterfs.com 192.168.16.36 \
Filesystem::/dev/sda::/ost1::lustre

4 Create /etc/ha.d/authkeys

• Copy the example from /usr/share/doc/heartbeat-<version>.

• chmod the file '0600' – Heartbeat does not start if the permissions on this file are incorrect.

• Sample authkeys files

auth 1

1 sha1 PutYourSuperSecretKeyHere

 a. Start Heartbeat.

[root@oss161 ha.d]# service heartbeat start

Starting High-Availability services:
[OK]

 b. Monitor the syslog on both nodes. After the initial deadtime interval, you should see the nodes
discovering each other's state, and then they start the Lustre resources they own. You should
see the startup command in the log:

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to <null>
(<null>)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Election check: vote from oss162.clusterfs.com

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to <null>
(<null>)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_check: Still
waiting on 2 non-votes (2 total)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Updated voted hash for oss161.clusterfs.com to vote

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_count_vote:
Election ignore: our vote (oss161.clusterfs.com)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_election_check: Still
waiting on 1 non-votes (2 total)

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_state_transition: State
transition S_ELECTION -> S_PENDING [input=I_PENDING
cause=C_FSA_INTERNAL origin=do_election_count_vote]

Aug 9 09:50:44 oss161 crmd: [4733]: info: update_dc: Set DC to <null>
(<null>)
Lustre Operations Manual 65

Aug 9 09:50:44 oss161 crmd: [4733]: info: do_dc_release: DC role
released

Aug 9 09:50:45 oss161 crmd: [4733]: info: do_election_count_vote:
Election check: vote from oss162.clusterfs.com

Aug 9 09:50:45 oss161 crmd: [4733]: info: update_dc: Set DC to <null>
(<null>)

Aug 9 09:50:46 oss161 crmd: [4733]: info: update_dc: Set DC to
oss162.clusterfs.com (1.0.9)

Aug 9 09:50:47 oss161 crmd: [4733]: info: update_dc: Set DC to
oss161.clusterfs.com (1.0.9)

Aug 9 09:50:47 oss161 cib: [4729]: info: cib_replace_notify: Local-
only Replace: 0.0.1 from <null>

Aug 9 09:50:47 oss161 crmd: [4733]: info: do_state_transition: State
transition S_PENDING -> S_NOT_DC [input=I_NOT_DC cause=C_HA_MESSAGE
origin=do_cl_join_finalize_respond]

Aug 9 09:50:47 oss161 crmd: [4733]: info: populate_cib_nodes:
Requesting the list of configured nodes

Aug 9 09:50:48 oss161 crmd: [4733]: notice: populate_cib_nodes: Node:
oss162.clusterfs.com (uuid: 00e8c292-2a28-4492-bcfc-fb2625ab1c61)

Aug 9 09:50:48 oss161 crmd: [4733]: notice: populate_cib_nodes: Node:
oss161.clusterfs.com (uuid: e370be9a-24f4-46a5-99ac-41a88c5fa344)

Sep 7 10:42:40 d1_q_0 heartbeat: info: Running \

/etc/ha.d/resource.d/ost1 start

In this example, 'ost1' is our shared resource. These are common things to watch out for:

• If you configure two nodes as primary for one resource, then you will see both nodes attempt
to start it. This is very bad. Shut down immediately and correct your HA resources files.

• If the commutation between nodes is not correct, both nodes may also attempt to mount the
same resource, or will attempt to STONITH each other. There should be many error messages
in syslog indicating a communication fault.

• When in doubt, you can set a Heartbeat debug level in ha.cf—levels above 5 produce huge
volumes of data.

 c. Try some manual failover/ failback. Heartbeat provides two tools for this purpose (by default
they are installed in /usr/lib/heartbeat) –

• hb_standby [local|foreign] – Causes a node to yield resources to another node—if a
resource is running on its primary node it is local, otherwise it is foreign.

• hb_takeover [local|foreign] – Causes a node to grab resources from another node.
66 Failover

Basic Configuration - With STONITH
STONITH automates the process of power control with the expect package. Expect scripts are very
dependent on the exact set of commands provided by each hardware vendor, and as a result any change
made in the power control hardware/ firmware requires tweaking STONITH.

Much must be deduced by running the STONITH package by hand. STONITH has some supplied
packages, but can also run with an external script. There are two STONITH modes:

• Single STONITH command for all nodes found in ha.cf:

-------/etc/ha.d/ha.cf-------------------

stonith <type> <config file>

• STONITH command per-node:

-------/etc/ha.d/ha.cf--------------------

stonith_host <hostfrom> <stonith_type> <params...>

You can use an external script to kill each node:

stonith_host nodeA external foo /etc/ha.d/reset-nodeB

stonith_host nodeB external foo /etc/ha.d/reset-nodeA

Here, foo is a placeholder for an unused parameter.

To get the proper syntax, run:

$ stonith -L

The above command lists supported models.

To list required parameters and specify the config file name, run:

$ stonith -l -t <model>

To attempt a test, run:

$ stonith -l -t <mode1> <fake host name>

This command also gives data on what is required. To test, use a real hostname. The external STONITH
scripts should take the parameters {start|stop|status} and return 0 or 1.
Lustre Operations Manual 67

STONITH _only happens when the cluster cannot do things in an orderly manner. If two cluster nodes can
communicate, they usually shut down properly. This means many tests do not produce a STONITH, for
example:

• Calling init 0 or shutdown or reboot on a node, orderly halt, no STONITH

• Stopping the heartbeat service on a node, again, orderly halt, no STONITH

You really have to do something drastic (for example, killall -9 heartbeat) like pulling cables, or so on before
you trigger STONITH.

Also, the alert script does a software failover, which halts Lustre but does not halt or STONITH the system.
To use STONITH, edit the fail_lustre.alert script and add your preferred shutdown command after the line -

`/usr/lib/heartbeat/hb_standby local &`;

A simple method to halt the system is the sysrq method, run:

$!/bin/bash

This script forces a boot, run:

$ 'echo s' = sync

$ 'echo u' = remount read-only

$ 'echo b' = reboot

$

SYST="/proc/sysrq-trigger"

if [! -f $SYST]; then

echo "$SYST not found!"

exit 1

fi

$ sync, unmount, sync, reboot

echo s > $SYST

echo u > $SYST

echo s > $SYST

echo b > $SYST

exit 0
68 Failover

6.5.2 Mon (Status Monitor)
Mon requires two scripts:

• Monitor script (checks a resource for health)

• Alert script (triggered by failure of the monitor)

Mon requires one configuration file:

/etc/mon/mon.cf

We use a trap-based monitor. The trap is set with a time interval. The trap is cleared by checking Lustre
health. If the trap is not cleared, mon triggers a failover.

All monitors are configured in one file. Mon is started as a service at boot prior to heartbeat startup. All
monitors are disabled at startup and enabled by Heartbeat in conjunction with resource startup / shutdown.

6.5.2.1 Mon Setup and Configuration
This section describes installation prerequisites for Mon and how to install Mon.

Install Prerequisites for Mon
Mon is not required for a basic failover setup. It is not required for Heartbeart V2, as monitoring is included
in V2.

The Heartbeat software monitors the health of the node. Adding Mon to the setup allows application health
to be monitored (Lustre is the application).

The base package is available from

ftp://ftp.kernel.org/pub/software/admin/

Mon requires following Perl packages:

• Time::Period

• Time::HiRes

• Convert::BER

• Mon::SNMP

As always, CFS recommends using CPAN when installing Perl. The packages are also available as tarballs
refer to:

http://www.cpan.org
Lustre Operations Manual 69

http://www.cpan.org
ftp://ftp.kernel.org/pub/software/admin/

Install Mon
After installing the Perl packages, obtain the Mon tarball at

ftp://ftp.kernel.org/pub/software/admin/mon/

1 Untar the tarball.

2 Copy the Mon program to a location on the root path.

(/usr/lib/mon/mon is default)

3 Install the moncmd program.

4 For this setup, CFS has altered the Mon startup a bit. You must patch the S99mon script, and install the
result as /etc/init.d/mon – set this routine to start at boot, prior to the Heartbeat startup

$ chkconfig --add mon

5 Verify that the path for moncmd in the init script matches where you installed moncmd (/usr/local/bin/
moncmd is the default).

6 Create a set of Mon directories as specified in /etc/mon/mon.cf

cfbasedir= /etc/mon

alertdir= /usr/local/lib/mon/alert.d

mondir= /usr/local/lib/mon/mon.d

statedir= /usr/local/lib/mon/state.d

logdir= /usr/local/lib/mon/log.d

dtlogfile= /usr/local/lib/mon/log.d/downtime.log

7 Create the /etc/mon/auth.cf file - allow everything in the command section change AUTH_ANY to all.

8 Create the /etc/mon/mon.cf file. Starting with the provided example:

 a. Verify that the correct paths are set.

 b. For each Lustre object, create two watches:

• The first watch runs the trap monitor.

• The second watch receives the trap.

• Both monitors will attempt to fail Lustre if they fail.

• The monitor currently hard kills heartbeat to guarantee failover

A CFS user has provided a shell script that will generate a mon.cf file.

9 Copy the supplied trap generator script (mon.trap) to a proper location (/usr/local/lib/mon/)

This Perl script is based on a script found on the Mon mailing list. Other scripts are also available there

10 Copy the provided Lustre monitor script (lustre.mon.trap) to the mon monitor directory
(/usr/local/lib/mon/mon.d)

 a. Verify that the location of TRAPPER points at the trap generation script from mon.trap

 b. Verify that the name matches the script specified in /etc/mon/mon.cf

 c. This script is based on /etc/init.d/lustre
70 Failover

ftp://ftp.kernel.org/pub/software/admin/mon/

11 Copy the provided Lustre alert script to the mon alert directory: /usr/local/lib/mon/alert.d

 a. Verify that the name matches script specified in /etc/mon/mon.cf

This is a stock script from the mon package.

 b. For the Lustre failover sequence, you are free to choose another method of triggering the
transition.

• The script will _not STONITH the node.

• Edit the script to provide hard node power off or reboot (if needed).

Add Mon to the Heartbeat Configuration
1 Copy the lustre-resource-monitor script to the Heartbeat resource directory (/etc/ha.d/resource.d)

2 Give the script a unique name (alpha-mon, beta-mon).

3 Edit the script, and set MONLIST to the service names to be monitored (two services per object as
defined in /etc/mon/mon.cf).

4 Edit /etc/ha.d/haresources to add the mon scripts—the mon script will appear on the same line as the
Lustre resource.

5 Restart the Heartbeat software.

The trap should appear in syslog:

Apr 26 13:45:38 d2_q_0 mon[3000]: trap trap 1 from 192.168.0.150 \
for alpha-ost lustre_a, status 255
Lustre Operations Manual 71

6.6 Setting Up Failover with Heartbeat V2

This section describes how to set up failover with Heartbeat V2.

6.6.1 Installing the Software
1 Install Lustre (see Lustre Installation on page 15).

2 Install RPMs required for configuring Heartbeat.

The following packages are needed for Heartbeat (v2). We used the 2.0.4 version of Heartbeat.

Heartbeat packages, in order:

• heartbeat-stonith -> heartbeat-stonith-2.0.4-1.i586.rpm

• heartbeat-pils -> heartbeat-pils-2.0.4-1.i586.rpm

• heartbeat itself -> heartbeat-2.0.4-1.i586.rpm

You can find all the RPMs at the following location:

http://linux-ha.org/download/index.html#2.0.4

3 Satisfy the installation prerequisites.

To install Heartbeat 2.0.4-1, you require:

• Python

• openssl

• libnet-> libnet-1.1.2.1-19.i586.rpm

• libpopt -> popt-1.7-274.i586.rpm

• librpm -> rpm-4.1.1-222.i586.rpm

• libtld- > libtool-ltdl-1.5.16.multilib2-3.i386.rpm

• lingnutls -> gnutls-1.2.10-1.i386.rpm

• Libzo ->lzo2-2.02-1.1.fc3.rf.i386.rpm

• glib -> glib-2.6.1-2.i586.rpm

• glib-devel -> glib-devel-2.6.1-2.i586.rpm

6.6.2 Configuring the Hardware
Heartbeat v2 runs well with an un-altered v1 configuration. This makes upgrading simple. You can test the
basic function and quickly roll back if issues appear. Heartbeat v2 does not require a virtual IP address to
be associated with a resource. This is good since we do not use virtual IPs.

Heartbeat v2 supports multi-node clusters (of more than two nodes), though it has not been tested for a
multi-node cluster. This section describes only the two-node case. The multi-node setup adds a score value
to the resource configuration. This value is used to decide the proper node for a resource when failover
occurs.

Heartbeat v2 adds a resource manager (crm). The resource configuration is maintained as an XML file. This
file is re-written by the cluster frequently. Any alterations to the configuration should be made with the HA
tools or when the cluster is stopped.
72 Failover

http://linux-ha.org/download/index.html#2.0.4

6.6.2.1 Hardware Preconditions
• The basic cluster assumptions are the same as those for Heartbeat v1. For the sake of clarity, here

are the preconditions:

• The setup must consist of a failover pair where each node of the pair has access to shared storage.
If possible, the storage paths should be identical (d1_q_0:/dev/sda == d2_q_0:/dev/sda).

• Shared storage can be arranged in an active/passive (MDS,OSS) or active/active (OSS only)
configuration. Each shared resource will have a primary (default) node. The secondary node is
assumed.

• The two nodes must have one or more communication paths for heartbeat traffic. A communication
path can be:

• Dedicated Ethernet

• Serial live (serial crossover cable)

Failure of all heartbeat communication is not good. This condition is called “split-brain” and the
heartbeat software will resolve this situation by powering down one node.

• The two nodes must have a method to control each other's state. The Remote Power Control
hardware is the best. There must be a script to start and stop a given node from the other node.
STONITH provides soft power control methods (ssh, meatware) but these cannot be used in a
production situation.

• Heartbeat provides a remote ping service that is used to monitor the health of the external network.
If you wish to use the ipfail service, you must have a very reliable external address to use as the
ping target.

6.6.2.2 Configuring Lustre
Configuring Lustre for Heartbeat V2 is identical to the V1 case.
Lustre Operations Manual 73

6.6.2.3 Configuring Heartbeat
For details on all configuration options, refer to the Linux HA website:

http://linux-ha.org/ha.cf

As mentioned earlier, you can run Heartbeat V2 using the V1 configuration. To convert from the V1
configuration to V2, use the haresources2cib.py script (typically found in /usr/lib/heartbeat).

If you are starting with V2, CFS recommends creating a V1-style configuration and converting it, as the V1
style is human-readable. The heartbeat XML configuration is located at /var/lib/heartbeat/cib.xml and the
new resource manager is enabled with the crm yes directive in /etc/ha.d/ha.cf. For additional information
on CiB, refer to:

http://linux-ha.org/ClusterInformationBase/UserGuide

Heartbeat log daemon
Heartbeat V2 adds a logging daemon, which manages logging on behalf of cluster clients. The UNIX syslog
API makes calls that can block, Heartbeat requires log writes to complete as a sign of health. This daemon
prevents a busy syslog from triggering a false failover. The logging configuration has been moved to
/etc/logd.cf, while the directives are essentially unchanged.

Basic configuration (No STONITH or monitor)
Assuming two nodes, d1_q_0 and d21_q_0:

• d1_q_0 owns ost-alpha

• d2_q_0 owns ost-beta

• dedicated Ethernet - eth0

• serial crossover link - /dev/ttySO

• remote host for health ping - 192.168.0.3

Use this procedure:

1 Create symlinks from /etc/init.d/lustre to /etc/init.d/<resource_name>

These links must exist before running the conversion script.

Placing these scripts in /etc/init.d/ causes the conversion script to identify the script as type lsb. This
gives us more flexibility for script parameters. Scripts found in /etc/ha.d/resource.d are considered to be
of type heartbeat and have more restrictions.

2 Create the basic ha.cf and haresources files

haresources no longer requires the dummy virtual IP address.

This is an example of /etc/ha.d/haresouces

oss161.clusterfs.com 192.168.16.35 Filesystem::/dev/sda::/ost1::lustre

oss162.clusterfs.com 192.168.16.36 Filesystem::/dev/sda::/ost1::lustre

Once you have these files created, you can run the conversion tool:

$ /usr/lib/heartbeat/haresources2cib.py -c basic.ha.cf \
basic.haresources > basic.cib.xml
74 Failover

http://linux-ha.org/ha.cf
http://linux-ha.org/ClusterInformationBase/UserGuide

3 Examine the cib.xml file

The first section in the XML file is <attributes>. The default values should be fine for most installations.

The actual resources are defined in the <primitive> section. The default behavior of Heartbeat is an
automatic failback of resources when a server is restored. To avoid this, you must add a parameter to
the <primitive> definition. You may also like to reduce the timeouts. In addition, the current version of
the script does not correctly name the parameters.

<cib generated="true" admin_epoch="0" epoch="0" num_updates="0" \
have_quorum="true" ignore_dtd="false" num_peers="2" ccm_transition="1" cib-
last- \ written="Thu Aug 9 09:50:12 2007">

 <configuration>

 <crm_config/>

 <nodes>

 <node id="00e8c292-2a28-4492-bcfc-fb2625ab1c61" \
uname="oss162.spsoftware.com" type="normal"/>

 <node id="e370be9a-24f4-46a5-99ac-41a88c5fa344" \
uname="oss161.spsoftware.com" type="normal"/>

 </nodes>

 <resources/>

 <constraints/>

 </configuration>

 </cib>

 a. Copy the modified resource file to /var/lib/heartbeat/crm/cib.xml

 b. Start the Heartbeat software.

 c. After startup, Heartbeat re-writes the cib.xml, adding a <node> section and status information.
Do not alter those fields.

Basic Configuration – Adding STONITH
As per Basic configuration (No STONITH or monitor) on page 74, the best way to do this is to add the
STONITH options to ha.cf and run the conversion script. A sample example is in section 6.6.4.1 ha.cf. See
http://linux-ha.org/ExternalStonithPlugins for more information.
Lustre Operations Manual 75

http://linux-ha.org/ExternalStonithPlugins

6.6.3 Operation
In normal operation, Lustre should be controlled by the Heartbeat software. Start Heartbeat at the boot time.
It starts Lustre after the initial dead time.

6.6.3.1 Initial startup
1 Stop the Heartbeat software (if running).

If this is a new Lustre file system:

$ mkfs.lustre --fsname=spfs --ost --failnode=oss162 --mgsnode=mds16@tcp0 /
dev/sdb (one)

2 mount -t lustre /dev/sdb /mnt/spfs/ost/

3 /etc/init.d/heartbeat start on one node.

4 tail -f /var/log/ha-log to see progress.

5 After initdead, this node should start all Lustre objects.

6 /etc/init.d/heartbeat start on second node.

7 After heartbeat is up on both the nodes, failback the resources to the second node. On the second node,
run:

$ /usr/lib/heartbeart/hb_takeover local

You should see the resources stop on the first node, and start up on the second node

6.6.3.2 Testing
1 Pull power from one node.

2 Pull networking from one node.

3 After Mon is setup, pull the connection between the OST and the backend storage.

6.6.3.3 C. Failback
In normal case, do the failback manually after determining that the failed node is now good. Lustre clients
can work during a failback, but block momentarily.
76 Failover

6.7 Considerations with Failover Software and Solutions

The failover mechanisms used by Lustre and tools such as Hearbeat are soft failover mechanisms. They
check system and/or application health at a regular interval, typically measured in seconds. This, combined
with the data protection mechanisms of Lustre, is usually sufficient for most user applications.

However, these soft mechanisms are not perfect. The Heartbeat poll interval is typically 30 seconds. To
avoid a false failover, Heartbeat waits for a deadtime interval before triggering a failover. In normal case, a
user I/O request should block and recover after the failover completes. But this may not always be the case,
given the delay imposed by Heartbeat.

Likewise, the Lustre health_check mechanism cannot be a perfect protection against any or all failures. It
is a sample taken at a time interval, not something that brackets each and every I/O request. This is true for
every HA monitor, not just the Lustre health_check.

Indeed, there will be cases where a user job will die prior to the HA software triggering a failover. You can
certainly shorten timeouts, add monitoring, and take other steps to decrease this probability. But there is a
serious trade-off – shortening timeouts increases the probability of false-triggering a busy system.
Increasing monitoring takes the system resources, and can likewise cause a false trigger.

Unfortunately, hard failover solutions capable of catching failures in the sub-second range generally require
special hardware. As a result, they are quite expensive.
Lustre Operations Manual 77

78 Failover

Chapter II - 7. Configuring Quotas
This chapter describes how to configure quotas and includes the following section:

• Working with Quotas

7.1 Working with Quotas

Quotas allow a system administrator to limit the maximum amount of disk space a user or group can
consume in a directory. Quotas are set by root, and can be specified for individual users and/or groups.
Before a file is written to a partition where quotas have been set, the quota of the creator's group is checked.
If a quota exists for that group, then the file size is counted towards the group's quota. If no quota exists for
that group, then the owner's user quota is checked before the file is written. In a similar manner, inode usage
for specific functions can be controlled if a user over-uses the allocated space.

Lustre quota enforcement differs from standard Linux quota support in several ways:

• Quota is administered via the lfs command

• Quota is distributed (as Lustre is a distributed file system), which has several ramifications

• Quota is allocated and consumed in a quantized fashion

• Client does not set the usrquota or grpquota options to mount. When a quota is enabled, it is
enabled for all clients of the file system and turned on automatically at mount.
Lustre Operations Manual 79

7.1.1 Configuring Disk Quotas

Enabling Quotas
1 If you have re-complied your Linux kernel, be sure that CONFIG_QUOTA and CONFIG_QUOTACTL

are enabled (quota is enabled in all the Linux 2.6 kernels supplied by CFS).

2 Start the server.

3 Mount the Lustre file system on the client and verify that the lquota module has loaded properly by using
the lsmod command.

$ lsmod

[root@oss161 ~]# lsmod

Module Size Used by

obdfilter 220532 1

fsfilt_ldiskfs 52228 1

ost 96712 1

mgc 60384 1

ldiskfs 186896 2 fsfilt_ldiskfs

lustre 401744 0

lov 289064 1 lustre

lquota 107048 4 obdfilter

mdc 95016 1 lustre

ksocklnd 111812 1

The mount command for Lustre no longer recognizes the usrquota and grpquota options, please
remove them from your /etc/fstab if they were previously specified.

When quota is enabled on the file system, it is automatically enabled for all clients of the file system.

NOTE:
Lustre with Linux kernel 2.4 does not support quotas.
80 Configuring Quotas

7.1.2 Creating Quota Files and Quota Administration
Once each quota-enabled file system is remounted, it is capable of working with disk quotas. However, the
file system itself is not yet ready to support quotas. The next step is to run the lfs command with the
quotacheck option:

#lfs quotacheck -ug /mnt/lustre

By default, quota is turned on after quotacheck completes. The following options are available:

• u — to check the user disk quota information

• g — to check the group disk quota information

It also checks all the objects on all OSTs and the MDS to sum up for every UID/GID. It reads all Lustre
metadata and recomputes the number of blocks/inodes that each UID/GID has used. If there are many files
in Lustre, it may take a long time to complete. If quota breaks for any reason, it brings everything back.

The lfs command now includes these other command options for working with quotas:

• quotaon — announces to the system that disk quotas should be enabled on one or more file
systems. The file system quota files must be present in the root directory of the specified file system.

• quotaoff — announces to the system that the specified file systems should have all the disk quotas
turned off.

• setquota — used to specify the quota limits and tune the grace period. By default the grace period
is one week.

Usage:

setquota [-u | -g] <name> <block-softlimit> <block-hardlimit>
<inode-softlimit> <inode-hardlimit> <filesystem>

setquota -t [-u | -g] <block-grace> <inode-grace> <filesystem>

lfs > setquota -u bob 307200 309200 10000 11000 /mnt/lustre

Description: sets limits for user "bob". The block hard limit is around 300 MB and the inode hard limit is
1100 MB.

Quota displays the quota allocated and consumed for each Lustre device. This example shows the result
of the previous setquota:

lfs quota -u bob /mnt/lustre Disk quotas for user bob (uid 500):

 Filesystem blocks quota limit grace files quota limit grace

 /mnt/lustre 0 307200 309200 0 10000 11000

lustre-MDT0000_UUID 0 0 102400 0 0 5000

lustre-OST0000_UUID 0 0 102400

lustre-OST0001_UUID 0 0 102400

NOTE:
To set grace time, use lfs setquota -t

$ lfs setquota -t -u 200 2200 /mnt/lustre
Lustre Operations Manual 81

7.1.3 Quota Allocation
The Linux kernel sets a default quota size of 1 MB. (For a block, the default is 100 MB. For files, the default
is 5000.) Lustre handles quota allocation in a different manner. A quota must be set properly or users may
experience unnecessary failures. The file system block quota is divided up among the OSTs within the file
system. Each OST requests an allocation which is increased up to the quota limit. The quota allocation is
then quantized to reduce the number of quota-related request traffic.

By default, Lustre will allocate 100 MB per OST. This means the minimum quota that can be assigned is
100 MB multiplied by the number of OSTs in your file system. If you attempt to assign a smaller quota, users
maybe unable to create files. The default is established at file system creation time, but can be tuned via /
proc values (detailed below). The inode quota is also allocated in a quantized manner on the MDS.

This sets a much smaller granularity. It is specified that we will request new quota in units of 10 MB and 200
inodes respectively. If we look at the example again:

lfs quota -u bob /mnt/lustre

Disk quotas for user bob (uid 500):

 Filesystem blocks quota limit grace files quota limit grace

 /mnt/lustre 207432 307200 309200 1041 10000 11000

lustre-MDT0000_UUID 992 0 102400 1041 0 5000

lustre-OST0000_UUID 103204* 0 102400

lustre-OST0001_UUID 103236* 0 102400

We see that the requested quota of 3 GB is divided across the OSTs, each OST with an initial allocation of
10 MB blocks. The MDS line shows the initial 200 inode allocation.

It is very important to note that the block quota is consumed per OST. Much like free space, when the
quota is consumed on one OST, clients may be unable to create files regardless of the quota available on
other OSTs.

Additional information:

Grace period — The period of time within which users are allowed to exceed their soft limit. There are four
types of grace period:

• user block soft limit

• user inode soft limit

• group block soft limit

• group inode soft limit

The grace periods are applied to all users. The user block soft limit is for all users who are using a blocks
quota.

NOTE:
The values appended with “*” show the limit that has been over-used, then the allowed
quota, and receive the message “Disk quota exceeded”. Example:

$ cp: writing `/mnt/lustre/var/cache/fontconfig/
beeeeb3dfe132a8a0633a017c99ce0c0-x86.cache-2': Disk quota exceeded.
82 Configuring Quotas

Soft limit — Once you are beyond the soft limit, the quota module begins to time for you, but you still can
write block and inode. When you are always beyond the soft limit and use up your grace time, then you get
the same result as the hard limit. For inodes and blocks, it is the same. Usually, the soft limit MUST be less
than hard limit; if not, the quota module never triggers the timing. If you are not interested in the soft limit,
leave it as zero (0).

Hard limit — When you are beyond the hard limit, you get -EQUOTA and cannot write inode/block any
more. The hard limit is the absolute limit. When a grace period is set, you can exceed the soft limit within
the grace period if are under the hard limits.

Lustre quota allocation is controlled by two values "quota_bunit_sz" and "quota_iunit_sz" referring to KBs
and inodes respectively. These values can be accessed on the MDS as /proc/fs/lustre/mds/*/quota_* and
on the OST as /proc/fs/lustre/obdfilter/*/quota_*. The /proc values are bounded by two other variables
quota_btune_sz and quota_itune_sz. By default, the *tune_sz variables are set at 1/2 the *unit_sz variables,
and you cannot set *tune_sz larger than *unit_sz. You must set bunit_sz first if it is increasing by more than
2x, and btune_sz first if it is decreasing by more than 2x.

Total number of inodes — To determine the total number of inodes, you can use "lfs df -i" (and also
/proc/fs/lustre/*/*/filestotal). Note that this command may report a lower ’total inode count’ than the number
of inodes that actually in the file system. If the underlying file system has fewer free blocks than inodes, then
the total inode count for that file system reports only as many inodes as there are free blocks. This is done
because Lustre may need to store an external attribute for each new inode, and it is better to report a free
inode count that is the guaranteed minimum number of inodes that can be created.

Unfortunately, the statfs interface does not report the free inode count directly, but instead reports the total
inode and used inode counts. The free inode count is calculated for df from (total inodes - used inodes).

It is not critical to know the total inode count for a file system. Instead, you should know (accurately), the
free inode count and the used inode count for a file system. Lustre manipulates the total inode count in order
to accurately report the other two values.

The values set for the MDS must match the values set on the OSTs.

The parameter quota_bunit_sz displays bytes, however lfs setquota uses KBs. The parameter
quota_bunit_sz must be a multiple of 1024. A proper minimum KB size for lfs setquota can be calculated by

Size in KBs = (quota_bunit_sz * (number of OSTS + 1)) / 1024.

We add one (1) to the number of OSTs as the MDS also consumes KBs. As inodes are only consumed on
the MDS, the minimum inode size for lfs setquota is equal to quota_iunit_sz.

To turn on the quotas for a user and a group, run:

$ lfs quotaon -ug /mnt/lustre

To turn off the quotas for a user and a group, run:

$ lfs quotaoff -ug /mnt/lustre

To set the quotas for a user as 1 GB block quota and 10,000 file quota, run:

$ lfs setquota -u {username} 0 1000000 0 10000 /mnt/lustre

To list the quotas of a user, run:

$ lfs quota -u {username} /mnt/lustre

NOTE:
Setting the quota below this limit may prevent the user from all the file creation.
Lustre Operations Manual 83

To see the grace time for quota, run:

$ lfs quota -t –{u|g} {quota user|group} /mnt/lustre
84 Configuring Quotas

Chapter II - 8. RAID
This chapter describes RAID storage and Lustre, and includes the following sections:

• Considerations for Backend Storage

• Insights into Disk Performance Measurement

• Creating an External Journal

8.1 Considerations for Backend Storage

Lustre's architecture allows it to use any kind of block device as backend storage. The characteristics of
such devices, particularly in the case of failures vary significantly and have an impact on configuration
choices.

This section surveys issues and recommendations regarding backend storage.

8.1.1 Reliability
A quick calculation (shown below), makes it clear that without further redundancy, RAID5 is not acceptable
for large clusters and RAID6 is a must.

Calculation

Take a 1 PB file system (2000 disks of 500GB capacity). The MTF1 of a disk is about 1000 days and repair
time at 10% of disk bandwidth is close to 1 day (500 GB at 5 MB/sec = 100,000 sec = 1 day). This means
that the expected failure rate is 2000 / 1000 = 2 disks per day.

If we have a RAID5 stripe that is ~10 wide, then during 1 day of rebuilding, the chance that a second disk
in the same array fails is about 9 / 1000 ~= 1/100. This means that in the expected period of 50 days, a
double failure in a RAID5 stripe leads to data loss.

So RAID6 or another double parity algorithm is necessary for OST storage. For the MDS, CFS recommends
RAID0+1 storage.

1. Mean Time to Failure
Lustre Operations Manual 85

8.1.2 Selecting Storage for the MDS and OSS
The MDS does a large amount of small writes. For this reason, CFS recommends using RAID1 storage.
Building RAID1 Linux MD devices and striping over these devices with LVM makes it easy to create an MDS
file system of 1-2 TB (for example, with 4 or 8 500 GB disks).

It is considered mandatory that you use disk monitoring software, so rebuilds happen without any delay.
CFS recommend backups of the metadata file systems. This can be done with LVM snapshots or using raw
partition backups.

We also recommend using a kernel version of 2.6.15 or later with bitmap RAID rebuild features. These
reduce RAID recovery time from a rebuild to quick resynchronization.

8.1.3 Understanding Double Failures with Software and Hardware
RAID5
Software RAID does not offer the hard consistency guarantees of top-end enterprise RAID arrays.
Hardware RAID guarantees that the value of any block is exactly the before or after value and that ordering
of writes is preserved. With software RAID, an interrupted write operation that spans multiple blocks can
frequently leave a stripe in an inconsistent state that is not restored to either the old or the new value. Such
interruptions are normally caused by an abrupt shutdown of the system.

If the array functions without disk failures, but experiences sudden power-down incidents, such interrupted
writes on journal file systems, these events can affect file data and data in the journal. Metadata itself is
re-written from the journal during recovery and is correct. Because the journal uses a single block to indicate
a complete transaction has committed after other journal writes have completed, the journal remains valid.
File data can be corrupted when overwriting file data; this is a known problem with incomplete writes and
caches. Recovery of the disk file systems with software RAID is similar to recovery without software RAID.
Using Lustre servers with disk file systems does not change these guarantees.

Problems can arise if, after an abrupt shutdown, a disk fails on restart. In this case, even single block writes
provide no guarantee that (as an example), the journal will not be corrupted. Follow these requirements:

• If a power down is followed by a disk failure, the disk file system needs a file system check.

• If a RAID array dows not guarantee before / after semantics, the same requirement holds.

CFS considers this to be a requirement for most arrays that are used with Lustre, including the
successful and popular DDN arrays.

CFS will release a modification to the disk file system that eliminates this requirement for a check
with a feature called "journal checksums". With RAID6 this check is not required with a single disk
failure, but is required with a double failure upon reboot after an abrupt interruption of the system.

8.1.4 Performance Considerations
CFS is currently improving the Linux software RAID code to preserve large I/O which the disk subsystems
can do very efficiently. With existing RAID code software, RAID performs equally with all stride sizes, but
we expect that fairly large stride sizes will prove advantageous when these fixes are implemented.
86 RAID

8.1.5 Formatting
When formating a file system on a RAID device, it is beneficial to specify additional parameters at the time
of formatting. This ensures that the file system is optimized for the underlying disk geometry. Use the
--mkfsoptions parameter to specify these options in the Lustre configuration.

For RAID5, RAID6, RAID1+0 storage, specifying the -E stride={stripe_size} option improves the layout of
the file system metadata ensuring that no single disk contains all of the allocation bitmaps. The stripe_size
parameter is in units of 4096-byte blocks and represents the amount of contiguous data written to a single
disk before moving to the next disk. This is applicable to both MDS and OST file systems.

For more information on how to override the defaults while formatting MDS or OST file systems, see Options
for Formatting MDS and OST on page 181.

8.2 Insights into Disk Performance Measurement

Tips and insights for disk performance measurement are provided below. Some of this information is
specific to RAID arrays and/or the Linux RAID implementation.

• Performance is limited by the slowest disk.

Benchmark all disks individually. CFS has frequently encountered situations where drive
performance was not consistent for all devices in the array.

• Verify drive ordering and identification.

For example, on a test system with a Marvell driver, the disk ordering is not preserved between
boots but the controller ordering is. Therefore, CFS ran the sgp_dd survey tool and create arrays
without rebooting.

• Disks and arrays are very sensitive to request size.

To identify the most ideal request size for a given disk, benchmark the disk with different record
sizes ranging from 4 KB to 1-2 MB.

• By default, the maximum size of a request is quite small.

To properly handle I/O request sizes greater than 256 KB, the current Linux kernel needs either a
driver patch or several changes in the block layer defaults, namely MAX_SECTORS,
MAX_PHYS_SEGMENTS and MAX_HW_SEGMENTS. CFS kernels contain this patch. In the CFS
source, see blkdev_tunables-2.6-suse.patch.

• Select the best I/O scheduler for your setup.

Consider trying different I/O schedulers, because their behavior varies with storage and load. CFS
recommends using the deadline or noop schedulers. Benchmark all of the I/O schedules and select
the best one for your setup. For further information on I/O schedulers, refer to:

http://www.linuxjournal.com/article/6931

http://www.redhat.com/magazine/008jun05/features/schedulers/

NOTE:
It is better to have the MDS on RAID1+0 than on RAID5 or RAID6.
Lustre Operations Manual 87

http://www.linuxjournal.com/article/6931
http://www.redhat.com/magazine/008jun05/features/schedulers/

• Use the proper block device with sgp_dd (sgX versus sdX)

size 1048576K rsz 128 crg 8 thr 32 read 20.02 MB/s

size 1048576K rsz 128 crg 8 thr 32 read 56.72 MB/s

The above outputs were achieved on the same disk with the same parameters for sgp_dd. The only
difference between them is that, in the first case, /dev/sda was used; in the second case, /dev/sg0
was used. sgX is a special interface that bypasses the block layer and the I/O scheduler, but sends
the SCSI commands directly to a drive. sdX is a regular block device, and the requests go through
the block layer and the I/O scheduler. The numbers do not change on testing with different I/O
schedulers.

• Requests with partial-stripe write impair RAID5.

In many cases, RAID5 does a read-modify-write cycle, which is not performant.

Try to avoid synchronized writes. It is likely that subsequent writes would make the stripe full and
no reads will be needed. Try to configure RAID5 and the application in such a manner that most of
the writes are full-stripe and stripe-aligned.

• NR_STRIPES in RAID5 (Linux kernel parameter)

This is the size of the internal cache that RAID5 uses for all the operations. If many processes are
doing I/O, CFS suggests that you increase this number. In newer kernels, use a module parameter
to tune it.

• Do not put an ext3 journal onto RAID5.

As journal is written linearly and synchronously, in most cases writes do not fill whole stripes. In this
case, RAID5 has to read parities.

• Suggested MD device setups for maximum performance:

MDT

RAID1 with internal journal and two disks from different controllers.

If you need larger MDTs, create two equal-sized RAID0 arrays from multiple disks. Create a RAID1
array from these arrays. Using RAID10 directly requires a newer mdadm1 than the one shipped with
RHEL 4. You can also use LVM instead of RAID0, although this has not been tested.

OST

File system: RAID5 with 6 disks, each from a different controller.

External journal: RAID1 with two partitions of 400 MB (or more), each from disks on different
controllers.

$ mkfs.lustre ... --mkfsoptions "-j -J device=/dev/mdX"

To set up the journal device (/dev/mdX), run:

$ 'mke2fs -O journal_dev -b 4096 /dev/mdX'

Then run --reformat:

$ mkfs.lustre ... --reformat... --mkfsoptions "-j -J device=/dev/mdX"

NOTE:
The sg device cannot be used by Lustre as it is not a block device - the sg device is used
for performance measurement only.

1. The tool that administers software RAID on Linux.
88 RAID

You can create a root file system, swap, and other system partitions on a RAID1 array with
partitions on any two remaining disks. The remaining space on the OST journal disk can be used
for this.

CFS has not tested RAID1 of swap.

• rsz in sgp_dd

It must be equal to the multiplication of <chunksize> and (disks-1).

You also should pass stripe=N, and extents or mballoc as a mountfs option for OSS. Here
N = <chunksize> * (disks-1) / pagesize.

• Run fsck on power failure or disk failure (RAID arrays).

Run fsck on an array in the event of a power failure and failure of a disk in the array due to
potential write consistency issues.

You can automate this in rc.sysinit by detecting degraded arrays.
Lustre Operations Manual 89

8.2.1 Sample Graphs

8.2.1.1 Graphs for Write Performance

Figure 1 Write - RAID0, 64K chunks, 6 spindles

Figure 2 Write - RAID5, 64K chunks, 6 spindles
90 RAID

8.2.1.2 Graphs for Read Performance

Figure 3 Read - RAID0, 64K chunks, 6 spindles

Figure 4 Read - RAID5, 64K chunks, 6 spindles
Lustre Operations Manual 91

8.3 Creating an External Journal

To create an external journal:

1 Format the Lustre MDT/MGS to use an external journal device. Format the sdb with:

$ mkfs.lustre --mdt --mgs --mkfsoptions="-J device=/dev/sdb" /dev/sda

2 Format a Lustre target sda to use an external journal on sdb.

$ mkfs.lustre --mdt --mgs --mkfsoptions="-J device=/dev/sdb" \ /dev/sda

Permanent disk data:

Target: lustre-MDTffff

Index: unassigned

Lustre FS: lustre

Mount type: ldiskfs

Flags: 0x75

(MDT MGS needs_index first_time update)

Persistent mount opts: errors=remount- ro,iopen_nopriv,user_xattr

Parameters:

device size = 4096MB

formatting backing filesystem ldiskfs on /dev/sda

target name lustre-MDTffff

4k blocks 0

options -J device=/dev/sdb -i 4096 -I 512 -q -O dir_index -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L lustre-MDTffff -J device=/dev/sdb -i \
4096 -I

512 -q -O dir_index -F /dev/sda

Writing CONFIGS/mountdata

3 Start the Lustre target, run:

$ mkdir -p /mnt/test/mdt

$ mount -t lustre /dev/sda /mnt/mds/

4 Format the Lustre OSS to use an external journal device. Format the sdb with:

$ mke2fs -b 4096 -O journal_dev /dev/sdb
92 RAID

5 Format a Lustre target sda to use an external journal on sdb.

mkfs.lustre --ost --reformat --mkfsoptions="-J device=/dev/sdb"\

--mgsnode=mds16@tcp0 /dev/sda

Permanent disk data:

Target: lustre-OSTffff

Index: unassigned

Lustre FS: lustre

Mount type: ldiskfs

Flags: 0x72

(OST needs_index first_time update)

Persistent mount opts: errors=remount-ro,extents,mballoc

Parameters: mgsnode=192.168.16.21@tcp

device size = 4096MB

formatting backing filesystem ldiskfs on /dev/sda

target name lustre-OSTffff

4k blocks 0

options -J device=/dev/sdb -i 16384 -I 256 -q -O dir_index -F

mkfs_cmd = mkfs.ext2 -j -b 4096 -L lustre-OSTffff -J device=/dev/sdb -i \
16384 -I

256 -q -O dir_index -F /dev/sda

Writing CONFIGS/mountdata

6 Mount Lustre on the client, run:

$ mkdir -p /mnt/testfs

$ mount -t lustre cfs21@tcp0:/testfs /mnt/testfs
Lustre Operations Manual 93

94 RAID

Chapter II - 9. Kerberos
This chapter describes how to use Kerberos with Lustre and includes the following sections:

• What is Kerberos?

• Lustre Setup with Kerberos

9.1 What is Kerberos?

Kerberos is a mechanism for authenticating all entities (such as users and services) on an “unsafe” network.
Users and services, known as "principals", share a secret password (or key) with the Kerberos server. This
key enables principals to verify that messages from the Kerberos server are authentic. By trusting the
Kerberos server, users and services can authenticate one another.

9.2 Lustre Setup with Kerberos

Setting up Lustre with Kerberos can provide advanced security protections for the Lustre network. Broadly,
Kerberos offers three types of benefit:

• Allows Lustre connection peers (MDS, OSS and clients) to authenticate one another.

• Protects the integrity of the PTLRPC message from being modified during network transfer.

• Protects the privacy of the PTLRPC message from being eavesdropped during network transfer.

Kerberos uses the “kernel keyring” client upcall mechanism.

WARNING
Kerberos is a Lustre 1.8 feature that is not available in version 1.6. Do NOT attempt
to use Kerberos with Lustre until version 1.8 is released.
Lustre Operations Manual 95

9.2.1 Configuring Kerberos for Lustre
This section describes supported Kerberos distributions and how to set up and configure Kerberos on
Lustre.

9.2.1.1 Kerberos Distributions Supported on Lustre
Lustre supports the following Kerberos distributions:

• MIT Kerberos 1.3.x

• MIT Kerberos 1.4.x

• MIT Kerberos 1.5.x

• MIT Kerberos 1.6 (not yet verified by CFS)

On a number of operating systems, the Kerberos RPMs are installed when the operating system is first
installed. To determine if Kerberos RPMs are installed on your OS, run:

rpm -qa | grep krb

If Kerberos is installed, the command returns a list like this:

krb5-devel-1.4.3-5.1

krb5-libs-1.4.3-5.1

krb5-workstation-1.4.3-5.1

pam_krb5-2.2.6-2.2

9.2.1.2 Preparing to Set Up Lustre with Kerberos
To set up Lustre with Kerberos:

1 Configure NTP to synchronize time across all machines.

2 Configure DNS with zones.

3 Verify that there are fully-qualified domain names (FQDNs), that are resolvable in both forward and
reverse directions for all servers. This is required by Kerberos.

4 On every node, install flowing packages:

• libgssapi (version 0.10 or higher)

Some newer Linux distributions include libgssapi by default. If you do not have libgssapi, build
and install it from source:

http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libgssapi-0.10.tar.gz

• keyutils

NOTE:
The Heimdal implementation of Kerberos is not currently supported on Lustre, although
CFS will soon support it. For the latest update, please visit:
http://www.clusterfs.com
96 Kerberos

http://www.clusterfs.com
http://www.citi.umich.edu/projects/nfsv4/linux/libgssapi/libgssapi-0.10.tar.gz

9.2.1.3 Configuring Lustre for Kerberos
To configure Lustre for Kerberos:

1 Configure the client nodes. For each client node, create a lustre_root principal, and generate and install
the keytab.

kadmin> addprinc -randkey lustre_root@REALM

kadmin> ktadd -e des-cbc-md5:normal lustre_root@REALM

2 Configure the MDT nodes. For each MDT node, create a lustre_mds principal, and generate and install
the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@REALM

kadmin> ktadd -e des-cbc-md5:normal

lustre_mds/mdthost.domain@REALM

3 Configure the OST nodes. For each OST node, create a lustre_oss principal, and generate and install
the keytab.

kadmin> addprinc -randkey lustre_oss/osthost.domain@REALM

kadmin> ktadd -e des-cbc-md5:normal lustre_oss/osthost.domain@REALM

Lustre supports almost all useful encryption types which are supported by MIT Kerberos 5:

• des-cbc-crc

• des-cbc-md5

• des3-hmac-sha1

• aes128-cts

• aes256-cts

• arcfour-hmac-md5

NOTE:
There is only one security context for each client-OST pair, shared by all users on the
client. This protects data written by one user to be passed to an OST by another user
due to asynchronous bulk I/O. The client-OST connection only guarantees message
integrity or privacy; it does not authenticate users.

NOTE:
Encryption Type or enctype is an identifier that specifies the encryption algorithm, mode
and hash algorithms. Keys in Kerberos have an associated enctype to identify the
cryptographic algorithm and mode to be used when performing cryptographic operations
with the key. It is important that the enctypes requested by the client are actually
supported on the system hosting the client. This is the case if the defaults that control
enctypes are not overridden.
Lustre Operations Manual 97

9.2.1.4 Configuring Kerbros
To configure Kerberos to work with Lustre:

1 Modify the files for Kerberos:

$ /etc/krb5.conf
[libdefaults]
default_realm = CLUSTERFS.COM

[realms]
CLUSTERFS.COM = {
kdc = mds16.clustrefs.com
admin_server = mds16.clustrefs.com
}

[domain_realm]
.clustrefs.com = CLUSTERFS.COM
clustrefs.com = CLSUTREFS.COM

[logging]
default = FILE:/var/log/kdc.log

2 Prepare the Kerberos database.

3 Create service principals so Lustre supports Kerberos authentication.

4 Configure the client nodes. For each client node:

a. Create a lustre_root principal and generate the keytab:

kadmin> addprinc -randkey lustre_root@CLUSTERFS.COM

kadmin> ktadd -e des-cbc-md5:normal lustre_root@ CLUSTERFS.COM

This process populates “/etc/krb5.keytab”, which is not human-readable. Use the “ktutil” program to
read and modify it.

b. Install the keytab.

NOTE:
For MIT Kerberos 1.3.x, only des-cbc-md5 works because of a known issue between
libgssapi and the Kerberos library.
The host.domain should be the FQDN in your network; otherwise the server might not
recognize the GSS request.

NOTE:
You can create service principals when configuring your other services to support
Kerberos authentication.

NOTE:
There is only one security context for each client-OST pair, shared by all users on the
client. This protects data written by one user to be passed to an OST by another user
due to asynchronous bulk I/O. The client-OST connection only guarantees message
integrity or privacy; it does not authenticate users.
98 Kerberos

5 Configure the MDT nodes. For each MDT node, create a lustre_mds principal, and generate and install
the keytab.

kadmin> addprinc -randkey lustre_mds/mdthost.domain@CLUSTERFS.COM

kadmin> ktadd -e des-cbc-md5:normal lustre_mds/mdthost.domain@CLUSTERFS.COM

6 Configure the OST nodes. For each OST node, create a lustre_oss principal, and generate and install
the keytab.

kadmin> addprinc -randkey lustre_oss/osthost.domain@CLUSTERFS.COM

kadmin> ktadd -e des-cbc-md5:normal lustre_oss/osthost.domain@ CLUSTERFS.COM

For more detailed information on installing Kerberos, see:

http://web.mit.edu/Kerberos/krb5-1.6/#documentation
Lustre Operations Manual 99

http://web.mit.edu/Kerberos/krb5-1.6/#documentation

9.2.1.5 Setting the Environment
Perform the following steps to configure the system and network to use Kerberos.

System-wide Configuration
1 On each MDT, OST, and client node, add the following line to /etc/fstab to mount them automatically.

nfsd /proc/fs/nfsd nfsd defaults 0 0

2 On each MDT and client node, dd the following line to /etc/request-key.conf.

create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S

Networking
If your network is not using SOCKLND or InfiniBand (and uses Quadrics, Elan or Myrinet for example),
configure a /etc/lustre/nid2hostname (simple script that translates a NID to a hostname) on each server
node (MDT and OST). This is an example on an Elan cluster:

#!/bin/bash

set -x

exec 2>/tmp/$(basename $0).debug

convert a NID for a LND to a hostname, for GSS for example

called with thre arguments: lnd netid nid

$lnd will be string "QSWLND", "GMLND", etc.

$netid will be number in hex string format, like "0x16", etc.

$nid has the same format as $netid

output the corresponding hostname, or error message leaded by a '@' for
error logging.

lnd=$1

netid=$2

nid=$3

uppercase the hex

nid=$(echo $nid | tr '[abcdef]' '[ABCDEF]')

and convert to decimal

nid=$(echo -e "ibase=16\n${nid/#0x}" | bc)

case $lnd in

 QSWLND) # simply stick "mtn" on the front

 echo "mtn$nid"

 ;;

 *) echo "@unknown LND: $lnd"

 ;;

esac
100 Kerberos

9.2.1.6 Building Lustre
If you are compiling the kernel from the source, enable GSS during configuration:

./configure --with-linux=path_to_linux_source --enable-gss --other-options

When you enable Lustre with GSS, the configuration script checks all dependencies, like Kerberos and
libgssapi installation, and in-kernel SUNRPC-related facilities. When you install lustre-xxx.rpm on target
machines, RPM again checks for dependencies like Kerberos and libgssapi.

9.2.1.7 Running GSS Daemons
If we turn on GSS between MDT-OST or MDT-MDT, GSS treats MDT as a client. Hence, lgssd should be
running on MDT.

There are two types of GSS daemons: lgssd and lsvcgssd. Before starting Lustre, make sure they are
running on each node before starting Lustre:

• OST: lsvcgssd

• MDT: lsvcgssd

• CLI: none

NOTE:
CFS is maintaining a patch against nfs-utils, and bringing necessary patched files into
the Lustre tree. After a successful build, GSS daemons are built under lustre/utils/gss
and are part of lustre-xxxx.rpm.
Lustre Operations Manual 101

9.2.2 Types of Lustre-Kerberos Flavors
There are three major flavors in which you can configure Lustre with Kerberos:

• Basic flavor

• Security flavor

• Customized flavor

Select a flavor depending on your priorities and preferences.

9.2.2.1 Basic Flavor
Currently, CFS supports four basic flavors: null, plain, krb5i, and krb5p, described in Table 2

9.2.2.2 Security Flavor
Security flavor is a string that describes what kind of security transform is performed on a given PTLRPC
connection. It covers two parts of messages: RPC message and BULK data. You can set any one of the
parts in one of the following three modes:

• null – No protection

• integrity – Data integrity protection (checksum or signature)

• privacy – Data privacy protection (encryption)

Table 2 Basic Flavors Supported by CFS

Basic
Flavor Authentication RPC Message

Protection
Bulk Data
Protection Remarks

null N/A N/A N/A Almost no performance overhead. The
on-wire RPC data is compatible with old
versions of Lustre (1.4.x, 1.6.x).

plain N/A null null Carries checksum (So only protects
data mutating during transfer, does
NOT guarantee the genuine author as
there is no actual authentication).

krb5i GSS/Kerberos5 integrity integrity
[SHA1]

RPC message integrity protection
algorithm is determined by actual
Kerberos algorithms in use; heavy
performance overhead.

krb5p GSS/Kerberos5 privacy privacy
[SHA1/ARC4]

RPC message privacy protection
algorithm is determined by actual
Kerberos algorithms in use;
considerable performance overhead.
102 Kerberos

9.2.2.3 Customized Flavor
Generally, you do not need the customized flavor; basic flavor is sufficient for regular usage. But, you can
customize the flavor string to some extent. The usual format of a flavor string is:

Qbasic_flavor[-bulk{nip}[:checksum_alg[/encryption_alg]]]

Here are some examples of how to use customized flavors:

• plain-bulki: Use plain on RPC message (offering null protection), but add checksum protection on
the bulk transfer.

• krb5i-bulkn: Use krb5i on RPC message, but do not protect the bulk transfer.

• krb5p-bulki: Use krb5p on RPC message, but protect data integrity of the bulk transfer.

• krb5p-bulkp:sha512/arc4: Use krb5p on RPC message, and protect data privacy of the bulk
transfer by algorithm SHA512 and ARC4.

Currently, Lustre supports following bulk data crypto algorithms:

• Checksum:

• ocrc32

• omd5

• osha1/sha256/sha384/sha512

• Encryption:

• oarc4

9.2.2.4 Specifying Security Flavors
If you have not specified a security flavor, the CLIENT-MDT connection defaults to plain, and all other
connections use null.

Specifying Flavors by Mount Options
When mounting OST or MDT devices, add the mount option (shown below) to specify the security flavor:

mount -t lustre -o sec=plain /dev/sda1 /mnt/mdt/

This means all connections to this device will use the plain flavor. You can split this sec=flavor as:

mount -t lustre -o sec_mdt={flavor1},sec_cli={flavor1}/dev/sda /mnt/mdt/

This means connections from other MDTs to this device will use flavor1, and connections from all clients to
this device will use flavor2.

Specifying Flavors by On-Disk Parameters
You can also specify the security flavors by specifying on-disk parameters on OST and MDT devices:

tune2fs -o security.rpc.mdt=flavor1 -o security.rpc.cli=flavor2 device

On-disk parameters are overridden by mount options.
Lustre Operations Manual 103

9.2.2.5 Mounting Clients
Root on client node mounts Lustre without any special tricks.

9.2.2.6 Authenticating Normal Users
On client nodes, a non-root user needs kinit before accessing Lustre, just like other Kerberized
applications. You can destroy the established security contexts before logging out by "lfs flushctx":

lfs flushctx [-k]

Here -k also means destroy the on-disk Kerberos credential cache. It is equivalent to "kdestroy." Otherwise,
it only destroys established contexts in Lustre kernel
104 Kerberos

Chapter II - 10. Bonding
This chapter describes how to set up bonding with Lustre, and includes the following sections:

• Network Bonding

• Requirements

• Using Lustre with Multiple NICs versus Bonding NICs

• Bonding Module Parameters

• Setting Up Bonding

• Configuring Lustre with Bonding

• Bonding References

10.1 Network Bonding

Bonding, also known as link aggregation, trunking and port trunking1, is a method of aggregating multiple
physical network links into a single logical link for increased bandwidth.

Several different types of bonding are supported in Linux. All these types are referred to as “modes,” and
use the bonding kernel module.

Modes 0 to 3 provide support for load balancing and fault tolerance by using multiple interfaces. Mode 4
aggregates a group of interfaces into a single virtual interface where all members of the group share the
same speed and duplex settings. This mode is described under IEEE spec 802.3ad, and it is referred to as
either “mode 4” or “802.3ad.”

(802.3ad refers to mode 4 only. The detail is contained in Clause 43 of the IEEE 8 - the larger 802.3
specification. For more information, consult IEEE.)

1. This manual uses the term ’bonding’.
Lustre Operations Manual 105

10.2 Requirements

The most basic requirement for successful bonding is that both endpoints of the connection must support
bonding. In a normal case, the non-server endpoint is a switch. (Two systems connected via crossover
cables can also use bonding.) Any switch used must explicitly support 802.3ad Dynamic Link Aggregation.

The kernel must also support bonding. All supported Lustre kernels have bonding functionality. The network
driver for the interfaces to be bonded must have the ethtool support. To determine slave speed and duplex
settings, ethtool support is necessary. All recent network drivers implement it.

To verify that your interface supports ethtool, run:

which ethtool

/sbin/ethtool

ethtool eth0

Settings for eth0:

 Supported ports: [TP MII]

 Supported link modes: 10baseT/Half 10baseT/Full/ 100baseT/Half
100baseT/Full

 Supports auto-negotiation: Yes

 Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full

 Advertised auto-negotiation: Yes

 Speed: 100Mb/s

 Duplex: Full

 Port: MII

 PHYAD: 1

 Transceiver: internal

 Auto-negotiation: on

 Supports Wake-on: pumbg

 Wake-on: d

 Current message level: 0x00000001 (1)

 Link detected: yes
106 Bonding

ethtool eth1

Settings for eth1:

 Supported ports: [TP MII]

 Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full

 Supports auto-negotiation: Yes

 Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full

 Advertised auto-negotiation: Yes

 Speed: 100Mb/s

 Duplex: Full

 Port: MII

 PHYAD: 32

 Transceiver: internal

 Auto-negotiation: on

 Supports Wake-on: pumbg

 Wake-on: d

 Current message level: 0x00000007 (7)

 Link detected: yes

To quickly check whether your kernel supports bonding, run:

grep ifenslave /sbin/ifup

which ifenslave

/sbin/ifenslave

NOTE:
Bonding and ethtool have been available since 2000. All Lustre-supported kernels
include this functionality.
Lustre Operations Manual 107

10.3 Using Lustre with Multiple NICs versus Bonding NICs

Lustre can use multiple NICs without bonding. There is a difference in performance when Lustre uses
multiple NICs versus when it uses bonding NICs.

Whether an aggregated link actually yields a performance improvement proportional to the number of links
provided, depends on network traffic patterns and the algorithm used by the devices to distribute frames
among aggregated links. Performance with bonding depends on:

• Out-of-order packet delivery

This can trigger TCP congestion control. To avoid this, some bonding drivers restrict a single TCP
conversation to a single adapter within the bonded group.

• Load balancing between devices in the bonded group.

Consider a scenario with a two CPU node with two NICs. If the NICs are bonded, Lustre establishes
a single bundle of sockets to each peer. Since ksocklnd bind sockets to CPUs, only one CPU moves
data in and out of the socket for a uni-directional data flow to each peer. If the NICs are not bonded,
Lustre establishes two bundles of sockets to the peer. Since ksocklnd spreads traffic between
sockets, and sockets between CPUs, both CPUs move data.

10.4 Bonding Module Parameters

Bonding module parameters control various aspects of bonding.

Outgoing traffic is mapped across the slave interfaces according to the transmit hash policy. For Lustre,
CFS recommends setting the xmit_hash_policy option to the layer3+4 option for bonding. This policy uses
upper layer protocol information if available to generate the hash. This allows traffic to a particular network
peer to span multiple slaves, although a single connection does not span multiple slaves.

$ xmit_hash_policy=layer3+4

The miimon option enables users to monitor the link status. (The parameter is a time interval in
milliseconds.) It makes an interface failure transparent to avoid serious network degradation during link
failures. A reasonable default setting is 100 milliseconds; run:

$ miimon=100

For a busy network, increase the timeout.
108 Bonding

10.5 Setting Up Bonding

To set up bonding:

1 Create a virtual 'bond' interface by creating a configuration file in:

/etc/sysconfig/network-scripts/ # vi /etc/sysconfig/network-scripts/ifcfg-bond0

2 Append the following lines to the file.

DEVICE=bond0

IPADDR=192.168.10.79 # Use the free IP Address of your network

NETWORK=192.168.10.0

NETMASK=255.255.255.0

USERCTL=no

BOOTPROTO=none

ONBOOT=yes

3 Attach one or more slave interfaces to the bond interface. Modify the eth0 and eth1 configuration files
(using a VI text editor).

 a. Use the VI text editor to open the eth0 configuration file.

vi /etc/sysconfig/network-scripts/ifcfg-eth0

 b. Modify/append the eth0 file as follows:

DEVICE=eth0

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

 c. Use the VI text editor to open the eth1 configuration file.

vi /etc/sysconfig/network-scripts/ifcfg-eth1

 d. Modify/append the eth1 file as follows:

DEVICE=eth1

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none
Lustre Operations Manual 109

4 Set up the bond interface and its options in /etc/modprobe.conf. Start the slave interfaces by your
normal network method.

vi /etc/modprobe.conf

 a. Append the following lines to the file.

alias bond0 bonding

options bond0 mode=balance-alb miimon=100

 b. Load the bonding module.

modprobe bonding

ifconfig bond0 up

ifenslave bond0 eth0 eth1

5 Start/restart the slave interfaces (using your normal network method).

The examples below are from RedHat systems, and use /etc/sysconfig/networking-scripts/ifcfg-* for
setup. The OSDL website referenced below includes detailed instructions for other configuration
methods, instructions to use DHCP with bonding, and other setup details. CFS strongly recommends
using this website.

http://linux-net.osdl.org/index.php/Bonding

NOTE:
You must modprobe the bonding module for each bonded interface. If you wish to create
bond0 and bond1, two entries in modprobe.conf are required.
110 Bonding

http://linux-net.osdl.org/index.php/Bonding

6 Check /proc/net/bonding to determine status on bonding. There should be a file there for each bond
interface.

cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.0.3 (March 23, 2006)

Bonding Mode: load balancing (round-robin)

MII Status: up

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: eth0

MII Status: up

Link Failure Count: 0

Permanent HW addr: 4c:00:10:ac:61:e0

Slave Interface: eth1

MII Status: up

Link Failure Count: 0

Permanent HW addr: 00:14:2a:7c:40:1d
Lustre Operations Manual 111

7 Use ethtool or ifconfig to check the interface state. ifconfig lists the first bonded interface as “bond0.”

ifconfig

bond0 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

 inet addr:192.168.10.79 Bcast:192.168.10.255 Mask:255.255.255.0

 inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

 UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1

 RX packets:3091 errors:0 dropped:0 overruns:0 frame:0

 TX packets:880 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:314203 (306.8 KiB) TX bytes:129834 (126.7 KiB)

eth0 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

 inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

 RX packets:1581 errors:0 dropped:0 overruns:0 frame:0

 TX packets:448 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:162084 (158.2 KiB) TX bytes:67245 (65.6 KiB)

 Interrupt:193 Base address:0x8c00

eth1 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0

 inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link

 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

 RX packets:1513 errors:0 dropped:0 overruns:0 frame:0

 TX packets:444 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:152299 (148.7 KiB) TX bytes:64517 (63.0 KiB)

 Interrupt:185 Base address:0x6000
112 Bonding

10.5.1 Examples
This is an example of modprobe.conf for bonding Ethernet interfaces eth1 and eth2 to bond0:

cat /etc/modprobe.conf

alias eth0 8139too

alias scsi_hostadapter sata_via

alias scsi_hostadapter1 usb-storage

alias snd-card-0 snd-via82xx

options snd-card-0 index=0

options snd-via82xx index=0

alias bond0 bonding

options bond0 mode=balance-alb miimon=100

options lnet networks=tcp

alias eth1 via-rhine

cat /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE=bond0

BOOTPROTO=none

NETMASK=255.255.255.0

IPADDR=192.168.10.79 # (Assign here the IP of the bonded interface.)

ONBOOT=yes

USERCTL=no

ifcfg-ethx

cat /etc/sysconfig/network-scripts/ifcfg-eth0

TYPE=Ethernet

DEVICE=eth0

HWADDR=4c:00:10:ac:61:e0

BOOTPROTO=none

ONBOOT=yes

USERCTL=no

IPV6INIT=no

PEERDNS=yes

MASTER=bond0

SLAVE=yes
Lustre Operations Manual 113

In the following example, the bond0 interface is the master (MASTER) while eth0 and eth1 are slaves
(SLAVE).

$ /sbin/ifconfig

bond0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 \
Mask:255.255.252.0

UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1

RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0

TX packets:3286647 errors:1 dropped:0 overruns:1 carrier:0

collisions:0 txqueuelen:0

eth0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 \
Mask:255.255.252.0

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643167 errors:1 dropped:0 overruns:1 carrier:0

collisions:0 txqueuelen:100

Interrupt:10 Base address:0x1080

eth1Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4

inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 \
Mask:255.255.252.0

UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1

RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0

TX packets:1643480 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

Interrupt:9 Base address:0x1400

NOTE:
All slaves of bond0 have the same MAC address (Hwaddr) – bond0. All modes, except
TLB and ALB, have this MAC address. TLB and ALB require a unique MAC address for
each slave.
114 Bonding

10.6 Configuring Lustre with Bonding

Lustre uses the IP address of the bonded interfaces and requires no special configuration. It treats the
bonded interface as a regular TCP/IP interface. If necessary, specify “bond0” using the Lustre networks
parameter in /etc/modprobe:

options lnet networks=tcp(bond0)

10.7 Bonding References

CFS recommends the following bonding references:

• In the Linux kernel source tree, see documentation/networking/bonding.txt:

http://linux-ip.net/html/ether-bonding.html

http://www.sourceforge.net/projects/bonding

• This is the bonding SourceForge website:

http://linux-net.osdl.org/index.php/Bonding

This is the most exhaustive reference and CFS highly recommends it. This website includes
explanations of more complicated setups, including the use of DHCP with bonding.
Lustre Operations Manual 115

http://linux-ip.net/html/ether-bonding.html
http://www.sourceforge.net/projects/bonding
http://linux-net.osdl.org/index.php/Bonding

116 Bonding

Chapter II - 11. Upgrading Lustre
The chapter describes how to upgrade and downgrade Lustre versions and includes the following sections:

• Lustre Interoperability

• Upgrading from Version 1.4.11 to Version 1.6.3

• Downgrading Lustre from Version 1.6.3 to Version 1.4.11

11.1 Lustre Interoperability

For Lustre 1.6.3, the following upgrades are supported:

• Lustre 1.4.11 (latest 1.4.x version) to Lustre 1.6.3 (latest 1.6.x version).

• One minor version to the next (for example, 1.6.2 > 1.6.3 and 1.4.10 > 1.4.11).

For Lustre 1.6.3, downgrades in the same ranges are supported.

• If you upgrade from Lustre 1.4.11 > 1.6.3, you can downgrade to version 1.4.11.

• If you upgrade from Lustre 1.6.2 > 1.6.3, you can downgrade to version 1.6.2.

WARNING:
A FRESH INSTALLATION OF LUSTRE 1.6.3 IS NOT GUARANTEED TO BE
DOWNGRADABLE TO AN EARLIER LUSTRE VERSION.
Lustre Operations Manual 117

11.2 Upgrading from Version 1.4.11 to Version 1.6.3

Use the procedures in this chapter to upgrade Lustre version 1.4.11 to version 1.6.3.

11.2.1 Upgrade Requirements
Remember the following important points before upgrading Lustre.

Upgrade MDT before OSTs. The upgrade procedure is:

1 Shut down lconf failover.

2 Install the new modules.

3 Run tunefs.lustre.

4 Mount startup.

Upgrade can be done across a failover pair, in which case the upgrade procedure is:

1 On the backup server, install the new modules.

2 Shut down lconf failover.

3 On the new server, run tunefs.lustre.

4 On the new server, mount startup.

5 On the primary server, install the new modules.

The file system name must be less than or equal to 8 characters (so it fits on the disk label).
118 Upgrading Lustre

11.2.2 Supported Upgrade Paths
The following Lustre upgrade paths are supported.

Entire file system or individual servers / clients

• Servers can undergo a "rolling upgrade", in which individual servers (or their failover partners) and
clients are upgraded one at a time and restarted, so that the file system never goes down. This type
of upgrade limits your ability to change certain parameters.

• The entire file system can be shut down, and all servers and clients upgraded at once.

• Any combination of the above two paths.

Interoperability between the nodes

This describes the interoperability between clients, OSTs, and MDTs.

Clients

• Old live clients can continue to communicate with old/new/mixed servers.

• Old clients can start up using old/new/mixed servers.

• New clients can start up using old/new/mixed servers (use old mount format for old MDT).

OSTs

• New clients/MDTs can continue to communicate with old OSTs.

• New OSTs can only be started after the MGS has been started (typically this means "after the MDT
has been upgraded.")

MDTs

• New clients can communicate with old MDTs.

• New co-located MGS/MDTs can be started at any point.

• New non-MGS MDTs can be started after the MGS starts.

11.2.3 Starting Clients
You can start a new client with an old MDT by using the old format of the client mount command:

client# mount -t lustre <mdtnid>:/<mdtname>/client <mountpoint>

You can start a new client with an upgraded MDT by using the new format and pointing it at the MGS, not
the MDT (for co-located MDT/MGS, this is the same):

client# mount -t lustre <mgsnid>:/<fsname> <mountpoint>

Old clients always use the old format of the mount command, regardless of whether the MDT has been
upgraded or not.
Lustre Operations Manual 119

11.2.4 Upgrading a Single File System
tunefs.lustre will find the old client log on an 1.4.x MDT that is being upgraded to 1.6. (If the name of the
client log is not "client", use the lustre_up14.sh script, described in Step 2 to Step 3.)

1 Shut down the MDT.

mdt1# lconf --failover --cleanup config.xml

2 Install the new Lustre version and run tunefs.lustre to upgrade the configuration. There are two options::

• Rolling upgrade keeps a copy of the original configuration log, allowing immediate reintegration into
a live file system, but prevents OSC parameter and failover NID changes. (The writeconf procedure
can be performed later to eliminate these restrictions. For details, see Writeconf on page 25.)

mdt1# tunefs.lustre --mgs --mdt --fsname=testfs /dev/sda1

• i.--writeconf begins a new configuration log, allowing permanent modification of all parameters (see
Changing Parameters on page 191), but requiring all other servers and clients to be stopped at this
point. No clients can be started until all OSTs are upgraded.

[root@mds1]# tunefs.lustre --mgs --writeconf --mgs --mdt --fsname=ldiskfs /
dev/hda4

checking for existing Lustre data: found CONFIGS/mountdata

Reading CONFIGS/mountdata

Read previous values:

Target: testfs-MDT0000

Index: 0

UUID: mds-1_UUID

Lustre FS: testfs

Mount type: ldiskfs

Flags: 0x205

(MDT MGS upgrade1.4)

Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

Parameters:

Permanent disk data:

Target: ldiskfs-MDT0000

Index: 0

UUID: mds-1_UUID

Lustre FS: ldiskfs

Mount type: ldiskfs

Flags: 0x305

 (MDT MGS writeconf upgrade1.4)

Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr

Parameters:

Writing CONFIGS/mountdata

Copying old logs
120 Upgrading Lustre

3 Start the upgraded MDT.

mdt1# mkdir -p /mnt/test/mdt

mdt1# mount -t lustre /dev/hda4 /mnt/test/mdt

mdt1 # df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hda2 10080520 4600820 4967632 49% /

/dev/hda1 101086 14787 81080 16% /boot

none 501000 0 501000 0% /dev/shm

/dev/hda4 23339176 455236 21550144 3% /mnt/test/mdt

4 OSTs for this file system can now be upgraded and started in a similar manner, except they need the
address of the MGS. Very old installations may also need to specify the OST index
(for instance, --index=5).

ost1# tunefs.lustre --ost --fsname=lustre --mgsnode=mds /dev/sda4

checking for existing Lustre data: found last_rcvd

tunefs.lustre: Unable to read /tmp/dirQi2cwV/mountdata (No such file or
directory.)

Trying last_rcvd

Reading last_rcvd

Feature compat=2, incompat=0

Read previous values:

Target:

Index: 0

UUID: ost1_UUID

Lustre FS: lustre

Mount type: ldiskfs

Flags: 0x202

 (OST upgrade1.4)
Lustre Operations Manual 121

Persistent mount opts:

Parameters:

Permanent disk data:

Target: lustre-OST0000

Index: 0

UUID: ost1_UUID

Lustre FS: lustre

Mount type: ldiskfs

Flags: 0x202

(OST upgrade1.4)

Persistent mount opts: errors=remount-ro,extents,mballoc

Parameters: mgsnode=192.168.10.34@tcp

Writing CONFIGS/mountdata 11.1.5 Upgrading Multiple File Systems with a
Shared MGS

Ost-1# mount -t lustre /dev/sda4 /mnt/test/ost/

Ost1# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda2 10080520 3852036 5716416 41% /

/dev/sda1 101086 14964 80903 16% /boot

none 501000 0 501000 0% /dev/shm

/dev/sda4 101492248 471672 95781780 1% /mnt/test/ost
122 Upgrading Lustre

11.2.5 Upgrading Multiple File Systems with a Shared MGS
The upgrade order is: MGS first, then for any single file system the MDT must be upgraded and mounted,
and then the OSTs for that file system. If the MGS is co-located with the MDT, then the old config logs stored
on the MDT are automatically transferred to the MGS. If the MGS is not co-located with the MDT (for a site
with multiple file systems), then the old config logs must be transferred to the MGS manually.

1 Format the MGS node, but do not start it.

mgsnode# mkfs.lustre --mgs /dev/hda4

2 Mount the MGS disk as type ldiskfs.

mgsnode# mount -t ldiskfs /dev/hda4 /mnt/mgs

3 For each MDT, copy the MDT and client startup logs from the MDT to the MGS, renaming them as
needed. There is a script that helps automate this process—lustre_up14.sh

mdt1# lustre_up14 /dev/hda4 lustre

debugfs 1.35 (28-Feb-2004)

/dev/hda4: catastrophic mode - not reading inode or group bitmaps

Copying log 'mds-1' to 'lustre-MDT0000'. Okay [y/n]?y

Copying log 'client' to 'lustre-client'. Okay [y/n]?y

ls -l /tmp/logs

total 24

-rw-r--r-- 1 root root 9448 Oct 22 17:46 lustre-client

-rw-r--r-- 1 root root 9080 Oct 22 17:46 lustre-MDT0000

mdt1# cp /tmp/logs/lustre-* /mnt/tmp/CONFIGS/

cp: overwrite `/mnt/tmp/CONFIGS/lustre-client'? y

cp: overwrite `/mnt/tmp/CONFIGS/lustre-MDT0000'? y

4 Unmount the MGS ldiskfs mount.

mgsnode# umount /mnt/mgs

5 Start the MGS.

mgsnode# mount -t lustre /dev/hda4 /mnt/mgs

6 Shut down one of the old MDTs.

mdt1# lconf --failover --cleanup config.xml

7 Upgrade the old MDT.

install new Lustre 1.6

mdt1# tunefs.lustre --mdt --nomgs --fsname=testfs \
--mgsnode=mgsnode@tcp0 /dev/hda4

(--nomgs is required to upgrade a non-co-located MDT.)
Lustre Operations Manual 123

8 Start the upgraded MDT.

mdt1# mount -t lustre /dev/hda4 /mnt/test/mdt

9 Upgrade and start OSTs for this file system.

ost1# lconf --failover --cleanup config.xml

install new Lustre 1.6

ost1# tunefs.lustre --ost --fsname=lustre --mgsnode=mgsnode@tcp0 /dev/sdc

ost1# mount -t lustre /dev/sdc /mnt/test/ost1

10 Upgrade other MDTs in a similar manner. Keep in mind:

• The MGS must NOT be running (mounted) when the backing disk is mounted as ldiskfs.

• The MGS MUST be running when first starting a newly-upgraded server (MDT or OST).
124 Upgrading Lustre

11.3 Downgrading Lustre from Version 1.6.3 to Version 1.4.11

This section describes how to downgrade Lustre version 1.6.3 to version 1.4.11.

11.3.1 Downgrade Requirements
• The file system must have been upgraded from 1.4.x. In other words, a file system created or

reformatted under 1.6 cannot be downgraded.

• Any new OSTs that were dynamically added to the file system will be unknown in version 1.4.x. It
is possible to add them back using lconf --write-conf, but you must be careful to use the correct
UUID of the new OSTs.

• Downgrading an MDS that is also acting as an MGS prevents access to all other file systems that
the MGS serves.

11.3.2 Downgrading a File System
To downgrade a file system:

1 Shut down all clients.

2 Shut down all servers.

3 Install Lustre 1.4.x on the client and server nodes.

4 Restart the servers (OSTs, then MDT) and clients.

WARNING:
When you downgrade Lustre, all OST additions and parameter changes made
since the file system was upgraded are lost.
Lustre Operations Manual 125

126 Upgrading Lustre

Chapter II - 12. Lustre SNMP Module
The Lustre SNMP module reports information about Lustre components and system status, and generates
traps if an LBUG occurs. The Lustre SNMP module works with the net-snmp. The module consists of a
plug-in (lustresnmp.so), which is loaded by the snmpd daemon, and a MIB file (Lustre-MIB.txt).

This chapter describes how to install and use the Lustre SNMP module, and includes the following sections:

• Installing the Lustre SNMP Module

• Building the Lustre SNMP Module

• Using the Lustre SNMP Module

12.1 Installing the Lustre SNMP Module

To install the Lustre SNMP module:

1 Locate the SNMP plug-in (lustresnmp.so), in the base Lustre RPM and install it.

/usr/lib/lustre/snmp/lustresnmp.so

2 Locate the MIB (Lustre-MIB.txt) in /usr/share/lustre/snmp/mibs/Lustre-MIB.txt and
append the following line to snmpd.con.

dlmod lustresnmp /usr/lib/lustre/snmp/lustresnmp.so

3 You may need to copy Lustre-MIB.txt to a different location to use few tools. For this, use either of these
commands.

~/.snmp/mibs

/usr/local/share/snmp/mibs
Lustre Operations Manual 127

12.2 Building the Lustre SNMP Module

To build the Lustre SNMP module, you need the net-snmp-devel package. The default net-snmp install
includes an snmpd.conf file.

1 Complete the net-snmp setup by checking and editing the snmpd.conf file, located in /etc/snmp

/etc/snmp/snmpd.conf

2 Build the Lustre SNMP module from the Lustre src.rpm

• Install the Lustre source

• Run ./configure

• Add the --enable-snmp option

12.3 Using the Lustre SNMP Module

Once the Lustre SNMP module in installed and built, use can use it for the following purposes:

• For all Lustre components, the SNMP module reports a number and total and free capacity
(usually in bytes).

• Depending on the component type, SNMP also reports total or free numbers for objects like OSD
and OSC or other files (LOV, MDC, and so on).

• The Lustre SNMP module provides one read/write variable, sysStatus, which starts and stops
Lustre.

• The sysHealthCheck object reports status either as healthy' or 'not healthy' and provides
information for the failure.

• The Lustre SNMP module generates traps on the detection of LBUG (lustrePortalsCatastropeTrap),
and detection of various OBD-specific healthchecks (lustreOBDUnhealthyTrap).
128 Lustre SNMP Module

Chapter II - 13. Backup and Restore
This chapter describes how to perform backup and restore on Lustre, and includes the following sections:

• Lustre Backups

• Restoring from a File-level Backup

13.1 Lustre Backups

Lustre provides file system backups at several levels.

13.1.1 Client Filesystem-level Backups
It is possible to get a backup of Lustre file systems from a client (or many clients working parallel in different
directories) with the help of user-level backup tools tar, cpio, amanda, and many other enterprise-level
backup utilities. Using normal, file backup tools remains the easiest, recommended method to back up and
restore data.

However, due to the large size of most Lustre file systems, it is not always possible to get a complete
backup. CFS recommends that you back up subsets of a file system. This includes subdirectories of the
entire directory, filesets for a single user, files incremented by date, and so on.
Lustre Operations Manual 129

13.1.2 Performing Device-level Backups
In some situations, you may need a full, device-level backup of an individual MDS or OST storage device
(before replacing hardware, performing maintenance, etc.). A full device-level backup is the easiest backup
method and it ensures preservation of the original data.

In case of hardware replacement, if the spare storage device is available, then it is possible to take a raw
copy of the MDS or OST from one block device to the other, as long as the new device is at least as large
as the original device. To do this, run:

dd if=/dev/{original} of=/dev/{new} bs=1M

If there are problems while reading the data on the original device due to hardware errors, then run the
following command to read the data and skip sections with errors. Run:

dd if=/dev/{original} of=/dev/{new} bs=4k conv=sync,noerror

In spite of hardware errors, the ext3 file system is very robust and it may be possible to recover the file
system data after running e2fsck on the new device.

13.1.3 Performing File-level Backups
In some situations, you may want to back up data from a single file on the MDS or an OST file system, rather
than back up the entire device. This may be a preferable backup strategy if the storage device is large, but
has relatively little data, parameter configurations on the ext3 file system need to be changed, or to use less
space for backup.

You can mount the ext3 file system directly from the storage device and do a file-level backup. However you
MUST STOP Lustre on that node.

To do this, back up the Extended Attributes (EAs) stored in the file system. As the current backup tools do
not properly save this data, perform the following procedure.

13.1.3.1 Backing Up an MDS File
To back up a file on the MDS:

1 Make a mount point for the filesystem "mkdir /mnt/mds" and mount the filesystem at that location.

• For 2.4 kernels, run:

mount -t ext3 {dev} /mnt/mds

• For 2.6 kernels, run:

mount -t ldiskfs {dev} /mnt/mds

2 Change to the mount point being backed up "cd /mnt/mds".

3 Back up the EAs, run:

getfattr -R -d -m '.*' -P . > ea.bak

NOTE:
The getfattr command is part of the "attr" package in most distributions. If the getfattr
command returns errors like "Operation not supported" then the kernel does not correctly
support EAs. STOP and use a different backup method or contact CFS for assistance.
130 Backup and Restore

4 Verify that the ea.bak file has properly backed up the EA data on the MDS. Without this EA data, the
backup is not useful. Look at this file with "more" or a text editor. It should have an item for each file like:

file: ROOT/mds_md5sum3.txt

trusted.lov=0s0AvRCwEAAABXoKUCAAAAAAAAAAAAAAAAAAAQAAEAAADD5QoAAAAAAAAAAAAAA
AAAAAAAAAEAAAA=

5 Back up all file system data, run:

tar czvf {backup file}.tgz

6 Change directory out of the mounted files ystem, run:

cd -

7 Unmount the files system, run:

umount /mnt/mds

13.1.3.2 Backing Up an OST File
Follow the same procedure as Backing Up an MDS File, except skip Step 4 and, for each OST device file
system, replace mds with ost in the commands.

13.2 Restoring from a File-level Backup

To restore data from a file-level backup, you need to format the device, restore the file data and then restore
the EA data.

1 Format the device. To get the optimal ext3 parameters, run:

$ mkfs.lustre --fsname {fsname} --reformat --mgs|mdt|ost /dev/sda

WARNING:
Only reformat the node which is being restored. If there are multiple services on
the node, do not perform this step as it can cause all devices on the node to be
reformatted. In that situation, use these steps:

For MDS file systems, run:

mke2fs -j -J size=400 -I {inode_size} -i 4096 {dev}

where {inode_size} is at least 512 and possibly larger if the default stripe count is > 10
(inode_size = power_of_2_>=_than(384 + stripe_count * 24)).

For OST file systems, run:

mke2fs -j -J size=400 -I 256 -i 16384 {dev}"
Lustre Operations Manual 131

2 Enable ext3 file system directory indexing.

tune2fs -O dir_index {dev}

3 Mount the file system.

• For 2.4 kernels, run:

mount -t ext3 {dev} /mnt/mds

• For 2.6 kernels, run:

mount -t ldiskfs {dev} /mnt/mds

4 Change to the new file system mount point, run:

cd /mnt/mds

5 Restore the file system backup, run:

tar xzvpf {backup file}

6 Restore the file system EAs, run:

setfattr --restore=ea.bak (not required for OST devices)

7 Remove the recovery logs (now invalid), run:

rm OBJECTS/* CATALOGS

NOTE:
If the file system is in use during the restore process, then run the lfsck tool (part of the
CFS e2fsprogs) to ensure that the file system is coherent.

It is not necessary to run this tool if the backup of all device file systems occurs at the
same time after stopping the entire Lustre file system. After completing the file system
should be immediately usable without running lfsck. There may be few I/O errors
reading from files that are present on the MDS, but not on the OSTs. However, the files
that are created after the MDS backup are not visible or accessible.
132 Backup and Restore

Chapter II - 14. POSIX
This chapter describes POSIX and includes the following sections:

• Installing POSIX

• Running the Test Suite Against Lustre

• Isolating and Debugging Failures

Portable Operating System Interface (POSIX) is a set of standard, operating system interfaces based on
the Unix OS. POSIX defines file system behavior on single Unix node. It is not a standard for clusters.

POSIX specifies the user and software interfaces to the OS. Required program-level services include basic
I/O (file, terminal, and network) services. POSIX also defines a standard threading library API which is
supported by most modern operating systems.

POSIX in a cluster means that most of the operations are atomic. Clients can not see the metadata. POSIX
offers strict mandatory locking which gives guarantee of semantics. Users do not have control on these
locks.

The current Lustre POSIX is comparable with NFS. Lustre 1.8 promises strong security with features like
GSS / Kerberos 5. This enables graceful handling of users from multiple realms which, in turn, introduce
multiple UID & GID databases.

Note
Advisory fcntl/flock/lockf locks will be available in Lustre 1.8.

Note
Although used mainly with UNIX systems, the POSIX standard can apply to any
operating system.
Lustre Operations Manual 133

14.1 Installing POSIX

To install POSIX (used for testing Lustre):

1 Download all POSIX files from ftp://ftp.lustre.org:/pub/benchmarks/posix/tet_vsxgen_2.0.tgz

lts_vsx-pcts-1.0.1.2.tgz

install.sh

myscen.bld

myscen.exec

2 Run the install.sh script and select /home/tet for the root directory for the test suite installation.

3 Install users and groups. Accept the defaults for the packages to be installed.

4 To avoid a bug in the installation scripts where the test directory is not created properly, create a
temporary directory to hold the POSIX tests when they are built.

$ mkdir -p /mnt/lustre/TESTROOT;chown vsx0.vsxg0

5 Log in as the test user: su - vsx0

6 Run ../setup.sh to build the test suite. Most of the defaults are correct, except the root directory from
which to run the test sets. For this setting, specify /mnt/lustre/TESTROOT. Do NOT install pseudo
languages.

7 When the system displays this prompt:

Install scripts into TESTROOT/BIN..?

Do not immediately repond. Using another terminal (as stopping the script does not work), replace the
files /home/tet/test_sets/scen.exec and /home/tet/test_sets/scen.bld with myscen.exec and myscen.bld
(downloaded earlier).

$ cp .../myscen.bld /home/tet/test_sets/scen.bld

$ cp .../myscen.exec /home/tet/test_sets/scen.exec

This limits the tests run only to the relevant file systems and avoids additional hours of other tests on
sockets, math, stdio, libc, shell, and so on.

8 Continue with the installation.

 a. Build the test sets. It proceeds to build and install all of the file system tests.

 b. Run the test sets. Even though it is running them on a local file system, this is a valuable
baseline for comparison with the behavior of Lustre. It should put the results into /home/tet/
test_sets/results/0002e/journal. Rename or symlink this directory to /home/tet/test_sets/
results/ext3/journal (or to the name of the local file system on which the test was run).

Running the full test takes approximately five minutes. Do not re-run the failed tests. The results are in
a very lengthy table in /home/tet/test_sets/results/report.

9 Save the test suite to run further tests on a Lustre file system. Tar up the tests, so that you do not have
to rebuild each time.

WARNING:
Do NOT configure or mount a Lustre file system yet.
134 POSIX

ftp://ftp.lustre.org:/pub/benchmarks/posix/tet_vsxgen_2.0.tgz

14.2 Running the Test Suite Against Lustre

To run the POSIX tests against Lustre:

1 As root, set up your Lustre file system, mounted on /mnt/lustre (for instance, sh llmount.sh) and untar
the POSIX tests back to their home.

$ tar --same-owner -xzpvf /path/to/tarball/TESTROOT.tgz -C \ /mnt/lustre

As the vsx0 user, you can re-run the tests as many times as you want. If you are newly logged in as the
vsx0 user, you need to source the environment with '. profile' so that your path and environment is set
up correctly.

2 Run the POSIX tests.

$. /home/tet/profile

$ tcc -e -s scen.exec -a /mnt/lustre/TESTROOT -p

Each new result is placed in a new directory under /home/tet/test_sets/results and is given a directory
name similar to 0004e (an incrementing number which ends with e (for test execution) or b (for building
tests).

3 To look at a formatted report:

$ vrpt results/0004e/journal | less

Some tests are "Unsupported", "Untested" or "Not In Use", which does not necessarily indicate a
problem.

4 To compare two test results, use the command:

$ vrptm results/ext3/journal results/0004e/journal | less

This is more interesting than looking at the result of a single test as it helps to find test failures that are
specific to the file system, instead of the Linux VFS or kernel. Up to six test results can be compared at
one time. It is often useful to rename the results directory to have more interesting names so that they
are meaningful in the future.
Lustre Operations Manual 135

14.3 Isolating and Debugging Failures

In the case of Lustre failures, you need to capture information about what is happening at runtime. For
example some tests may cause kernel panics, depending on your Lustre configuration. By default,
debugging is not enabled in the POSIX suite. You need to turn on the VSX debugging options. There are
two debug options of note in the config file tetexec.cfg, under the TESTROOT directory:

VSX_DBUG_FILE=output_file - If you are running the test under UML with hostfs support, use a file
on the hostfs as the debug output file. In the case of a crash, the debug output can be safely written to
the debug file.

VSX_DBUG_FLAGS=xxxxx - The following example makes VSX output all debug messages:

VSX_DBUG_FLAGS=t:d:n:f:F:L:l,2:p:P

VSX is based on the TET framework which provides common libraries for VSX. You can also have TET print
out verbose debug messages by inserting the -T option when running the tests. For example:

$ tcc -Tall5 -e -s scen.exec -a /mnt/lustre/TESTROOT -p 2>&1 | tee /tmp/
POSIX-command-line-output.log

VSX prints out detailed messages in the report for failed tests. This includes the test strategy, operations
done by the test suite, and the failures. Each subtest (for instance, 'access', 'create') usually contains many
single tests. The report shows exactly which single testing fails. In this case, you can find more information
directly from the VSX source code.

For example, if the fifth single test of subtest chmod failed; you could look at the source:

$ /home/tet/test_sets/tset/POSIX.os/files/chmod/chmod.c

Note
The default value for this option puts the debug log under your test directory in
/mnt/lustre/TESTROOT, which is not useful in case of kernel panic and Lustre (or your
machine) crashes.
136 POSIX

Which contains a single test array:

public struct tet_testlist tet_testlist[] = {

test1, 1,

test2, 2,

test3, 3,

test4, 4,

test5, 5,

test6, 6,

test7, 7,

test8, 8,

test9, 9,

test10, 10,

test11, 11,

test12, 12,

test13, 13,

test14, 14,

test15, 15,

test16, 16,

test17, 17,

test18, 18,

test19, 19,

test20, 20,

test21, 21,

test22, 22,

test23, 23,

NULL, 0

};
Lustre Operations Manual 137

If this single test is causing problems (as in the case of a kernel panic) or if you are trying to isolate a single
failure, it may be useful to narrow the tet_testlist array down to the single test in question and then recompile
the test suite. Then, you can create a new tarball of the resulting TESTROOT directory, with an appropriate
name (like TESTROOT-chmod-5-only.tgz) and re-run the POSIX suite. It may also be helpful to edit the
scen.exec file to run only test set in question.

 "total tests in POSIX.os 1"

/tset/POSIX.os/files/chmod/T.chmod

Note
Rebuilding individual POSIX tests is not straightforward due to the reliance on tcc. You
may have to substitute the edited source files into the source tree (following the
installation described above) and letting the existing POSIX install scripts do the work.
The installation scripts (specifically, /home/tet/test_sets/run_testsets.sh) contain relevant
commands to build the test suite, similar to tcc -p -b -s $HOME/scen.bld $*
but it does not work outside the script.
138 POSIX

Chapter II - 15. Benchmarking
The benchmarking process involves identifying the highest standard of excellence and performance,
learning and understanding these standards, and finally adapting and applying them to improve the
performance. Benchmarks are most often used to provide an idea of how fast any software or hardware
runs.

Complex interactions between I/O devices, caches, kernel daemons, and other OS components result in
behavior that is difficult to analyze. Moreover, systems have different features and optimizations, so no
single benchmark is always suitable. The variety of workloads that these systems experience also adds in
to this difficulty. One of the most widely researched areas in storage subsystem is file system design,
implementation, and performance.

This chapter describes benchmark suites to test Lustre, and includes the following sections:

• Bonnie++ Benchmark

• IOR Benchmark

• IOzone Benchmark
Lustre Operations Manual 139

15.1 Bonnie++ Benchmark

Bonnie++ is a benchmark suite that having aim of performing a number of simple tests of hard drive and file
system performance. Then you can decide which test is important and decide how to compare different
systems after running it. Each Bonnie++ test gives a result of the amount of work done per second and the
percentage of CPU time utilised.

There are two sections to the program's operations. The first is to test the IO throughput in a fashion that is
designed to simulate some types of database applications. The second is to test creation, reading, and
deleting many small files in a fashion similar to the usage patterns.

Bonnie++1 is a benchmark tool that test hard drive and file system performance by sequential I/O and
random seeks. Bonnie++ tests file system activity that has been known to cause bottlenecks in I/O-intensive
applications.

To install and run the Bonnie++ benchmark:

1 Download the most recent version of the Bonnie++ software:

http://www.coker.com.au/bonnie++/

2 Install and run the Bonnie++ software (per the ReadMe file accompanying the software).

Sample output:

Version 1.03 ------Sequential Output------ --Sequential Input- --Random-

 -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec %CP

mds 2G 38118 22 21245 10 51967 10 90.0 0

------Sequential Create------ --------Random Create--------

 -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

 files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP

 16 510 0 +++++ +++ 283 1 465 0 +++++ +++ 291 1

mds,2G,,,38118,22,21245,10,,,51967,10,90.0,0,16,510,0,+++++,+++,283,1,465,0
,+++++,+++,291,1

Version 1.03 ------Sequential Output------ --Sequential Input- --Random-

 -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--

Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec %CP

mds 2G 27460 92 41450 25 21474 10 19673 60 52871 10 88.0 0

------Sequential Create------ --------Random Create--------

 -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--

 files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP

 16 29681 99 +++++ +++ 30412 90 29568 99 +++++ +++ 28077 82

mds,2G,27460,92,41450,25,21474,10,19673,60,52871,10,88.0,0,16,29681,99,++++
+,+++,30412,90,29568,99,+++++,+++,28077,82

1. Bonnie++ is baesd on Bonnie code.
140 Benchmarking

http://www.coker.com.au/bonnie++/
http://www.coker.com.au/bonnie++

15.2 IOR Benchmark

You can use the IOR_Survey script to test the performance of the lustre file systems. It uses IOR
(Interleaved or Random), a script used for testing performance of parallel file systems using various
interfaces and access patterns. IOR uses MPI for process synchronization.

Under the control of compile-time defined constants (and, to a lesser extent, environment variables), I/O is
done via MPI-IO. The data are written and read using independent parallel transfers of equal-sized blocks
of contiguous bytes that cover the file with no gaps and that do not overlap each other. The test consists of
creating a new file, writing it with data, then reading the data back.

The IOR benchmark, developed by LLNL, tests system performance by focusing on parallel/sequential
read/write operations that are typical of scientific applications.

To install and run the IOR benchmark:

1 Satisfy the prerequisites to run IOR.

 a. Download lam 7.0.6 (local area multi-computer):

http://www.lam-mpi.org/7.0/download.php

 b. Obtain a Fortran compiler for the Fedora Core 4 operating system.

 c. Download the most recent version of the IOR software:

ftp://ftp.llnl.gov/pub/siop/ior/

2 Install the IOR software (per the ReadMe file and User Guide accompanying the software).

3 Run the IOR software. In user mode, use the lamboot command to start the lam service and use
appropriate Lustre-specific commands to run IOR (described in the IOR User Guide).

Sample Output

IOR-2.9.0: MPI Coordinated Test of Parallel I/O

Run began: Fri Sep 29 11:43:56 2006

Command line used: ./IOR -w -r -k -O lustrestripecount 10 –o test

Machine: Linux mds

Summary:

api = POSIX

test filename = test

access = single-shared-file

clients = 1 (1 per node)

repetitions = 1

xfersize = 262144 bytes

blocksize = 1 MiB

aggregate filesize = 1 MiB
Lustre Operations Manual 141

http://www.lam-mpi.org/7.0/download.php
ftp://ftp.llnl.gov/pub/siop/ior/

access bw(MiB/s) block(KiB) xfer(KiB) open(s) wr/rd(s) close(s)
iter

------ --------- ---------- --------- -------- -------- --------

write 173.89 1024.00 256.00 0.000030 0.005701 0.000016 0

read 278.49 1024.00 256.00 0.000009 0.003566 0.000012 0

Max Write: 173.89 MiB/sec (182.33 MB/sec)

Max Read: 278.49 MiB/sec (292.02 MB/sec)

Run finished: Fri Sep 29 11:43:56 2006

15.3 IOzone Benchmark

IOZone is a filesystem benchmark tool. which generates and measures a variety of file operations. Iozone
has been ported to many machines and runs under many operating systems. Iozone is useful for performing
a broad filesystem analysis of a vendor’s computer platform. The benchmark tests file I/O performance for
the operations like read, write, re-read, re-write, read backwards, read strided, fread, fwrite, random read/
write, pread/pwrite variants, aio_read, aio_write, mm and so on.

The IOzone benchmark tests file I/O performance for the following operations: read, write, re-read,
re-write, read backwards, read strided, fread, fwrite, random read/write, pread/pwrite variants, aio_read,
aio_write, and mmap.

To install and run the IOzone benchmark:

1 Download the most recent version of the IOZone software from this location:

http://www.iozone.org

2 Install the IOZone software (per the ReadMe file accompanying the IOZone software).

3 Run the IOZone software (per the ReadMe file accompanied with the IOZone software).

Sample Output

Iozone: Performance Test of File I/O

 Version $Revision: 3.263 $

Compiled for 32 bit mode.

Build: linux

Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins

 Al Slater, Scott Rhine, Mike Wisner, Ken Goss

 Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,

 Randy Dunlap, Mark Montague, Dan Million,

 Jean-Marc Zucconi, Jeff Blomberg,

 Erik Habbinga, Kris Strecker, Walter Wong.
142 Benchmarking

http://www.iozone.org

Run began: Fri Sep 29 15:37:07 2006

Network distribution mode enabled.

Command line used: ./iozone -+m test.txt

Output is in Kbytes/sec

Time Resolution = 0.000001 seconds.

Processor cache size set to 1024 Kbytes.

Processor cache line size set to 32 bytes.

File stride size set to 17 * record size.

 random random
bkwd record stride

 KB reclen write rewrite read reread read write
read rewrite read fwrite frewrite fread freread

 512 4 194309 406651 728276 792701 715002 498592
638351 700365 587235 190554 378448 686267 765201

iozone test complete.
Lustre Operations Manual 143

144 Benchmarking

Chapter II - 16. Lustre Recovery
This chapter describes how to recover Lustre, and includes the following sections:

• Recovering Lustre

• Types of Failure

Lustre offers substantial recovery support to deal with node or network failure, and returns the cluster to a
reliable, functional state. When Lustre is in recovery mode, it means that the servers (MDS/OSS), judge
there is a stop of file system in an unclean state. In other words, unsaved data may be in the client cache.
To save this data, the file system re-starts in recovery mode and makes the clients write the data to disk.

16.1 Recovering Lustre

In Lustre recovery mode, the servers attempt to contact all clients and request they replay their transactions.

• If all clients are contacted and they are recoverable (they have not rebooted), then recovery
proceeds and the file system comes back with the cached client-side data safely saved to disk.

• If one or more clients are not able to reconnect (due to hardware failures or client reboots), then the
recovery process times out, which causes all clients to be expelled. In this case, if there is any
unsaved data in the client cache, it is not saved to disk and is lost. This is an unfortunate side effect
of allowing Lustre to keep data consistent on disk.

16.2 Types of Failure

Different types of failure can cause Lustre to enter recovery mode:

• Client (compute node) failure

• MDS failure (and failover)

• OST failure

• Transient network partition

• Network failure

• Disk state loss

• Down node

• Disk state of multiple, out-of-sync systems
Lustre Operations Manual 145

Currently, all failure and recovery operations are based on the notion of connection failure. All imports or
exports associated with a given connection are considered as failed if any of them do.

16.2.1 Client Failure
Lustre supports for recovery from client failure based on the revocation of locks and other resources, so
surviving clients can continue their work uninterrupted. If a client fails to timely respond to a blocking AST
from the Distributed Lock Manager or a bulk data operation times out, the system removes the client from
the cluster. This action allows other clients to acquire locks blocked by the dead client, and it also frees
resources (such as file handles and export data) associated with the client. This scenario can be caused by
a client node system failure or a network partition.

16.2.2 MDS Failure (and Failover)
Reliable Lustre operation requires that the MDS have a peer configured for failover, including the use of a
shared storage device for the MDS backing file system. When a client detects an MDS failure, it connects
to the new MDS and launches the MetadataReplay function. MetadataReplay ensures that the replacement
MDS re-accumulates the state resulting from transactions whose effects were visible to clients, but which
were not committed to disk. Transaction numbers ensure that the operations replay occurs in the same
order as the original intergration. Additionally, clients inform the new server of their existing lock state
(including locks that have not yet beem granted). All metadata and lock replay must complete before new,
non-recovery operations are permitted. During the recovery window, only clients that were connected at the
time of MDS failure are permitted to reconnect.

ClientUpcall, a user-space policy program, manages the re-connection to a new or rebooted MDS.
ClientUpcall is responsible to set up necessary portals, routes and connections, and indicates which
connection UUID should replace the failed one.

16.2.3 OST Failure
When an OST fails or is severed from the client, Lustre marks the corresponding OSC as inactive, and the
LogicalObjectVolume avoids making stripes for new files on that OST. Operations that operate on the
"whole file", such as determining file size or unlinking, skips inactive OSCs (and OSCs that become inactive
during the operation). Attempts to read from or write to an inactive stripe result in an -EIO error being
returned to the client.

As with the MDS failover case, Lustre invokes the ClientUpcall when it detects an OST failure. If and when
the upcall indicates that the OST is functioning again, Lustre reactivates an OSC in question and makes file
data from stripes on the newly-returned OST available for reading and writing.
146 Lustre Recovery

16.2.4 Network Partition
The partition can be transient. Lustre recovery occurs in following sequence:

• Clients can detect "harmless partition" upon reconnecting. Dropped-reply cases require
ReplyReconstruction

• Servers evict clients.

• ClientUpcall may try other routers. The arbitrary configuration change is possible the message
’Failed Recovery - ENOTCONN’ is given for evicted clients.

• Process invalidates all entries and locks. Eventually, the file system finishes recovering and returns
to normal operation. You may check the progress of Lustre recovery by looking at the
recovery_status proc entry for each device on the OSSs, for example: cat /proc/fs/lustre/obdfilter/
ost1/recovery_status

The file system may get stuck in recovery if any servers are down or if any of servers have thrown a Lustre
bug (LBUG); check /proc/fs/lustre/health_check.
Lustre Operations Manual 147

148 Lustre Recovery

Chapter III - 1. Lustre I/O Kit
This chapter describes the Lustre I/O kit and PIOS performance tool, and includes the following sections:

• Lustre I/O Kit Description and Prerequisites

• Running I/O Kit Tests

• PIOS Test Tool

1.1 Lustre I/O Kit Description and Prerequisites

The Lustre I/O kit is a collection of benchmark tools for a Lustre cluster. The I/O kit can be used to validate
the performance of the various hardware and software layers in the cluster and also as a way to find and
troubleshoot I/O issues.

The I/O kit contains three tests. The first surveys basic performance of the device and bypasses the kernel
block device layers, buffer cache and file system. The subsequent tests survey progressively higher layers
of the Lustre stack. Typically with these tests, Lustre should deliver 85-90% of the raw device performance.

It is very important to establish performance from the “bottom up” perspective. First, the performance of a
single raw device should be verified. Once this is complete, verify that performance is stable within a larger
number of devices. Frequently, while troubleshooting such performance issues, we find that array
performance with all LUNs loaded does not always match the performance of a single LUN when tested in
isolation. After the raw performance has been established, other software layers can be added and tested
in an incremental manner.

1.1.1 Downloading an I/O Kit
You can download the I/O kits from:

https://downloads.clusterfs.com/customer/Tools/lustre-iokit/

In this directory, you will find two packages:

• lustre-iokit consists of a set of scripts developed and supported by CFS.

• scali-lustre-iokit is a Python tool maintained by Scali team, and is not discussed in this manual.
Lustre Operations Manual 149

http://downloads.clusterfs.com/customer/Tools/lustre-iokit/

1.1.2 Prerequisites to Using an I/O Kit
The following prerequisites must be met to use the Lustre I/O kit from CFS:

• password-free remote access to nodes in the system (normally obtained via ssh or rsh)

• Lustre file system software

• sg3_utils for the sgp_dd utility

1.2 Running I/O Kit Tests

As mentioned above, the I/O kit contains these test tools:

• sgpdd_survey

• obdfilter_survey

• ost_survey

1.2.1 sgpdd_survey
Use sgpdd_survey tool to test bare metal performance, while bypassing as much of the kernel as possible.
This script requires the sgp_dd package, although it does not require Lustre software. This survey may be
used to characterize the performance of a SCSI device by simulating an OST serving multiple stripe files.
The data gathered by this survey can help set expectations for the performance of a Lustre OST exporting
the device.

The script uses sgp_dd to carry out raw sequential disk I/O. It runs with variable numbers of sgp_dd threads
to show how performance varies with different request queue depths.

The script spawns variable numbers of sgp_dd instances, each reading or writing a separate area of the
disk to demonstrate performance variance within a number of concurrent stripe files.

The device(s) used must meet one of the two tests described below:

SCSI device:

• Must appear in the output of sg_map (make sure the kernel module "sg" is loaded)

Raw device:

• Must appear in the output of raw -qa

If you need to create raw devices in order to use the sgpdd_survey tool, note that raw device 0 cannot be
used due to a bug in certain versions of the "raw" utility (including that shipped with RHEL4U4.)

You may not mix raw and SCSI devices in the test specification.

WARNING:
The sgpdd_survey script overwrites the device being tested, which results in the LOSS
OF ALL DATA on that device. Exercise caution when selecting the device to be tested.
150 Lustre I/O Kit

The sgpdd_survey script must be customized according to the particular device being tested and also
according to the location where it should keep its working files. Customization variables are described
explicitly at the start of the script.

When the sgpdd_survey script runs, it creates a number of working files and a pair of result files. All files
start with the prefix given by the script variable ${rslt}.

${rslt}_<date/time>.summary same as stdout

${rslt}_<date/time>_* tmp files

${rslt}_<date/time>.detail collected tmp files for post-mortem

The summary file and stdout should contain lines like this:

total_size 8388608K rsz 1024 thr 1 crg 1 180.45 MB/s 1 x 180.50 \
=/ 180.50 MB/s

The number immediately before the first MB/s is bandwidth, computed by measuring total data and elapsed
time. The remaining numbers are a check on the bandwidths reported by the individual sgp_dd instances.

If there are so many threads that the sgp_dd script is unlikely to be able to allocate input/output buffers, then
"ENOMEM" is printed.

If one or more sgp_dd instances do not successfully report a bandwidth number, then "failed" is printed.

1.2.2 obdfilter_survey
The obdfilter_survey script processes sequential input/output with varying numbers of threads and objects
(files) by using lctl::test_brw to drive the echo_client connected to local or remote obdfilter instances, or
remote obdecho instances. It can be used to characterize the performance of the following Lustre
components:

Stripe F/S

Here, the script directly exercises one or more instances of obdfilter. The script may be running on one
or more nodes, for example, when the nodes are all attached to the same multi-ported disk subsystem.

You need to tell the script the names of all obdfilter instances, which should already be up and running.
If some instances are on different nodes, then you also need to specify their hostnames, for example,
node1:ost1. All the obdfilter instances are driven directly. The script automatically loads the obdecho
module (if required) and creates one instance of echo_client for each obdfilter instance.

Network

Here, the script drives one or more instances of obdecho via instances of echo_client running on one
or more nodes. You need to tell the script the names of all echo_client instances, which should already
be up and running. If some instances are on different nodes, then you also need to specify their
hostnames, for example, node1:ECHO_node1.

Stripe F/S over the network

Here, the script drives one or more instances of obdfilter via instances of echo_client running on one or
more nodes. As noted above, you need to tell the script the names of all echo_client instances, which
should already be up and running. Note that the script is not scalable to hundreds of nodes since it is
only intended to measure individual servers, not the scalability of the system as a whole.

Script

The script must be customized according to the components being tested and the location where it
should keep its working files. Customization variables are clearly described at the beginning of the
script.
Lustre Operations Manual 151

1.2.2.1 Running obdfilter_survey Against a Local Disk
To run the obdfilter_survey script against a local disk:

1 Create a Lustre configuration shell script and XML, using your normal methods. You do not need to
specify an MDS or LOV, but you do need to list all OSTs that you wish to test.

2 On all OSS machines, run:

$ mkfs.lustre --fsname spfs --mdt --mgs /dev/sda

Remember, write tests are destructive. This test should be run prior to startup of your actual Lustre file
system. If you do this, you will not need to reformat to restart Lustre. However, if the test is terminated
before completion, you may have to remove objects from the disk.

3 Determine the obdfilter instance names on all clients. The names appear as the 4th column of lctl dl.
For example:

$ pdsh -w oss[01-02] lctl dl |grep obdfilter |sort

oss01: 0 UP obdfilter oss01-sdb oss01-sdb_UUID 3

oss01: 2 UP obdfilter oss01-sdd oss01-sdd_UUID 3

oss02: 0 UP obdfilter oss02-sdi oss02-sdi_UUID 3

Here the obdfilter instance names are oss01-sdb, oss01-sdd, oss02-sdi. Since you are driving
obdfilter instances directly, set the shell array variable, ost_names, to the names of the obdfilter
instances and leave client_names variable undefined. For example:

ost_names_str='oss01:oss01-sdb oss01:oss01-sdd oss02:oss02-sdi' \
./obdfilter-survey
152 Lustre I/O Kit

1.2.2.2 Running obdfilter_survey Against a Network
If you are driving obdfilter or obdecho instances over the network, then you must instantiate the
echo_clients. Set the shell array variable client_names to the names of the echo_client instances and leave
ost_names variable undefined.

Optionally, you can prefix any name in ost_names or client_names with the hostname that it runs on, for
example, remote_node:ost4. If you are running remote nodes, make sure these requirements are met:

• The custom_remote_shell() works on your cluster.

• All pathnames that you specify in the script are mounted on the node from which obdfilter_survey
is started and on all remote nodes.

• The obdfilter_survey script is installed on clients at the same location as the master node.

To run the obdfilter_survey script against a network:

1 Bring up obdecho instances on the servers and echo_client instances on the clients, and run the
included echo.sh on a node that has Lustre installed. Shell variables:

• SERVERS: set this to a list of server hostnames or hostname of the current node is used. This
may be the wrong interface, so be sure to check it.

• NETS: set this if you are using a network type other than TCP.

For example:

SERVERS=oss01-eth2 sh echo.sh

2 On the servers, start the obdecho server and verify that it is up, run:

$ lctl dl

0 UP obdecho ost_oss01.local ost_oss01.local_UUID 3

1 UP ost OSS OSS_UUID 3

3 On the clients, start the other side of the echo connection, run:

$ lctl dl

0 UP osc OSC_xfer01.local_ost_oss01.local_ECHO_client \
6bc9b_ECHO_client_2a8a2cb3dd 5

1 UP echo_client ECHO_client 6bc9b_ECHO_client_2a8a2cb3dd 3

4 Verify connectivity from a client, run:

$ lctl ping SERVER_NID

NOTE:
echo.sh could probably be smarter about this.
Lustre Operations Manual 153

5 Run the script on the master node, specifying the client names in an environment variable.

For example, run:

$ client_names_str='xfer01:ECHO_client xfer02:ECHO_client

xfer03:ECHO_client xfer04:ECHO_client xfer05:ECHO_client

xfer06:ECHO_client xfer07:ECHO_client xfer08:ECHO_client

xfer09:ECHO_client xfer10:ECHO_client xfer11:ECHO_client

xfer12:ECHO_client' ./obdfilter-survey

6 When aborting, run killall vmstat on clients:

pdsh -w (clients) killall vmstat

Use lctl device_list to verify the obdfilter / echo_client instance names. For example, when the script runs,
it creates a number of working files and a pair of result files. All files start with the prefix given by ${rslt}.

${rslt}.summary same as stdout

${rslt}.script_* per-host test script files

${rslt}.detail_tmp* per-ost result files

${rslt}.detail collected result files for
post-mortem

The script iterates over the given numbers of threads and objects performing all specified tests and checking
that all test processes completed successfully.

Note that the script does not clean up properly if it is aborted or if it encounters an unrecoverable error. In
this case, manual cleanup may be required, possibly including killing any running instances of lctl (local or
remote), removing echo_client instances created by the script, and unloading obdecho.
154 Lustre I/O Kit

1.2.2.3 Output of the sbdfilter_survey Script
The summary file and stdout contain lines like:

ost 8 sz 67108864K rsz 1024 obj8 thr8 write613.54 \
[64.00, 82.00]

Where:

1.2.2.4 Visualizing Results
It is useful to import the summary data (its fixed width) into Excel (or any graphing package) and graph the
bandwidth against the number of threads for varying numbers of concurrent regions. This shows how the
OSS performs for a given number of concurrently-accessed objects (files) with varying numbers of
inputs / outputs in flight.

It is also useful to record average disk I/O sizes during each test. These numbers help find pathologies in
the system when the file system block allocator or the block device elevator fragment I/O requests.

The obparse.pl script (included) is an example of processing the output files to a .csv format.

Variable Description

ost8 Total number of OSTs under test

sz 67108864K Total amount of data read or written (in KB)

rsz 1024 Record size (size of each echo_client input/output

obj 8 Total number of objects over all OSTs

thr 8 Total number of threads over all OSTs and objects

write Test name; if more tests have been specified, they all appear on the same line.

613.54 Aggregate bandwidth over all OSTs
(measured by dividing the total number of MBs by the elapsed time)

[64.00, 82.00] Minimum and maximum instantaneous bandwidths seen on any individual OST

NOTE:
Although the numbers of threads and objects are specified per-OST in the customization section
of the script, results are reported aggregated over all OSTs.
Lustre Operations Manual 155

1.2.3 ost_survey
The ost_survey tool is a shell script that uses lfs setstripe to perform I/O against a single OST. The script
writes a file (currently using dd) to each OST in the Lustre file system, and compares read and write speeds.
The ost_survey tool is used to detect misbehaving disk subsystems.

To run the ost_survey script, supply a file size (in KB) and the Lustre mount point. For example, run:

$./ost-survey.sh 10 /mnt/lustre

Average read Speed: 6.73

Average write Speed: 5.41

read - Worst OST indx 0 5.84 MB/s

write - Worst OST indx 0 3.77 MB/s

read - Best OST indx 1 7.38 MB/s

write - Best OST indx 1 6.31 MB/s

3 OST devices found

Ost index 0 Read speed5.84 Write speed 3.77

Ost index 0 Read time0.17 Write time 0.27

Ost index 1 Read speed7.38 Write speed 6.31

Ost index 1 Read time0.14 Write time 0.16

Ost index 2 Read speed6.98 Write speed 6.16

Ost index 2 Read time0.14 Write time 0.16

NOTE:
CFS has frequently discovered wide performance variations across all LUNs in a cluster.
156 Lustre I/O Kit

1.3 PIOS Test Tool

The PIOS test tool is a parallel I/O simulator for Linux and Solaris. PIOS generates I/O on file systems, block
devices and zpools similar to what can be expected from a large Lustre OSS server when handling the load
from many clients1. The program generates and executes the I/O load in a manner substantially similar to
an OSS, that is, multiple threads take work items from a simulated request queue. It forks a CPU load
generator to simulate running on a system with additional load.

PIOS can read/write data to a single shared file or multiple files (default is a single file). To specify multiple
files, use the -fpp option. (It is better to measure with both single and multiple files.2) If the final argument is
a file, block device or zpool, PIOS writes to RegionCount regions in one file. PIOS issues I/O commands of
size ChunkSize. The regions are spaced apart Offset bytes (or, in the case of many files, the region starts
at Offset bytes). In each region, RegionSize bytes are written or read, one ChunkSize I/O at a time. Note
that ChunkSize <= Regionsize <= Offset.

Multiple runs can be specified with comma separated lists of values for ChunkSize, Offset, RegionCount,
ThreadCount, and RegionSize. Multiple runs can also be specified by giving a starting (low) value, increase
(in percent) and high value for each of these arguments. If a low value is given, no value list or value may
be supplied.

Every run is given a timestamp, and the timestamp and offset are written with every chunk (to allow
verification). Before every run, PIOS executes the pre-run shell command. After every run, PIOS executes
the post-run command. Typically, this is used to clear and collect statistics for the run, or to start and stop
statistics gathering during the run. The timestamp is passed to both pre-run and post-run.

For convenience, PIOS understands byte specifiers and uses K,k for kilobytes (2<<10), M,m for megabytes
(2<<20), G,g for gigabytes (2<<30), and T,t for terabytes (2<<40).

You can download the PIOS test tool at: ftp://ftp.clusterfs.com/pub/lustre/pios

1.3.1 Synopsis
pios

[--chunksize|-c =values, (--chunksize_low|-a =value
--chunksize_high|-b =value --chunksize_incr|-g =value)]

[--offset|-o =values, (--offset_low|-m =value --offset_high|-q =value
--offset_incr|-r =value)]

[--regioncount|-n =values, (--regioncount_low|-i =value
--regioncount_high|-j =value --regioncount_incr|-k =value)]

[--threadcount|-t =values, (--threadcount_low|-l =value
--threadcount_high|-h =value --threadcount_incr|-e =value)]

[--regionsize|-s =values, (--regionsize_low|-A =value
--regionsize_high|-B =value --regionsize_incr|-C =value)]

[--directio|-d, --posixio|-x, --cowio|-w} [--cleanup|-L
--threaddelay|-T =ms --regionnoise|-I ==shift
--chunknoise|-N =bytes -fpp|-F]

[--verify|-V =values]

[--prerun|-P =pre-command --postrun|-R =post-command]

[--path|-p =output-file-path]

1. If the PIOS test tool is passed a file, block device or zpool, it uses that for I/O. If it is passed a directory, then files are
created in that directory with simple file names. Files are over-written when they exist. An option can be passed to remove
the files upon exit.
2. Performance with multiple files can be better than that of a single file because of less contestation.
Lustre Operations Manual 157

ftp://ftp.clusterfs.com/pub/lustre/pios

1.3.2 PIOS I/O Modes
There are several supported PIOS I/O modes:

• POSIX IO: This is the default operational mode where I/O is done using standard POSIX calls, such
as pwrite/pread. This mode is valid on both Linux and Solaris.

• DIRECT IO: This mode corresponds to the O_DIRECT flag in open(2) system call, and it is currently
applicable only to Linux. Use this mode when using PIOS on the ldiskfs file system on an OSS.

• COW IO: This mode corresponds to the copy overwrite operation where file system blocks that are
being overwritten were copied to shadow files. Only use this mode if you want to see overhead of
preserving existing data (in case of overwrite). This mode is valid on both Linux and Solaris.

1.3.3 PIOS Parameters
PIOS has five basic parameters to determine the amount of data that is being written.

• ChunkSize(c): Amount of data that a thread writes in one attempt. ChunkSize should be a multiple
of file system block size.

• RegionSize(s): Amount of data required to fill up a region. PIOS writes a chunksize of data
continuously until it fills the regionsize. RegionSize should be a multiple of ChunkSize.

• RegionCount(n): Number of regions to write in one or multiple files. The total amount of data
written by PIOS is RegionSize x RegionCount.

• ThreadCount(t): Number of threads working on regions.

• Offset(o): Distance between two successive regions when all threads are writing to the same file.
In the case of multiple files, threads start writing in files at Offset bytes.

Parameter Description

--chunknoise = N N is a byte specifier. When performing an I/O task, add a random
signed integer in the range [-N,N] to the chunksize. All regions are still
fully written. This randomizes the I/O size to some extent.

--chunksize = N[,N2,N3...] N is a byte specifier and performs I/O in chunks of N kilo-, mega-, giga-
or terabyte. You can give a comma separated list of multiple values.
This argument is mutually exclusive with --chunksize_low. Note that
each thread allocates a buffer of size chunksize + chunknoise for use
during the run.

--chunksize_low=L
--chunksize_high=H
--chunksize_incr=F

Performs a sequence of operations starting with a chunksize of L,
increasing it by F% each time until chunksize exceeds H.

--cleanup Removes files that were created during the run. If there is an encounter
for existing files, they are over-written.

--directio
--posixio
--cowio

One of these arguments must be passed to indicate if
DIRECT I/O, POSIX I/O or COW I/O is used.

--offset=O[,O2,O3...] The argument is a byte specifier or a list of specifiers. Each run uses
regions at offset multiple of O in a single file. If the run targets multiple
files, then the I/O writes at offset O in each file.
158 Lustre I/O Kit

--offset_low=OL
--offset_high=OH
--offset_inc=PH

The arguments are byte specifiers. They generate runs with a range of
offsets starting at OL, increasing P% until the region size exceeds OH.
Each of these arguments is exclusive with the offset argument.

--prerun="pre-command" Before each run, executes the pre-command as a shell command
through the system(3) call. The timestamp of the run is appended as
the last argument to the pre-command string. Typically, this is used to
clear statistics or start a data collection script when the run starts.

--postrun="post-command" After each run, executes the post-command as a shell command
through the system(3) call. The timestamp of the run is appended as
the last argument to the pre-command string. Typically, this is used to
append statistics for the run or close an open data collection script
when the run completes.

--regioncount=N[,N2,N3...] PIOS writes to N regions in a single file or block device or to N files.

--regioncount_low=RL
--regioncount_high=RH
--regioncount_inc=P

Generate runs with a range of region counts starting at TL, increasing
P% until the thread count exceeds RH. Each of these arguments is
exclusive with the regioncount argument.

--regionnoise=k When generating the next I/O task, do not select the next chunk in the
next stream, but shift a random number with a maximum noise of
shifting k regions ahead. The run will complete when all regions are
fully written or read. This merely introduces a randomization of the
ordering.

--regionsize=S[,S2,S3...] The argument is a byte specifier or a list of byte specifiers. During the
run(s), write S bytes to each region.

--regionsize_low=RL
--regionsize_high=RH
--regionsize_inc=P

The arguments are byte specifiers. Generate runs with a range of
region sizes starting at TL, increasing P% until the region size exceeds
RH. Each argument is exclusive with the regionsize argument.

--threadcount=T[,T2,T3...] PIOS runs with T threads performing I/O. A sequence of values may be
given.

--threadcount_low=TL
--threadcount_high=TH
--threadcount_inc=TP

Generate runs with a range of thread counts starting at TL, increasing
TP% until the thread count exceeds TH. Each of these arguments is
exclusive with the threadcount argument.

--threaddelay=ms A random amount of noise not exceeding ms is inserted between the
time that a thread identifies as the next chunk it needs to read or write
and the time it starts the I/O.

--fpp|sff Where threads write to files:

• fpp indicates files per process behavior where threads write to
multiple files.

• sff indicates single shared files where all threads write to the same
file.

--verify|-V=timestamp
[,timestamp2,timestamp3...]
|--verify|-V

Verify a written file or set of files. A single timestamp or sequence of
timestamps can be given for each run, respectively. If no argument is
passed, the verification is done from timestamps read from the first
location of files previously written in the test. If sequence is given, then
each run verifies the timestamp accordingly. If a single timestamp is
given, then it is verified with all files written.

Parameter Description
Lustre Operations Manual 159

1.3.4 PIOS Examples
To create a 1 GB load with a different number of threads:

In one file:

pios -t 1,2,4, 8,16, 32, 64, 128 -n 128 -c 1M -s 8M -o 8M \
--load=posixio -p /mnt/lustre

In multiple files:

pios -t 1,2,4, 8,16, 32, 64, 128 -n 128 -c 1M -s 8M -o 8M \
--load=posixio,fpp -p /mnt/lustre

To create a 1 GB load with a different number of chunksizes on ldiskfs with direct I/O:

In one file:

pios -t 32 -n 128 -c 128K, 256K, 512K, 1M, 2M, 4M -s 8M -o 8M \
--load=directio -p /mnt/lustre

In multiple files:

pios -t 32 -n 128 -c 128K, 256K, 512K, 1M, 2M, 4M -s 8M -o 8M \
--load=directio,fpp -p /mnt/lustre

To create a 32 MB to 128 MB load with different RegionSizes on a Solaris zpool:

In one file:

pios -t 8 -n 16 -c 1M -A 2M -B 8M -C 100 -o 8M --load=posixio -p /myzpool/

In multiple files:

pios -t 8 -n 16 -c 1M -A 2M -B 8M -C 100 -o 8M --load=posixio,fpp -p /myzpool/

To read and verify timestamps:

Create a load with PIOS:

pios -t 40 -n 1024 -c 256K -s 4M -o 8M --load=posixio -p /mnt/lustre

Keep the same parameters to read:

pios -t 40 -n 1024 -c 256K -s 4M -o 8M --load=posixio -p /mnt/lustre --verify
160 Lustre I/O Kit

Chapter III - 2. LustreProc
This chapter describes Lustre /proc entries and includes the following sections:

• Introduction

• Lustre I/O Tunables

• Locking

• Debug Support

2.1 Introduction

The proc file system acts as an interface to internal data structures in the kernel. It can be used to obtain
information about the system and to change certain kernel parameters at runtime (sysctl).

The Lustre file system provides several proc file system variables that control aspects of Lustre performance
and provide information.

The proc variables are classified based on the subsystem they affect.
Lustre Operations Manual 161

2.1.1 /proc Entries for Lustre
This section includes /proc entries for Lustre.

2.1.1.1 Finding Lustre
By using the proc files on the MGS, you can see the following:

• All known file systems

cat /proc/fs/lustre/mgs/MGS/filesystems

spfs

lustre

• The server names participating in a file system (for each file system that has at least one server
running)

cat /proc/fs/lustre/mgs/MGS/live/spfs

fsname: spfs

flags: 0x0 gen: 7

spfs-MDT0000

spfs-OST0000

All servers are named according to this convention: <fsname>-<MDT|OST><XXXX>. This can be shown
for live servers under /proc/fs/lustre/devices:

cat /proc/fs/lustre/devices

 0 UP mgs MGS MGS 11

 1 UP mgc MGC192.168.10.34@tcp 1f45bb57-d9be-2ddb-c0b0-5431a4922670 5

 2 UP mdt MDS MDS_uuid 3

 3 UP lov lustre-mdtlov lustre-mdtlov_UUID 4

 4 UP mds lustre-MDT0000 lustre-MDT0000_UUID 7

 5 UP osc lustre-OST0000-osc lustre-mdtlov_UUID 5

 6 UP osc lustre-OST0001-osc lustre-mdtlov_UUID 5

 7 UP lov lustre-clilov-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa0 4

 8 UP mdc lustre-MDT0000-mdc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

 9 UP osc lustre-OST0000-osc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

 10 UP osc lustre-OST0001-osc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

Or from the device label at any time:

e2label /dev/sda

lustre-MDT0000
162 LustreProc

2.1.1.2 Lustre Timeouts/ Debugging
/proc/sys/lustre/timeout

This is the time period that a client waits for a server to complete an RPC (default 100s). Servers wait half
of this time for a normal client RPC to complete and a quarter of this time for a single bulk request (read or
write of up to 1 MB) to complete. The client pings recoverable targets (MDS and OSTs) at one quarter of
the timeout, and the server waits one and a half times the timeout before evicting a client for being "stale."

/proc/sys/lustre/ldlm_timeout

This is the time period for which a server will wait for a client to reply to an initial AST (lock cancellation
request) where default is 20s for an OST and 6s for an MDS. If the client replies to the AST, the server will
give it a normal timeout (half of the client timeout) to flush any dirty data and release the lock.

/proc/sys/lustre/fail_loc

This is the internal debugging failure hook.

See lustre/include/linux/obd_support.h for the definitions of individual failure locations. The default value is
0 (zero).

sysctl -w lustre.fail_loc=0x80000122 # drop a single reply

/proc/sys/lustre/dump_on_timeout

This triggers dumps of the Lustre debug log when timeouts occur.
Lustre Operations Manual 163

2.1.1.3 LNET Information
/proc/sys/lnet/peers

Shows all NIDs known to this node and also gives information on the queue state.

cat /proc/sys/lnet/peers

nid refs state max rtr min tx min queue

0@lo 1 ~rtr 0 0 0 0 0 0

192.168.10.35@tcp 1 ~rtr 8 8 8 8 6 0

192.168.10.36@tcp 1 ~rtr 8 8 8 8 6 0

192.168.10.37@tcp 1 ~rtr 8 8 8 8 6 0

Fields are explained below:

Credits work like a semaphore. At start they are initialized to allow a certain number of operations (8 in this
example). LNET keeps a track of the minimum value so that you can see how congested a resource was.

If rtr/tx is less than max, there are operations in progress. The number of operations is equal to rtr or tx
subtracted from max.

If rtr/tx is greater that max, there are operations blocking.

LNET also limits concurrent sends and router buffers allocated to a single peer so that no peer can occupy
all these resources.

Field Description

refs A reference count, used for debugging primarily.

state Only valid when referring to routers. Possible values:

• ~rtr - indicates this node is not a router
• up/down - node is a router
• auto_fail must be enabled

max Maximum number of concurrent sends from this peer.

rtr Routing buffer credits.

min Minimum routing buffer credits seen.

tx Send credits.

min Minimum send credits seen.

queue Total bytes in active / queued sends.
164 LustreProc

/proc/sys/lnet/nis

cat /proc/sys/lnet/nis

nid refs peer max tx min

0@lo 3 0 0 0 0

192.168.10.34@tcp 4 8 256 256 252

Shows current queue health on this node.

Fields are explained below:

Subtracting max – tx yields the number of sends currently active. A large or increasing number of active
sends may indicate a problem.

cat /proc/sys/lnet/nis

nid refs peer max tx min

0@lo 2 0 0 0 0

10.67.73.173@tcp4 8 256 256 253

2.1.1.4 Free Space Distribution
The free-space stripe weighting is set to give a priority of "0" to the free space (versus trying to place the
stripes "widely" -- nicely distributed across OSSs and OSTs to maximize network balancing).

You can adjust this priority via the proc file:

$ cat /proc/fs/lustre/lov/<fsname>-mdtlov/qos_prio_free

Currently, the default is 90%. You can permanently set this value by running this command on the MGS:

$ ctl conf_param <fsname>-MDT0000.lov.qos_prio_free=90

Setting the priority to 100% just means that OSS distribution does not count in the weighting, but the stripe
assignment is still done via weighting. If OST2 has twice as much free space as OST1, it will be twice as
likely to be used, but it is NOT guaranteed to be used.

Also note that free-space stripe weighting does not activate until two OSTs are imbalanced by more than
20%. Until then, a faster round-robin stripe allocator is used. (The new round-robin order also maximizes
network balancing.)

Field Description

nid The network interface.

refs Internal reference counter.

peer Number of peer-to-peer send credits on this NID. Credits are used to size buffer pools.

max Total number of send credits on this NID.

tx Current number of send credits available on this NID.

min Lowest number of send credits available on this NID.

min Minimum send credits seen.

queue Total bytes in active / queued sends.
Lustre Operations Manual 165

2.2 Lustre I/O Tunables

The section describes I/O tunables.

/proc/fs/lustre/llite/<fsname>-<uid>/max_cache_mb

cat /proc/fs/lustre/llite/lustre-ce63ca00/max_cached_mb

128

This tunable is the maximum amount of inactive data cached by the client (default is 3/4 of RAM).

2.2.1 Client I/O RPC Stream Tunables
The Lustre engine always attempts to pack an optimal amount of data into each I/O RPC and attempts to
keep a consistent number of issued RPCs in progress at a time. Lustre exposes several tuning variables to
adjust behavior according to network conditions and cluster size. Each OSC has its own tree of these
tunables. For example:

$ ls -d /proc/fs/lustre/osc/OSC_client_ost1_MNT_client_2 /localhost

/proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost

/proc/fs/lustre/osc/OSC_uml0_ost2_MNT_localhost

/proc/fs/lustre/osc/OSC_uml0_ost3_MNT_localhost

$ ls /proc/fs/lustre/osc/OSC_uml0_ost1_MNT_localhost

blocksizefilesfreemax_dirty_mb \
ost_server_uuidstats

... and so on.

RPC stream tunables are described below.

/proc/fs/lustre/osc/<object name>/max_dirty_mb

This tunable controls how many MBs of dirty data can be written and queued up in the OSC. POSIX file
writes that are cached contribute to this count. When the limit is reached, additional writes stall until
previously-cached writes are written to the server. This may be changed by writing a single ASCII integer
to the file. Only values between 0 and 512 are allowable. If 0 is given, no writes are cached. Performance
suffers noticably unless you use large writes (1 MB or more).

/proc/fs/lustre/osc/<object name>/cur_dirty_bytes

This tunable is a read-only value that returns the current amount of bytes written and cached on this OSC.

/proc/fs/lustre/osc/<object name>/max_pages_per_rpc

This tunable is the maximum number of pages that will undergo input/output in a single RPC to the OST.
The minimum is a single page and the maximum for this setting is platform depedent (256 for i386/x86_64,
possibly less for ia64 / PPC with larger PAGE_SIZE), though generally amounts to a total of 1 MB in the
RPC.
166 LustreProc

/proc/fs/lustre/osc/<object name>/max_rpcs_in_flight

This tunable is the maximum number of concurrent RPCs that the OSC will issue at a time to its OST. If the
OSC tries to initiate an RPC but finds that it already has the same number of RPCs outstanding, it will wait
to issue further RPCs until some complete. The minimum setting is 1 and maximum setting is 32.

The value for max_dirty_mb is recommended to be 4 * max_pages_per_rpc * max_rpcs_in_flight in order
to maximize performance.

2.2.2 Watching the Client RPC Stream
In the same directory is a file that gives a histogram of the make-up of previous RPCs.

cat /proc/fs/lustre/osc/spfs-OST0000-osc-c45f9c00/rpc_stats

snapshot_time: 1174867307.156604 (secs.usecs)

read RPCs in flight: 0

write RPCs in flight: 0

pending write pages: 0

pending read pages: 0

 read write

pages per rpc rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

 read write

rpcs in flight rpcs % cum % | rpcs % cum %

0: 0 0 0 | 0 0 0

 read write

offset rpcs % cum % | rpcs % cum %

0: 0 0 0 | 0 0 0

RPCs in flight

This represents the number of RPCs that are issued by the OSC but are not complete at the time of the
snapshot. It should always be less than or equal to max_rpcs_in_flight.

pending {read,write} pages

These fields show the number of pages that have been queued for Iinput/output in the OSC.

other RPCs in flight when a new RPC is sent

When an RPC is sent, it records the number of other RPCs that were pending in this table. When the first
RPC is sent, the 0: row will be incremented. If the first RPC is sent while another is pending the 1: row will
be incremented and so on. The number of RPCs that are pending as each RPC *completes* is not
tabulated. This table is a good way of visualizing the concurrency of the RPC stream. Ideally you will see a
large clump around the max_rpcs_in_flight value which shows that the network is being kept busy.

NOTE:
The <object name> varies depending on the specific Lustre configuration. For examples
of <object name>, see the sample command output.
Lustre Operations Manual 167

pages in each RPC

As an RPC is sent, the number of pages it is made of is recorded in order in this table. A single page RPC
increments the 0: row, 128 pages the 7: row and so on.

These histograms can be cleared by writing any value into the rpc_stats file.

2.2.3 Client Read-Write Offset Survey
The "rw_offset_stats" maintains statistics for the occurences where a series of read or write calls from a
process did not access the next sequential location. The offset field is reset to 0 (zero) whenever a different
file is read/written.

Example:

cat /proc/fs/lustre/llite/lustre-f57dee00/rw_offset_stats

snapshot_time: 1155748884.591028 (secs.usecs)

R/W PID RANGE START RANGE END SMALLEST EXTENT LARGEST EXTENT OFFSET

R 8385 0 128 128 128 0

R 8385 0 224 224 224 -128

W 8385 0 250 50 100 0

W 8385 100 1110 10 500 -150

W 8384 0 5233 5233 5233 0

R 8385 500 600 100 100 -610

Where:
Field Description

R/W Whether the non-sequential call was a read or a write.

PID The process ID which made the read/write call.

RANGE START - RANGE END The range in which the read/write calls were sequential.

SMALLEST - EXTENT The smallest extent(single read/write) in the corresponding range.

LARGEST - EXTENT The largest extent(single read/write) in the corresponding range.

OFFSET The difference from the previous range end to the current range start.

For example, SMALLEST-EXTENT indicates that the writes in the
range 100 to 1110 were sequential, with a minimum write of 10 and a
maximum write of 500. This range was started with an offset of -150.
That means this is the difference between the last entry’s range-end
and this entry’s range-start for the same file.

The "rw_offset_stats" file can be cleared by writing to it:

echo > /proc/fs/lustre/llite/lustre-f57dee00/rw_offset_stats
168 LustreProc

2.2.4 Client Read-Write Extents Survey
Client-Based I/O Extent Size Survey

The "rw_extent_stats" histogram in the llite directory shows you the statistics for the sizes of the read-write
I/O extents. This file does not maintain the per-process statistics.

Example:

$ cat /proc/fs/lustre/llite/spfs-c45f9c00/extents_stats

snapshot_time: 1174868361.372513 (secs.usecs)

 read | write

 extents calls % cum% | calls % cum%

 0K - 4K : 0 0 0 | 0 0 0

The file can be cleared by issuing the following command:

$ echo > cat /proc/fs/lustre/llite/spfs-c45f9c00/extents_stats

Per-Process Client I/O Statistics

The "extents_stats_per_process" file maintains the I/O extent size statistics on a per-process basis. So you
can track the per-process statistics for the last MAX_PER_PROCESS_HIST processes.

Example:

$ cat /proc/fs/lustre/llite/spfs-c45f9c00/extents_stats_per_process

snapshot_time: 1174868461.566452 (secs.usecs)

 read | write

 extents calls % cum% | calls % cum%
Lustre Operations Manual 169

2.2.5 Watching the OST Block I/O Stream
Similarly, there is a "brw_stats" histogram in the obdfilter directory which shows you the statistics for number
of input/output requests sent to the disk, their size and whether they are contiguous on the disk or not.

cat /proc/fs/lustre/obdfilter/lustre-OST0000/brw_stats

snapshot_time: 1174875636.764630 (secs:usecs)

read write

pages per brw brws % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

discont pages rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

discont blocks rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

dio frags rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

disk ios in flight ios % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

io time (1/1000s) rpcs % cum % | rpcs % cum %

1: 0 0 0 | 0 0 0

read write

disk I/O size count % cum % | count % cum %

The fields are explained below:
Field Description

pages per brw Number of pages per RPC request, which should match aggregate client rpc_stats.

discont pages Number of discontinuities in the logical file offset of each page in a single RPC.

discont blocks Number of discontinuities in the physical block allocation in the file system for a
single RPC.
170 LustreProc

2.2.6 Mechanics of Lustre Readahead
Readahead is a method of reading part of a file's contents into memory with the expectation that a process
working with the file will soon want the data. When readahead works well, a data-consuming process finds
that the information it needs is available when it asks, and waiting for disk I/O is not necessary.

Lustre readahead is triggered when two or more sequential reads by an application fail to be satisfied by
the Linux buffer cache. The size of the initial readahead is 1 MB. Additional readaheads grow linearly and
increment until the readahead cache on the client is full at 40 MB.

/proc/fs/lustre/llite/<fsname>-<uid>/max_read_ahead_mb

This tunable controls the maximum amount of data readahead on a file. Files are read ahead in RPC-sized
chunks (1 MB or the size of read() call, if larger) after the second sequential read on a file descriptor.
Random reads are done at the size of the read() call only (no readahead). Reads to non-contiguous regions
of the file reset the readahead algorithm, and readahead is not triggered again until there are sequential
reads again. Setting this tunable to 0 disables readahead. The default value is 40 MB.

/proc/fs/lustre/llite/<fsname>-<uid>/max_read_ahead_whole_mb

This tunable controls the maximum size of a file that is read in its entirety, regardless of the size of the read().

2.2.7 mballoc History
/proc/fs/ldiskfs/sda/mb_history

mballoc is short-form for "Multi-Block-Allocate" and is Lustre’s ability to ask ext3 to allocate multiple blocks
with a single request to the block allocator. Normally, an ext3 file system can allocate only one block at a
time. Each mballoc-enabled partition has this file.

Sample output:

pidinode goal result found grps cr \
merge tailbroken

2838139267 17/12288/1 17/12288/1 1 0 0 \ M 1
8192

2838139267 17/12289/1 17/12289/1 1 0 0 \ M 00

2838139267 17/12290/1 17/12290/1 1 0 0 \ M12

283824577 3/12288/1 3/12288/1 1 0 0 \ M 1
8192

283824578 3/12288/1 3/771/1 1 1 1 \
0 0

283832769 4/12288/1 4/12288/1 1 0 0 \ M 1
8192

283832770 4/12288/1 4/12289/1 13 1 1 \ 00

283832771 4/12288/1 5/771/1 26 2 1 \ 00

283832772 4/12288/1 5/896/1 31 2 1 \ 1128

283832773 4/12288/1 5/897/1 31 2 1 \
0 0

282832774 4/12288/1 5/898/1 31 2 1 \ 12

283832775 4/12288/1 5/899/1 31 2 1 \
0 0
Lustre Operations Manual 171

283832776 4/12288/1 5/900/1 31 2 1 \
1 4

283832777 4/12288/1 5/901/1 31 2 1 \
0 0

283832778 4/12288/1 5/902/1 31 2 1 \ 12

283832779 4/12288/1 5/903/1 31 2 1 \ 00

pidinodegoalresultfoundgrps cr\ merge tailbroken

283832780 4/12288/1 5/904/1 31 2 1 \ 18

283832781 4/12288/1 5/905/1 31 2 1 \ 00

283832782 4/12288/1 5/906/1 31 2 1 \ 12

283832783 4/12288/1 5/907/1 31 2 1 \ 00

283832784 4/12288/1 5/908/1 31 2 1 \
1 4

283832785 4/12288/1 5/909/1 31 2 1 \ 00

283832786 4/12288/1 5/910/1 31 2 1 \ 12

283832787 4/12288/1 5/911/1 31 2 1 \ 00

283832788 4/12288/1 5/912/1 31 2 1 \ 116

283832789 4/12288/1 5/913/1 31 2 1 \
0 0

282832790 4/12288/1 5/914/1 31 2 0 \ 12

283832791 4/12288/1 5/915/1 31 2 1 \
0 0

283832792 4/12288/1 5/916/1 31 2 1 \
1 4

283832793 4/12288/1 5/917/1 31 2 1 \
0 0

283832794 4/12288/1 5/918/1 31 2 1 \ 12

283832795 4/12288/1 5/919/1 31 2 1 \ 00

282832796 4/12288/1 5/920/1 31 2 1 \ 18

283832797 4/12288/1 5/921/1 31 2 1 \
0 0

283832798 4/12288/1 5/922/1 31 2 1 \
1 2

283832799 4/12288/1 5/923/1 31 2 1 \
0 0

283832800 4/12288/1 5/924/1 31 2 1 \
1 4
172 LustreProc

pidinode goal result found grps cr \
merge tailbroken

283832801 4/12288/1 5/925/1 31 2 1 \ 00

283832802 4/12288/1 5/926/1 31 2 1 \ 12

283832803 4/12288/1 5/927/1 31 2 1 \ 00

283832804 4/12288/1 5/928/1 31 2 1 \ 132

283832805 4/12288/1 5/929/1 31 2 1 \
0 0

283832806 4/12288/1 5/930/1 31 2 1 \ 12

283832807 4/12288/1 5/931/1 31 2 1 \ 00

283824579 3/12288/1 3/12289/1 11 1 1 \ 00

The parameters are described below:

Most customers are probably interested in found/cr. If cr is 0 1 and found is less than 100, then mballoc
is doing quite well.

Also, number-of-blocks-in-request (third number in the goal triple) can tell the number of blocks requested
by the obdfilter. If the obdfilter is doing a lot of small requests (just few blocks), then either the client is
processing input/output to a lot of small files, or something may be wrong with the client (because it is better
if client sends large input/output requests). This can be investigated with the OSC rpc_stats or OST
brw_stats mentioned above.

Number of groups scanned (grps column) should be small. If it reaches few dozens often either your disk
file system is pretty fragmented or mballoc is doing something wrong in the group selection part.

Field Description

pid Process that made the allocation.

inode inode number allocated blocks.

goal Initial request that came to mballoc (group/block-in-group/number-of-blocks)

result What mballoc actually found for this request.

found Number of free chunks mballoc found and measured before the final decision.

grps Number of groups mballoc scanned to satisfy the request.

cr Stage at which mballoc found the result:
0 - best in terms of resource allocation. The request was 1MB or larger and was
satisfied directly via the kernel buddy allocator.
1 - regular stage (good at resource consumption)
2 - fs is quite fragmented (not that bad at resource consumption)
3 - fs is very fragmented (worst at resource consumption)

queue Total bytes in active / queued sends.

merge Whether the request hit the goal. This is good as extents code can now merge new blocks
to existing extent, eliminating the need for extents tree growth.

tail Number of blocks left free after the allocation breaks large free chunks.

broken How large the broken chunk was.
Lustre Operations Manual 173

2.2.8 mballoc3 Tunables
mballoc3 is included in Lustre version 1.6.1 and later. mballoc31 was built on top of malloc2, and adds these
features:

• Pre-allocation for single files (helps to resist fragmentation)

• Pre-allocation for a group of files (helps to pack small files into large, contiguous chunks)

• Stream allocation (helps to decrease the seek rate)

The following mballoc3 tunables are currently available:

The following tunables, providing more control over allocation policy, will be available in the next version:

1. mballoc3 is enabled, by default.

Parameter Description

stats Enables/disables the collection of statistics. Collected statistics can be found
in /proc/fs/ldiskfs2/<dev>/mb_history.

max_to_scan Maximum number of free chunks that mballoc finds before a final decision to avoid
livelock.

min_to_scan Minimum number of free chunks that mballoc finds before a final decision. This is
useful for a very small request, to resist fragmentation of big free chunks.

order2_req For requests equal to 2^N (where N >= order2_req), a very fast search via buddy
structures is used.

stream_req Requests smaller or equal to this value are packed together to form large write I/Os.

Parameter Description

stats Enables/disables the collection of statistics. Collected statistics can be found
in /proc/fs/ldiskfs2/<dev>/mb_history.

max_to_scan Maximum number of free chunks that mballoc finds before a final decision to avoid
livelock.

min_to_scan Minimum number of free chunks that mballoc finds before a final decision. This is
useful for a very small request, to resist fragmentation of big free chunks.

order2_req For requests equal to 2^N (where N >= order2_req), a very fast search via buddy
structures is used.

small_req All requests are divided into 3 categories:

< small_req (packed together to form large, aggregated requests)
< large_req (allocated mostly in linearly)
> large_req (very large requests so the arm seek does not matter)

The idea is that we try to pack small requests to form large requests, and then place all
large requests (including compound from the small ones) close to one another, causing
as few arm seeks as possible.

large_req

prealloc_table The amount of space to preallocate depends on the current file size. The idea is that for
small files we do not need 1MB preallocations and for large files, 1MB preallocations
are not large enough; it is better to preallocate 4MB.

group_prealloc The amount of space preallocated for small requests to be grouped.
174 LustreProc

2.3 Locking

/proc/fs/lustre/ldlm/ldlm/namespaces/<OSC name|MDCname>
/lru_size

This variable determines how many locks can be queued up on the client in an LRU queue. The default
value of LRU size is 100. Increasing this on a large number of client nodes is not recommended, though
servers have been tested with up to 150,000 total locks (num_clients * lru_size). Increasing it for a small
number of clients (for example, login nodes with a large working set of files due to interactive use) can speed
up Lustre dramatically. Recommended values are in the neighbourhood of 2500 MDC locks and 1000 locks
per OSC.

The following command can be used to clear the LRU on a single client, and as a result flush client cache,
without changing the LRU size value:

$ echo clear > /proc/fs/lustre/ldlm/ldlm/namespaces/<OSC \
name|MDC name>/lru_size

If you shrink the LRU size below the number of existing unused locks, the locks are canceled immediately.
Use echo "clear" to cancel all locks without changing the value.
Lustre Operations Manual 175

2.4 Debug Support

/proc/sys/lnet/debug

Lustre generates a detailed log of all its operations to aid in debugging by default. This can affect the
performance or speed you achieve with Lustre. Therefore, it is useful to reduce this overhead by turning
down the debug level. Raise the debug level when you need to collect the logs for debugging problems.
You can verify the debug level used by examining the sysctl that controls the debugging as shown below:

sysctl portals.debug

 portals.debug = -1

In the above example, -1 indicates full debugging; it is a bitmask. You can disable debugging completely by
running the following command on all the concerned nodes:

sysctl -w portals.debug=0

 portals.debug = 0

The appropriate debug level for a production environment is 0x3f0400. It collects enough high-level
information to aid debugging, but it does not cause any serious performance impact.

You can also verify and change the debug level using the "/proc" interface in Lustre as shown below:

cat /proc/sys/lnet/debug

And change it to:

echo 0x3f0400 > /proc/sys/lnet/debug

/proc/sys/lnet/subsystem_debug

This controls the debug logs for subsystems (see S_* definitions).

/proc/sys/lnet/debug_path

This indicates the location where debugging symbols should be stored for gdb. The default is set to
/r/tmp/lustre-log-localhost.localdomain.

These values can also be set via sysctl -w lnet.debug={value}.

Lustre uses the set debug level after it is loaded on a particular node. You can set the debug level by adding
the following to the node entry config shell script:

--ptldebug <level>

NOTE:
Above entries exist only when Lustre has already been loaded.
176 LustreProc

2.4.1 RPC Information for Other OBD Devices
Some OBD devices maintain a count of the number of RPC events that they process. Sometimes these
events are more specific to operations of the device, like llite, than actual raw RPC counts.

$ find /proc/fs/lustre/ -name stats

/proc/fs/lustre/osc/lustre-OST0001-osc-ce63ca00/stats

/proc/fs/lustre/osc/lustre-OST0000-osc-ce63ca00/stats

/proc/fs/lustre/osc/lustre-OST0001-osc/stats

/proc/fs/lustre/osc/lustre-OST0000-osc/stats

/proc/fs/lustre/mdt/MDS/mds_readpage/stats

/proc/fs/lustre/mdt/MDS/mds_setattr/stats

/proc/fs/lustre/mdt/MDS/mds/stats

/proc/fs/lustre/mds/lustre-MDT0000/exports/ab206805-0630-6647-8543-
d24265c91a3d/stats

/proc/fs/lustre/mds/lustre-MDT0000/exports/08ac6584-6c4a-3536-2c6d-
b36cf9cbdaa0/stats

/proc/fs/lustre/mds/lustre-MDT0000/stats

/proc/fs/lustre/ldlm/services/ldlm_canceld/stats

/proc/fs/lustre/ldlm/services/ldlm_cbd/stats

/proc/fs/lustre/llite/lustre-ce63ca00/stats

The OST .../stats files can be used to track the performance of RPCs that the OST gets from all clients. It
is possible to get a periodic dump of values from these files, for instance every 10s, that show the RPC rates
(similar to iostat) by using the "llstat.pl" tool like:

llstat /proc/fs/lustre/osc/lustre-OST0000-osc/stats

/usr/bin/llstat: STATS on 09/14/07 /proc/fs/lustre/osc/lustre-OST0000-osc/
stats on 192.168.10.34@tcp

snapshot_time 1189732762.835363

ost_create 1

ost_get_info 1

ost_connect 1

ost_set_info 1

obd_ping 212
Lustre Operations Manual 177

You can clear the stats by giving the -c option to llstat.pl. You can also mention how frequently (after how
many seconds) it should clear the stats by mentioning an iteger in -i option. For example, following is the
output with -c and -i10(stats for every 10 Sec):

$ llstat -c -i10 /proc/fs/lustre/ost/OSS/ost_io/stats

/usr/bin/llstat: STATS on 06/06/07 /proc/fs/lustre/ost/OSS/ost_io/stats on\
192.168.16.35@tcp

snapshot_time 1181074093.276072

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074103.284895

Name Cur.Count Cur.Rate #Events

req_waittime 8 0 8 [usec] 2078\
34 259.75 868 317.49

req_qdepth 8 0 8 [reqs] 1\
0 0.12 1 0.35

req_active 8 0 8 [reqs] 11\
1 1.38 2 0.52

reqbuf_avail 8 0 8 [bufs] 511\
63 63.88 64 0.35

ost_write 8 0 8 [bytes] 1697677\
72914 212209.62 387579 91874.29

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074113.290180

Name Cur.Count Cur.Rate #Events

req_waittime 31 3 39 [usec] 30011\
34 822.79 12245 2047.71

req_qdepth 31 3 39 [reqs] 0\
0 0.03 1 0.16

req_active 31 3 39 [reqs] 58\
1 1.77 3 0.74

reqbuf_avail 31 3 39 [bufs] 1977\
63 63.79 64 0.41

ost_write 30 3 38 [bytes] 10284679\
15019 315325.16 910694 197776.51

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074123.325560

Name Cur.Count Cur.Rate #Events

req_waittime 21 2 60 [usec] 14970\
34 784.32 12245 1878.66

req_qdepth 21 2 60 [reqs] 0\
0 0.02 1 0.13

req_active 21 2 60 [reqs] 33\
1 1.70 3 0.70

reqbuf_avail 21 2 60 [bufs] 1341\
63 63.82 64 0.39

ost_write 21 2 59 [bytes] 7648424\
15019 332725.08 910694 180397.87
178 LustreProc

Chapter III - 3. Lustre Tuning
This chapter contains information to tune Lustre for better performance and includes the following sections:

• Module Options

• Options for Formatting MDS and OST

• Large-Scale Tuning for Cray XT and Equivalents

3.1 Module Options

Many options in Lustre are set by means of kernel module parameters. These parameters are contained in
the “modprobe.conf” file (On SuSE, this may be “modprobe.conf.local”).

3.1.1 OST Threads
The ost_num_threads option allows the number of OST service threads to be specified at module load time
on the OSS nodes:

options ost ost_num_threads={N}

An OSS can have a maximum of 36 service threads. Prior to Lustre 1.4.5, the default number of service
threads on an OSS depended on the server size. In Lustre 1.4.6, the number of OST threads was a function
of the server capacity (RAM + CPUs). For a 2 GB 2-CPU system, this works out to 64 service threads. For
larger servers, this might be as high as 512 threads. Giving a specific thread count via the ost_num_threads
module parameter overrides the default calculation.

Increasing the size of the thread pool may help when:

• Several OSTs are exported from a single OSS

• Back-end storage is running synchronously

• Input / output completions take excessive time

In such cases, a larger number of I/O threads allows the kernel and storage to aggregate many writes
together for more efficient disk I/O. The OST thread pool is shared—each thread allocates approximately
1.5 MB (maximum RPC size + 0.5 MB) for internal I/O buffers.

NOTE:
Consider memory consumption when increasing the thread pool size.
Lustre Operations Manual 179

3.1.2 MDS Threads
There is a similar parameter for the number of MDS service threads:

options mds mds_num_threads={N}

At this time, CFS has not tested to determine the optimal number of MDS threads. The default value varies,
based on server size, up to a maximum of 32. The maximum number of threads (MDS_MAX_THREADS)
is 512.

3.1.3 LNET Tunables
This section describes LNET tunables.

3.1.3.1 Transmit and receive buffer size:
With Lustre release 1.4.7 and later, ksocklnd now has separate parameters for the transmit and receive
buffers.

options ksocklnd tx_buffer_size=0 rx_buffer_size=0

If these parameters are left at the default value (0), the system automatically tunes the transmit and receive
buffer size. In almost every case, this default produces the best performance. Do not attempt to tune these
parameters unless you are a network expert.

3.1.3.2 irq_affinity
By default, this parameter is ON. In the normal case on an SMP system, we would like network traffic to
remain local to a single CPU. This helps to keep the processor cache warm, and minimizes the impact of
context switches. This is especially helpful when an SMP system has more than one network interface, and
ideal when the number of interfaces equals the number of CPUs.

If you have an SMP platform with a single fast interface such as 10 GB Ethernet and more than 2 CPUs,
you may see improved performance by turning this parameter to OFF. You should, as always, test to
compare the performance impact.

NOTE:
The OSS and MDS automatically start new service threads dynamically in response to server
loading within a factor of 4. The default is calculated the same way as before (as explained in
3.1.1 OST Threads on page 179).

Setting the _mu_threads module parameter disables the automatic thread creation behavior.
180 Lustre Tuning

3.2 Options for Formatting MDS and OST

The backing file systems on an MDS and OSTs are independent of one another, so the formatting
parameters for them should not be same. The size of the MDS backing file system depends solely on how
many inodes you want in the total Lustre file system. It is not related to the size of the aggregate OST space.

3.2.1 Planning for Inodes
Each time you create a file on a Lustre file system, it consumes one inode on the MDS and one inode for
each OST object that the file is striped over (normally it is based on the default stripe count option -c; but
this may change on a per-file basis). In ext3/ldiskfs file systems, inodes are pre-allocated, so creating a new
file does not consume any of the free blocks. However, this also means that the format-time options should
be conservative as it is not possible to increase the number of inodes after the file system is formatted. It is
possible to add OSTs with additional space and inodes to the file system.

To be on the safe side, plan for 4 KB per inode on the MDS. This is the default. For the OST, the amount of
space taken by each object depends entirely upon the usage pattern of the users/applications running on
the system. Lustre, by necessity, defaults to a very conservative estimate for the object size (16 KB per
object). You can almost always increase this value for file system installations. Many Lustre file systems
have average file sizes over 1MB per object.

3.2.2 Calculating MDS Size
When calculating the MDS size, the only important factor is the average size of files to be stored in the file
system. If the average file size is, for example, 5 MB and you have 100 TB of usable OST space then you
need at least (100 TB * 1024 GB/TB * 1024 MB/GB / 5 MB/inode) = 20 million inodes. CFS recommends to
have twice the minimum, that is 40 million inodes in this example. At the default 4 KB per inode, this works
out to only 160 GB of space for the MDS.

Conversely, if you have a very small average file size, for example 4 KB, Lustre is not very efficient. This is
because you consume as much space on the MDS as you are consume on the OSTs. This is not a very
common configuration for Lustre.

3.2.3 Overriding Default Formatting Options
To override the default formatting options for any of the Lustre backing file systems, use the
"--mkfsoptions='backing fs options'" argument to mkfs.lustre to pass formatting options to the backing mkfs.
For all options to format backing ext3 and ldiskfs file systems, see the mke2fs(8) man page; this section only
discusses some Lustre-specific options.

3.2.3.1 Number of Inodes for MDS
To override the inode ratio, use the option '-i <bytes per inode>' (for instance, "--mkfsoptions='-i 4096' " to
create 1 inode per 4096 bytes of file system space). Alternately, if you are specifying some absolute number
of inodes, use the '-N<number of inodes>' option. To avoid unintentional mistakes, do not specify the ’-i’
option with an inode ratio below one inode per 1024 bytes. Instead, use the '-N' option.

By default, a 2 TB MDS has 512M inodes. Currently, the largest supported file system size is 8 TB, which
holds 2B inodes. With an MDS inode ratio of 1024 bytes per inode, a 2 TB MDS holds 2B inodes, and a
4 TB MDS holds 4B inodes, which is the maximum number of inodes currently supported by ext3.
Lustre Operations Manual 181

3.2.3.2 Inode Size for MDS
Lustre uses "large" inodes on \ backing file systems to efficiently store Lustre metadata with each file. On
the MDS, each inode is at least 512 bytes in size (by default), while on the OST each inode is 256 bytes in
size. Lustre (or more specifically the backing ext3 file system), also needs sufficient space left for other
metadata like the journal (up to 400 MB), bitmaps and directories. There are also a few regular files that
Lustre uses to maintain cluster consistency.

To specify a larger inode size, use the '-I <inodesize>' option. CFS does NOT recommend specifying a
smaller-than-default inode size, as this can lead to serious performance problems; and you cannot change
this parameter after formatting the file system. The inode ratio must always be larger than the inode size.

3.2.3.3 Number of Inodes for OST
For OST file systems, it is normally advantageous to take local file system usage into account. Try and
minimize the number of inodes created on each OST. This helps reduce the format and e2fsck time, and
makes more space available for data. With its on-disk block size of 4 KB, Lustre can perform 1 MB reads
and writes to the disk in order to increaase the performance.

Presently, Lustre has 1 inode per 16 KB of space in the OST file system (by default). In many environments,
this is far too many inodes for the average file size. As a good rule of thumb, the OSTs should have at least
a number of inodes indicated by this formula:

num_ost_inodes = 4 * <num_mds_inodes> * <default_stripe_count> / <number_osts>

You can specify the number of inodes on the OST file systems via the '-N<num_inodes>' option to --
mkfsoptions. Alternately, if you know the average file size, then you can also specify the OST inode count
for the OST file systems via '-i <average_file_size / (number_of_stripes * 4)>' (For example, if the average
file size is 16MB and there are by default 4 stripes per file then --mkfsoptions='-i 1048576' would be
appropriate.)

For more details on how to format MDS and OST file systems, see 8.1.5 Formatting on page 87.
182 Lustre Tuning

3.3 DDN Tuning

This section provides guidelines to configure DDN storage arrays for use with Lustre. For more complete
information on DDN tuning, refer to the performance management section of the DDN manual of your
product, available at http://www.ddnsupport.com/manuals.html.

This section covers the following DDN arrays:

• S2A 8500

• S2A 9500

• S2A 9550

3.3.1 Setting Readahead and MF
For the S2A DDN 8500 storage array, CFS recommends that you disable the readahead. In a 1000-client
system, if each client has up to 8 read RPCs in flight, then this is 8 * 1000 * 1 MB = 8 GB of reads in flight.
With a DDN cache in the range of 2 to 5 GB (depending on the model), it is unlikely that the LUN-based
readahead would have ANY cache hits even if the file data were contiguous on disk (generally, file data is
not contiguous).

The Multiplication Factor (MF) also influences the readahead; you should disable it.

CLI commands for the DDN are:

cache prefetch=0

cache MF=off

For the S2A 9500 and S2A 9550 DDN storage arrays, CFS recommends using the commands above to
disable readahead.

3.3.2 Setting Segment Size
The cache segment size noticeably affects I/O performance. Set the cache segment size differently on the
MDT (which does small, random I/O) and on the OST (which does large, contiguous I/O). In customer
testing, we have found the optimal values to be 64 KB for the MDT and 1 MB for the OST.

These are CLI commands for the DDN:

For the MDT LUN:

$ cache size=64

size is in KB, 64, 128, 256, 512, 1024, and 2048. Default 128

For the OST LUN:

$ cache size=1024

NOTE:
The cache size parameter is common to all LUNs on a single DDN and cannot be
changed on a per-LUN basis.
Lustre Operations Manual 183

http://www.ddn support.com/manuals.html
http://www.ddnsupport.com/manuals.html

3.3.3 Setting Write-Back Cache
Performance is noticeably improved by running Lustre with write-back cache turned on. However, there is
a risk that when the DDN controller crashes you need to run e2fsck. Still, it takes less time than the
performance hit from running with the write-back cache turned off.

For increased data security and in failover configurations, you may prefer to run with write-back cache off.
However, you might experience performance problems with the small writes during journal flush. In this
mode, it is highly beneficial to increase the number of OST service threads "options ost
ost_num_threads=512" in /etc/modprobe.conf. But the OST should have enough RAM (about 1.5 MB /
thread is preallocated for I/O buffers). Having more I/O threads allows you to have more I/O requests in
flight, waiting for the disk to complete the synchronous write.

You have to decide whether performance is more important than the slight risk of data loss and downtime
in case of a hardware / software problem on the DDN.

3.3.4 Setting maxcmds
For S2A DDN 8500 array, changing maxcmds to 4 (from the default 2) improved write performance by as
much as 30% in a particular case. This only works with SATA-based disks and when only one controller of
the pair is actually accessing the shared LUNs.

However, this setting comes with a warning. DDN support does not recommend changing this setting from
the default. By increasing the value to 5, the same setup experienced some serious problems.

The CLI command for the DDN client is provided below (default value is 2).

$ diskmaxcmds=3

For S2A DDN 9500/9550 hardware, you can safely change the default from 6 to 16. Although the maximum
value is 32, values higher than 16 are not currently recommended by DDN support.

3.3.5 Further Tuning Tips
Here are some tips we have drawn from testing at a large installation:

• Use the full device instead of a partition (sda vs sda1). When using the full device, Lustre writes
nicely-aligned 1 MB chunks to disk. Partitioning the disk can destroy this alignment and will
noticeably impact performance.

• Separate the EXT3 OST into two LUNs, a small LUN for the EXT3 journal and a big one for the
"data".

• Since Lustre 1.0.4, CFS supplies EXT3 mkfs options when we create the OST like -j -J and so on
in the following manner (where /dev/sdj has been formatted before as a journal). The journal size
should not be larger than 1 GB (262144 4 KB blocks) as it can consume up to this amount of RAM
on the OSS node per OST.

mke2fs -O journal_dev -b 4096 /dev/sdj [optional size]

NOTE:
There is no risk from an OSS / MDS node crashing, only if the DDN itself fails.
184 Lustre Tuning

For example, one OST per tier

LUNLabel Owner Status Capacity Block Tiers Tier list
(Mbytes) Size

--

0 1 Ready 102400 512 1 1

1 1 Ready 102400 512 1 2

2 1 Ready 102400 512 1 3

3 1 Ready 102400 512 1 4

4 2 Ready [GHS] 102400 4096 1 5

5 2 Ready [GHS] 102400 4096 1 6

6 2 Critical 102400 512 1 7

7 2 Critical 102400 4096 1 8

10 1 Cache Locked 64 512 1 1

11 1 Ready 64 512 1 2

12 1 Cache Locked 64 512 1 3

13 1 Cache Locked 64 512 1 4

14 2 Ready [GHS] 64 512 1 5

15 2 Ready [GHS] 64 512 1 6

16 2 Ready [GHS] 64 4096 1 7

17 2 Ready [GHS] 64 4096 1 8

System verify extent: 16 Mbytes

System verify delay: 30

TIP:
A very important tip—on the S2A DDN 8500 storage array, CFS has proved that we need
to create one OST per TIER, especially in write through (see output below). This is of
concern if you have 16 tiers. Create 16 OSTs consisting of one tier each, instead of eight
made of two tiers each.

- Performance is significantly better on the S2A DDN 9500 and 9550 storage arrays with
two tiers per LUN.

- Do NOT partition the DDN LUNs, as this causes all I/O to the LUNs to be misaligned by
512 bytes. The DDN RAID stripes and cachelines are aligned on 1 MB boundaries.
Having the partition table on the LUN causes all 1 MB writes to do a read-modify-write on
an extra chunk, and ALL 1 MB reads to, instead, read 2 MB from disk into the cache,
causing a noticable performance loss.

- You are not obliged to lock in cache the small LUNs.

- Configure MDT on a separate volume that is configured as RAID 1+0. This reduces the
MDT I/O and doubles the seek speed.
Lustre Operations Manual 185

3.4 Large-Scale Tuning for Cray XT and Equivalents

This section only applies to the Cray XT3 Catamount nodes, and explains the parameters used with the
kptllnd module. If it is not relevant to your setup, then ignore it.

3.4.1 Network Tunables
Given the large number of clients and servers possible on these systems, tuning various request pools
becomes very important. CFS is in the process of making changes to the ptllnd module.

Parameter Description

max_nodes max_nodes is the maximum number of queue pairs, and, therefore, the
maximum number of peers with which the LND instance may communicate.
Set max_nodes to a value that is higher than the product of the total number
of nodes and maximum processes per node.

Max nodes > (Total # Nodes) * (max_procs_per_node)

If you set max_nodes to a lower value than described above, then Lustre
throws an error. If you max_nodes to a higher value, then excess memory is
consumed.

max_procs_per_node max_procs_per_node is the maximum number of cores (CPUs), on a single
Catamount node. Portals must know this value to properly clean up various
queues. LNET is not notified directly when a Catamount process aborts. The
first information LNET receives is when a new Catamount process with the
same Cray portals NID starts and sends a connection request. If the number
of processes with that Cray portals NID exceeds the max_procs_per_node
value, then LNET removes the oldest one to make space for the new one.

These two tunables combine to set the size of the ptllnd request buffer pool. The buffer pool must never
drop an incoming message, so proper sizing is very important.

Ntx Ntx helps to size the transmit (tx) descriptor pool. A tx descriptor is used for
each send and each passive RDMA. The max number of concurrent sends
== 'credits'. Passive RDMA is a response to a PUT or GET of a payload that
is too big to fit in a small message buffer. For servers, this only happens on
large RPCs (for instance, where a long file name is included), so the MDS
could be under pressure in a large cluster. For routers, this is bounded by the
number of servers. If the tx pool is exhausted, a console error message
appears.

Credits Credits determine how many sends are in-flight at once on ptllnd. Optimally,
there are 8 requests in-flight per server. The default value is 128, which
should be adequate for most applications.
186 Lustre Tuning

Chapter III - 4. Lustre Troubleshooting and Tips
This chapter describes tips and information to troubleshoot Lustre, and includes the following sections:

• Lustre Error Messages and Logs

• Lustre Performance Tips

4.1 Lustre Error Messages and Logs

To effectively debug Lustre, you need to review the Lustre error messages and logs.

4.1.1 Lustre Error Messages
As Lustre code runs on the kernel, single-digit error codes display to the application; these error codes are
an indication of the problem. Refer to the kernel console log (dmesg) for all recent kernel messages from
that node. On the node, /var/log/messages holds a log of all messages for at least the past day.

4.1.2 Lustre Logs
The error message initiates with "LustreError" in the console log and provides a short description of:

• What the problem is

• Which process ID had trouble

• Which server node it was communicating with, and so on.

Collect the first group of messages related to a problem, and any messages that precede "LBUG" or
"assertion failure" errors. Messages that mention server nodes (OST or MDS) are specific to that server;
you must collect similar messages from the relevant server console logs.

Another Lustre debug log holds information for Lustre action for a short period of time which, in turn,
depends on the processes on the node to use Lustre. Use the following command to extract these logs on
each of the nodes involved, run

$ lctldk <filename>
Lustre Operations Manual 187

4.1 Lustre Performance Tips

This section describes various tips to improve Lustre performance.

4.1.1 Setting SCSI I/O Sizes
Some SCSI drivers default to a maximum I/O size that is too small for good Lustre performance. CFS has
fixed quite a few drivers, but you may still find that some drivers give unsatisfactory performance with Lustre.
As the default value is hard-coded, you need to recompile the drivers to change their default. On the other
hand, some drivers may have a wrong default set.

If you suspect bad I/O performance, and an analysis of Lustre statistics indicates that I/O is not 1 MB, then
check /sys/block/<device>/queue/max_sectors_kb. If it is less than 1024, set it to 1024 to improve the
performance. If changing this setting does not change the I/O size as reported by Lustre, you may want to
examine the SCSI driver code.

4.1.2 Write Performance Better Than Read Performance
Typically, the performance of write operations on a Lustre cluster is better than read operations. When doing
writes, all clients are sending write RPCs asynchronously. The RPCs are allocated, and written to disk in
the order they arrive. In many cases, this allows the back-end storage to aggregate writes efficiently.

In the case of read operations, the reads from clients may come in a different order and need a lot of seeking
to get read from the disk. This noticeably hampers the read throughput.

Currently, there is no readahead on the OSTs themselves, though the clients do readahead. If there are lots
of clients doing reads it would not be possible to do any readahead in any case because of memory
consumption (consider that even a single RPC (1 MB) readahead for 1000 clients would consume 1 GB of
RAM).

For file systems that use socklnd (TCP, Ethernet) as interconnect, there is also additional CPU overhead
because the client cannot receive data without copying it from the network buffers. In the write case, the
client CAN send data without the additional data copy. This means that the client is more likely to become
CPU-bound during reads than writes.
188 Lustre Troubleshooting and Tips

4.1.3 OST Object is Missing or Damaged
When the OSS fails to find an object or finds a damaged object, then you will see this message: “OST object
missing or damaged (OST "ost1", object 98148, error -2)”.

• If the reported error is -2 (-ENOENT, or "No such file or directory"), then the object is missing. This
can occur either because the MDS and OST are out of sync, or because an OST object was
corrupted and deleted.

• If you have recovered the file system from a disk failure by using e2fsck, then unrecoverable objects
may have been deleted or moved to /lost+found on the raw OST partition. Because files on the MDS
still reference these objects, attempts to access them produce this error.

• If you have recovered a backup of the raw MDS or OST partition, then the restored partition is very
likely to be out of sync with the rest of your cluster. No matter which server partition you restored
from backup, files on the MDS may reference objects which no longer exist (or did not exist when
the backup was taken); accessing those files produces this error.

• If neither of those descriptions is applicable to your situation, then it is possible that you have
discovered a programming error that allowed the servers to get out of sync. Please report this
condition to CFS, and we will investigate.

• If the reported error is anything else (such as -5, "I/O error"), it likely indicates a storage failure. The
low-level file system returns this error if it is unable to read from the storage device.

Suggested Action

If the reported error is -2, you can consider checking in /lost+found on your raw OST device, to see if the
missing object is there. However, it is likely that this object is lost forever, and that the file that references
the object is now partially or completely lost. Restore this file from backup, or salvage what you can and
delete it.

If the reported error is anything else, then you should immediately inspect this server for storage problems.

4.1.4 OSTs Become Read-Only
If the SCSI devices are inaccessible to Lustre at the block device level, then ext3 remounts the device
read-only to prevent file system corruption. This is a normal behavior. The status in /proc/fs/lustre/
healthcheck also shows "not healthy" on the affected nodes.

To recover from this problem, you must restart Lustre services using these file systems. There is no other
way to know that the I/O made to disk, and the state of the cache may be inconsistent with what is on disk.
Lustre Operations Manual 189

4.1.5 Identifying a Missing OST
If an OST is missing for any reason, you may need to know what files are affected. Although an OST is
missing, the files system should be operational. From any mounted client node, generate a list of files that
reside on the affected OST. It is advisable to mark the missing OST as ’unavailable’ so clients and the MDS
do not time out trying to contact it.

1 On MDS and client nodes, run:

lctl dl

2 Deactivate the OST, run:

lctl --device N deactivate

Note that N will be different for the MDS and clients.

3 Determine all the files that are striped over the missing OST, run:

lfs find -R -o {OST_UUID} /mountpoint

This returns a simple list of filenames from the affected file system.

4 If necessary, you can read the valid parts of a striped file, run:

dd if=filename of=new_filename bs=4k conv=sync,noerror

5 You can also delete these files with "unlink" or "munlink", run:

6 If you need to know, specifically, which parts of the file are missing data, then you first need to determine
the striping pattern (which includes the index of the missing OST). Run:

lfs getstripe -v {filename}

7 Use this computation is to determine which offsets in the file are affected:

[(C*N + X)*S, (C*N + X)*S + S - 1], N = { 0, 1, 2, ...}

where:

C = stripe count

S = stripe size

X = index of bad OST for this file

For example, for a file with 2 stripes, stripe size = 1M, bad OST is at index 0, then you would have holes in
your file at:

[(2*N + 0)*1M, (2*N + 0)*1M + 1M - 1], N = { 0, 1, 2, ...}

If the file system cannot be mounted, currently there is no way that parses metadata directly from an MDS.
If the bad OST is not starting, options for mounting the file system are to provide a loop device OST in its
place, or to replace it with a newly-formatted OST. In that case, the missing objects are created and are
read as zero-filled.

In Lustre 1.6 you can mount a file system with a missing OST.

NOTE:
If the OST later becomes available it needs to be reactivated, run:

lctl --device N activate
190 Lustre Troubleshooting and Tips

4.1.6 Changing Parameters
You can set the following parameters at the mkfs time, on a non-running target disk, via tunefs.lustre or via
a live MGS using lctl.

With mkfs.lustre

While you are using the mkfs command and creating the file system, you can simply add the parameters as
a "--param" option:

$ mkfs.lustre --mdt --param="sys.timeout=50" /dev/sda

With tunefs.lustre

If a server is stopped, you can add the parameters via tunefs.lustre with the same “--param” option:

$ tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

With tunefs.lustre, parameters are "additive" -- to erase all old parameters and just use the newly-specified
parameters, use tunefs.lustre --erase-params --param=....

With lctl

While a server is running, you can change many parameters via "lctl conf_param":

$ mgs> lctl conf_param testfs-MDT0000.sys.timeout=40

$ anynode> cat /proc/sys/lustre/timeout

4.1.7 Default Striping
These are the default striping settings:

lov.stripesize=<bytes>

lov.stripecount=<count>

lov.stripeoffset=<offset>

To change the default striping information.

• On the MGS:

$ lctl conf_param testfs-MDT0000.lov.stripesize=4M

• On the MDT and clients:

$ mdt/cli> cat /proc/fs/lustre/lov/testfs-{mdt|cli}lov/stripe*
Lustre Operations Manual 191

4.1.8 Erasing a File System
If you want to erase a file system, run this command on your targets:

$ "mkfs.lustre –reformat"

If you are using a separate MGS and want to keep other file systems defined on that MGS, then set the
"writeconf" flag1 on the MDT for that file system. The "writeconf" flag causes the config logs to be erased -
they are regenerated the next time the servers start.

To set the “writeconf” flag on the MDT:

1 Unmount all clients/servers using this file system, run:

$ umount /mnt/lustre

2 Erase the file system and, presumably, replace it with another file system, run:

$ mkfs.lustre –reformat --fsname spfs --mdt --mgs /dev/sda

3 If you have a separate MGS (that you do not want to reformat), then add the "writeconf" flag to
mkfs.lustre on the MDT, run:

$ mkfs.lustre --reformat --writeconf –fsname spfs --mdt \
--mgs /dev/sda

4.1.9 Reclaiming Reserved Disk Space
All current Lustre installations run the ext3 file system internally on service nodes. By default, the ext3
reserves 5% of the disk space for the root user. In order to reclaim this space, run the following command
on your OSSs:

tune2fs [-m reserved_blocks_percent] [device]

You do not need to shut down Lustre before running this command or restart it afterwards.

1. The name is historical.

NOTE:
If you have a combined MGS/MDT, reformatting the MDT reformats the MGS as well,
causing all configuration information to be lost; you can start building your new file
system. Nothing needs to be done with old disks that will not be part of the new file
system, just do not mount them.
192 Lustre Troubleshooting and Tips

4.1.10 Considerations in Connecting a SAN with Lustre
Depending on your cluster size and workload, you may want to connect a SAN with Lustre. Before making
this connection, consider the following:

• In many SAN file systems without Lustre, clients allocate and lock blocks or inodes individually as
they are updated. The Lustre design avoids the high contention that some of these blocks and
inodes may have.

• Lustre is highly scalable and can have a very large number of clients. SAN switches do not scale
to a large number of nodes, and the cost per port of a SAN is generally higher than other networking.

• File systems that allow direct-to-SAN access from the clients have a security risk because clients
can potentially read any data on the SAN disks, and misbehaving clients can corrupt the file system
for many reasons like improper file system, network, or other kernel software, bad cabling, bad
memory, and so on. The risk increases with increase in the number of clients directly accessing the
storage.

4.1.11 Handling/Debugging "Bind: Address already in use" Error
During startup, Lustre may report the "bind: Address already in use" error and reject to start the operation.
This is caused by a portmap service (often NFS locking) which starts before Lustre and binds to the default
port 988.

Unfortunately, you cannot set sunprc to avoid port 988. If you receive this error, do the following:

• Start Lustre before starting any service that uses sunrpc.

• Use a port other than 988 for Lustre. This is configured in /etc/modprobe.conf as an option to the
LNET module. For example:

options lnet accept_port=988

• Add 'modprobe ptlrpc' to your system startup scripts before the service that uses sunrpc. This
causes Lustre to bind to port 988 and sunrpc to select a different port.

NOTE:
You can also use the sysctl command to mitigate the NFS client from grabbing the Lustre
service port. However, this is a partial workaround as other user-space RPC servers still
have the ability to grab the port.
Lustre Operations Manual 193

4.1.12 Replacing An Existing OST or MDS
The OST file system is simply a normal ext3 file system. To copy the contents of an existing OST to a new
OST (or an old MDS to a new MDS), use one of the following methods:

• Connect the old OST disk and new OST disk to a single machine, mount both, and use rsync to
copy all data between the OST file systems.

For example:

mount -t ext3 /dev/old /mnt/ost_old

mount -t ext3 /dev/new /mnt/ost_new

rsync -aSv /mnt/ost_old/ /mnt/ost_new

note trailing slash on ost_old/

• If you are unable to connect both sets of disk to the same computer, use rsync to copy over the
network using rsh (or ssh with "-e ssh"):

rsync -aSvz /mnt/ost_old/ new_ost_node:/mnt/ost_new

• Use the same procedure for the MDS, with one additional step:

cd /mnt/mds_old; getfattr -R -e base64 -d . > /tmp/mdsea; <copy all MDS
files\ as above>; cd /mnt/mds_new; setfattr --restore=/tmp/mdsea

4.1.13 Handling/Debugging Error "- 28"
Linux error -28 is -ENOSPC and indicates that the file system has run out of space. You need to create
larger file systems for the OSTs. Normally, Lustre reports this to your application. If the application is
checking the return code from its function calls, then it decodes it into a textual error message like "No space
left on device." It also appears in the system log messages.

During a "write" or "sync" operation, the file in question resides on an OST which is already full. New files
that are created do not use full OSTs, but existing files continue to use the same OST. You need to expand
the specific OST or copy/stripe the file over to an OST with more space available. You encounter this
situation occasionally when creating files, which may indicate that your MDS has run out of inodes and
needs to be enlarged. Use "df -i" to check this.

You may also receive this error if the MDS runs out of free blocks. Since the output of "df" is an aggregate
of the data from the MDS and all of the OSTs, it may not show that the file system is full when one of the
OSTs has run out of space. To determine which OST or MDS is running out of space, check the free space
and inodes on a client:

grep '[0-9]' /proc/fs/lustre/osc/*/kbytes{free,avail,total}

grep '[0-9]' /proc/fs/lustre/osc/*/files{free,total}

grep '[0-9]' /proc/fs/lustre/mdc/*/kbytes{free,avail,total}

grep '[0-9]' /proc/fs/lustre/mdc/*/files{free,total}

You can find other numeric error codes in /usr/include/asm/errno.h along with their short name and textual
description.
194 Lustre Troubleshooting and Tips

4.1.14 Triggering Watchdog for pid NNN
In some cases, a server node triggers a watchdog timer and this causes a process stack to be dumped to
the console along with a Lustre kernel debug log being dumped into /tmp (by default). The presence of a
watchdog timer does NOT mean that the thread OOPSed, but rather that it is taking longer time than
expected to complete a given operation. In some cases, this situation is expected.

For example, if a RAID rebuild is really slowing down I/O on an OST, it might trigger watchdog timers to trip.
But another message follows shortly thereafter, indicating that the thread in question has completed
processing (after some number of seconds). Generally, this indicates a transient problem. In other cases, it
may legitimately signal that a thread is stuck because of a software error (lock inversion, for example).

Lustre: 0:0:(watchdog.c:122:lcw_cb())

The above message indicates that the watchdog is active for pid 933:

It was inactive for 100000ms:

Lustre: 0:0:(linux-debug.c:132:portals_debug_dumpstack())

Showing stack for process:

933 ll_ost_25 D F896071A 0 933 1 934 932 (L-TLB)

f6d87c60 00000046 00000000 f896071a f8def7cc 00002710 00001822 2da48cae

0008cf1a f6d7c220 f6d7c3d0 f6d86000 f3529648 f6d87cc4 f3529640 f8961d3d

00000010 f6d87c9c ca65a13c 00001fff 00000001 00000001 00000000 00000001

Call trace:

 filter_do_bio+0x3dd/0xb90 [obdfilter]

 default_wake_function+0x0/0x20

 filter_direct_io+0x2fb/0x990 [obdfilter]

 filter_preprw_read+0x5c5/0xe00 [obdfilter]

 lustre_swab_niobuf_remote+0x0/0x30 [ptlrpc]

 ost_brw_read+0x18df/0x2400 [ost]

 ost_handle+0x14c2/0x42d0 [ost]

 ptlrpc_server_handle_request+0x870/0x10b0 [ptlrpc]

 ptlrpc_main+0x42e/0x7c0 [ptlrpc]
Lustre Operations Manual 195

4.1.15 Handling Timeouts on Initial Lustre Setup
If you come across timeouts or hangs on the initial setup of your Lustre system, verify that name resolution
for servers and clients is working correctly. Some distributions configure "/etc/hosts sts" so the name of the
local machine (as reported by the 'hostname' command) is mapped to local host (127.0.0.1) instead of a
proper IP address.

This might produce the following error:

LustreError: (ldlm_handle_cancel()) received cancel for unknown lock cookie

0xe74021a4b41b954e from nid 0x7f000001 (0:127.0.0.1)

4.1.16 Handling/Debugging "LustreError: xxx went back in time"
Each time Lustre changes the state of the disk file system, it records a unique transaction number.
Occasionally, when commiting these transactions to the disk, the last committed transaction number
displays to other nodes in the cluster to assist the recovery. Therefore, the promised transactions remain
absolutely safe on the disappeared disk.

This situation arises when:

• You are using a disk device that claims to have data written to disk before it actually does, as in
case of a device with a large cache. If that disk device crashes or loses power in a way that causes
the loss of the cache, there can be a loss of transactions that you believe are commited. This is a
very serious event, and you should run e2fsck against that storage before restarting Lustre.

• As per the Lustre requirement, the shared storage used for failover is completely cache-coherent.
This ensures that if one server takes over for another, it sees the most up-to-date and accurate copy
of the data. In case of the failover of the server, if the shared storage does not provide cache
coherency between all of its ports, then Lustre can produce an error.

If you know the exact reason for the error, then it is safe to proceed with no further action. If you do not know
the reason, then this is a serious issue and you should explore it with your disk vendor.

If the error occurs during failover, examine your disk cache settings. If it occurs after a restart without
failover, try to determine how the disk can report that a write succeeded, then lose the Data Device
corruption or Disk Errors.

4.1.17 Lustre Error: "Slow Start_Page_Write"
The "slow start_page_write" message appears when the operation takes an extremely long time to allocate
a batch of memory pages. Use these pages to receive network traffic first, and then write to disk.

4.1.18 Drawbacks in Doing Multi-client O_APPEND Writes
It is possible to do multi-client O_APPEND writes to a single file, but there are few drawbacks that may make
this a sub-optimal solution. These drawbacks are:

• Each client needs to take an EOF lock on all the OSTs, as it is difficult to know which OST holds
the end of the file until you check all the OSTs. As all the clients are using the same O_APPEND,
there is significant locking overhead.

• The second client cannot get all locks until the end of the writing of the first client, as the taking
serializes all writes from the clients.

• To avoid deadlocks, the taking of these locks occurs in a known, consistent order. As a client cannot
know which OST holds the next piece of the file until the client has locks on all OSTS, there is a
need of these locks in case of a striped file.
196 Lustre Troubleshooting and Tips

Chapter IV - 1. Free Space and Quotas
This chapter describes free space and using quotas, and includes the following sections:

• Querying File System Space on page 197

• Using Quota on page 199

1.1 Querying File System Space

The lfs df command is used to determine available disk space on a file system. It displays the amount of
available disk space on the mounted Lustre file system and shows space consumption per-OST. If multiple
Lustre file systems are mounted, a path may be specified, but is not required.

Options Description

- h --human-readable print sizes in human readable format (for example: 1K, 234M, 5G)

-i, --inodes Lists inodes instead of block usage
Lustre Operations Manual 197

Examples

fc3:~$ lfs df

UUID 1K-blocks Used Available Use% \ Mounted on

mds-p_UUID 4399856 528200 3871656 12 \
/mnt/lustre[MDT:0]

ost-a_UUID 153834852 55804744 98030108 36 \
/mnt/lustre[OST:0]

ost-b_UUID 153834852 55927804 97907048 36 \
/mnt/lustre[OST:1]

filesystem summary: 307669704 111732548 195937156 36 \
/mnt/lustre

fc3:~$ lfs df -h

UUID 1K-blocks Used Available Use% \
Mounted on

mds-p_UUID 4.2M 515.8K 3.7M 12 \
/mnt/lustre[MDT:0]

ost-a_UUID 146.7M 53.2M 93.5M 36 \
/mnt/lustre[OST:0]

ost-b_UUID 146.7M 53.3M 93.4M 36 \
/mnt/lustre[OST:1]

filesystem summary:293.4M106.6M186.9M36\
/mnt/lustre

fc3:~$ lfs df -i

UUID Inodes IUsed Ifree IUse% \
Mounted on

mds-p_UUID 1257360 272869 984491 21 \
/mnt/lustre[MDT:0]

ost-a_UUID 19546112 257430 19288682 1 \
/mnt/lustre[OST:0]

ost-b_UUID 19546112 257430 19288682 1 \
/mnt/lustre[OST:1]

filesystem summary: 1257360 272869 984491 21 \
/mnt/lustre
198 Free Space and Quotas

1.2 Using Quota

The lfs quota command displays disk usage and quotas. By default, only user quotas are displayed (or with
the -u flag).

A root user can use the -u flag, with the optional user parameter, to view the limits of other users. Users
without root user authority can use the -g flag, with the optional group parameter, to view the limits of groups
of which they are members.

Examples

To display quotas as user “bob,” run:

$ lfs quota -u /mnt/lustre

The above command displays disk usage and limits for user "bob."

To display quotas as root user for user “bob,” run:

$ lfs quota -u bob /mnt/lustre

The system can also show the below information about disk usage by “bob.”

To display your group's quota as “tom”:

$ lfs -g tom /mnt/lustre

To display the group's quota of “tom”:

$ lfs quota -g tom /mnt/lustre

NOTE:
If a user has no files in a file system on which they have a quota, the lfs quota command
shows quota: none for the user. The user's actual quota is displayed when the user has
files in the file system.

NOTE:
As for ext3, Lustre makes a sparse file in case you truncate at an offset past the end of
the file. Space is utilized in the file system only when you actually write the data to these
blocks.
Lustre Operations Manual 199

200 Free Space and Quotas

Chapter IV - 2. Striping and Other I/O Options
This chapter describes file striping and I/O options, and includes the following sections:

• File Striping on page 201

• Individual Files and Directories Examined with lfs getstripe on page 204

• lfs setstripe – Setting Striping Patterns on page 205

• Free Space Management on page 206

• Performing Direct I/O on page 207

• Other I/O Options on page 207

• Striping Using ioctl on page 208

2.1 File Striping

Lustre stores files of one or more objects on OSTs. When a file is comprised of more than one object, Lustre
stripes the file data across them in a round-robin fashion. Users can configure the number of stripes, the
size of each stripe, and the servers that are used.

One of the most frequently-asked Lustre questions is “How should I stripe my files, and what is a good
default?” The short answer is that it depends on your needs. A good rule of thumb is to stripe over as few
objects as will meet those needs and no more.
Lustre Operations Manual 201

2.1.1 Advantages of Striping
There are two reasons to create files of multiple stripes: bandwidth and size.

2.1.1.1 Bandwidth
There are many applications which require high-bandwidth access to a single file – more bandwidth than
can be provided by a single OSS. For example, scientific applications which write to a single file from
hundreds of nodes or a binary executable which is loaded by many nodes when an application starts.

In cases like these, stripe your file over as many OSSs as it takes to achieve the required peak aggregate
bandwidth for that file. In our experience, the requirement is “as quickly as possible,” which usually means
all OSSs.

2.1.1.2 Size
The second reason to stripe is when a single OST does not have enough free space to hold the entire file.

There is never an exact, one-to-one mapping between clients and OSTs. Lustre uses a round-robin
algorithm for OST stripe selection until free space on OSTs differ by more than 20%. However, depending
on actual file sizes, some stripes may be mostly empty, while others are more full. For a more detailed
description of stripe assignments, see Free Space Management on page 206.

After every ostcount+1 objects, Lustre skips an OST. This causes Lustre’s "starting point" to precess
around, eliminating some degenerated cases where applications that create very regular file
creation/striping patterns would have preferentially used a particular OST in the sequence.

2.1.2 Disadvantages of Striping
There are two disadvantages to striping which should deter you from choosing a default policy that stripes
over all OSTs unless you really need it: increased overhead and increased risk.

2.1.2.1 Increased Overhead
Increased overhead comes in the form of extra network operations during common operations such as stat
and unlink, and more locks. Even when these operations are performed in parallel, there is a big difference
between doing 1 network operation and 100 operations.

Increased overhead also comes in the form of server contention. Consider a cluster with 100 clients and
100 OSSs, each with one OST. If each file has exactly one object and the load is distributed evenly, there
is no contention and the disks on each server can manage sequential I/O. If each file has 100 objects, then
the clients all compete with one another for the attention of the servers, and the disks on each node seek
in 100 different directions. In this case, there is needless contention.

2.1.2.2 Increased Risk
Increased risk is evident when you consider the example of striping each file across all servers. In this case,
if any one OSS catches on-fire, a small part of every file is lost. By comparison, if each file has exactly one
stripe, you lose fewer files, but you lose them in their entirety. Most users would rather lose some of their
files entirely than all of their files partially.

NOTE:
This assumes that your application is using enough client nodes, and can read/write data
fast enough to take advantage of this much OSS bandwidth. The largest useful stripe count
is bounded by the I/O rate of your clients/jobs divided by the performance per OSS.
202 Striping and Other I/O Options

2.1.3 Stripe Size
Choosing a stripe size is a small balancing act, but there are reasonable defaults. The stripe size must be
a multiple of the page size. For safety, Lustre’s tools enforce a multiple of 64 KB (the maximum page size
on ia64 and PPC64 nodes), so users on platforms with smaller pages do not accidentally create files which
might cause problems for ia64 clients.

Although you can create files with a stripe size of 64 KB, this is a poor choice. Practically, the smallest
recommended stripe size is 512 KB because Lustre tries to batch I/O into 512 KB chunks over the network.
This is a good amount of data to transfer at one time. Choosing a smaller stripe size may hinder the
batching.

Generally, a good stripe size for sequential I/O using high-speed networks is between 1 MB and
4 MB. Stripe sizes larger than 4 MB do not parallelize as effectively because Lustre tries to keep the amount
of dirty cached data below 32 MB per server (with the default configuration).

Writes which cross an object boundary are slightly less efficient than writes which go entirely to one server.
Depending on your application's write patterns, you can assist it by choosing a stripe size with that in mind.
If the file is written in a very consistent and aligned way, make the stripe size a multiple of the write() size.

The choice of stripe size has no effect on a single-stripe file.
Lustre Operations Manual 203

2.2 Individual Files and Directories Examined with lfs getstripe

Use lfs to print the index and UUID for each OST in the file system, along with the OST index and object ID
for each stripe in the file. For directories, the default settings for files created in that directory are printed.

lfs getstripe <filename>

Use lfs find to inspect an entire tree of files.

lfs find [--recursive | -r] <file or directory> ...

If a process is doing I/O to a file, use the 'lfs getstripe' command to see which OST it is writing to.

Using cat as an example, run:

$ cat > foo

While that is running, in another terminal, run:

$ readlink /proc/$(pidof cat)/fd/1

/barn/users/jacob/tmp/foo

You can also do ls -l /proc/<pid>/fd/ to find open files using Lustre, run:

$ lfs getstripe $(readlink /proc/$(pidof cat)/fd/1)

OBDS:

0: databarn-ost1_UUID ACTIVE

1: databarn-ost2_UUID ACTIVE

2: databarn-ost3_UUID ACTIVE

3: databarn-ost4_UUID ACTIVE

/barn/users/jacob/tmp/foo

 obdidx objid objid group

 2 835487 0xcbf9f 0

This shows that the file lives on obdidx 2, which is databarn-ost3. To see which node is serving that OST,
run:

$ cat /proc/fs/lustre/osc/*databarn-ost3*/ost_conn_uuid

NID_oss1.databarn.87k.net_UUID

The above condition/operation also works with connections to the MDS. For that, replace osc with mdc and
ost with mds in the above commands
204 Striping and Other I/O Options

2.3 lfs setstripe – Setting Striping Patterns

Use lfs setstripe to create new files with a specific stripe configuration.

lfs setstripe <filename|dirname> [--size|-s stripe-size] \
[-–index|-i stripe_index] [--count|-c stripe_count]

Stripe-Size

If you pass a stripe-size of 0, the file system’s default stripe size is used. Otherwise, the stripe-size must be
a multiple of 16 KB.

Starting-OST

If you pass a starting-ost of -1, a random first OST is chosen. Otherwise, the file starts on the specified OST
index, starting at zero (0).

Stripe-Count

If you pass a stripe-count of 0, the file system’s default number of OSTs is used. A stripe-count of -1 means
that all available OSTs should be used.

2.3.1 Changing Striping for a Subdirectory
For a directory, lfs setstripe sets a default striping configuration for files created within the directory. The
usage is the same as lfs setstripe for a regular file, except that the directory must exist prior to setting the
default striping configuration. If a file is created in a directory with a default stripe configuration (without
otherwise specifying striping), Lustre uses those striping parameters instead of the file system default for
the new file.

To change the striping pattern for a sub-directory, create a directory with desired striping pattern as
described above. Su-directories inherit the striping pattern of the parent directory.

2.3.2 Using a Specific Striping Pattern for a Single File
For a single file:

lfs setstripe creates a file with a given stripe pattern

lfs setstripe fails if the file already exists

NOTE:
If you pass a starting-ost of 0 and a stripe-count of 1, all files are written to OST #0, until
space is exhausted. This is probably not what you meant to do. If you want to adjust only
the stripe-count and keep the other parameters at their default settings, use this syntax:

lfs setstripe 0 -1 <stripe_count>

NOTE:
Striping on directories only affects NEW files and NEW sub-directories created within them.
Lustre Operations Manual 205

2.4 Free Space Management

In Lustre 1.6, the MDT assigns file stripes to OSTs based on location (which OSS) and size considerations
(free space) to optimize file system performance. Emptier OSTs are preferentially selected for stripes, and
stripes are preferentially spread out between OSSs to increase network bandwidth utilization. The weighting
factor between these two optimizations is user-adjustable.

There are two stripe allocation methods, round-robin and weighted. The allocation method is determined by
the amount of free-space imbalance on the OSTs. The weighted allocator is used when any two OSTs are
imbalanced by more than 20%. Until then, a faster round-robin allocater is used. (The round-robin order
maximizes network balancing.)

2.4.1 Round-Robin Allocator
When OSTs have approximately the same amount of free space (within 20%), an efficient round-robin
allocator is used. The round-robin allocator alternates stripes between OSTs on different OSSs. Here are
several sample round-robin stripe orders (the same letter represents the different OSTs on a single OSS):

2.4.2 Weighted Allocator
When the free space difference between the OSTs is significant, then a weighting algorithm is used to
influence OST ordering based on size and location. Note that these are weightings for a random algorithm,
so the "emptiest" OST is not, necessary, be strictly chosen every time. On average, the weighted allocator
fills emptier OSTs faster.

3: AAA one 3-OST OSS

3x3: ABABAB two 3-OST OSSs

3x4: BBABABA one 3-OST OSS (A) and four OST OSSs (B)

3x5: BBABBABA

3x5x1: BBABABABC

3x5x2: BABABCBABC

4x6x2: BABABCBABABC

NOTE:
If you "mknod() and truncate()" a new file (that is, you do not open the file at all) to the
maximum file size, the MDS picks enough OSTs to stripe the file over. This adds enough
stripes on OSTs with enough free space to hold the expected file size (though it does not
actually reserve this space. Hence, parallel creates / writes may still fail).

In Lustre 1.4, this was only useful for files larger than 2 TB (that is, when num_stripes =
size / 2 TB).
206 Striping and Other I/O Options

2.4.3 Adjusting the Weighting Between Free Space and Location
This priority can be adjusted via the /proc/fs/lustre/lov/lustre-mdtlov/qos_prio_free proc file. In the future, the
default will be 90%. On existing Lustre betas, use the following command to permanently set this on the
MGS:

lctl conf_param <fsname>-MDT0000.lov.qos_prio_free=90

Increasing the value puts more weighting on free space. When the free space priority is set to 100%, then
location is no longer used in stripe-ordering calculations, and weighting is based entirely on free space.

Note that setting the priority to 100% means that OSS distribution does not count in the weighting, but the
stripe assignment is still done via a weighting—if OST2 has twice as much free space as OST1, then OST2
is twice as likely to be used, but it is not guaranteed to be used.

2.5 Performing Direct I/O

Starting with 1.4.7, Lustre supports the O_DIRECT flag to open.

Applications using the read() and write() calls must supply buffers aligned on a page boundary
(usually 4 K). If the alignment is not correct, the call returns -EINVAL. Direct I/O may help performance in
cases where the client is doing a large amount of I/Oa and is CPU-bound (CPU utilization 100%).

2.5.1 Making File System Objects Immutable
An immutable file or directory is one that cannot be modified, renamed or removed. To do this:

chattr +i <file>

To remove this flag, use chattr –i

2.6 Other I/O Options

This section describes other I/O options, including end-to-end client checksums and striping using ioctl.

2.6.1 End-to-End Client Checksums
To guard against data corruption, a Lustre client can perform end-to-end data checksums. This must be
enabled on the individual client nodes. If the checksum is bad, the client will not have an I/O error. The bad
checksum is reported immediately as a syslog message. Both the client and the OST log messages at
intervals showing that checksums are being validated. A /proc file controls the checksum behavior. The file
is:

/proc/fs/lustre/llite/fs0/checksum_pages

To enable checksums on a client:

echo 1 > /proc/fs/lustre/llite/fs0/checksum_pages
Lustre Operations Manual 207

2.7 Striping Using ioctl

You can set striping from inside programs like ioctl. To compile the sample program, you need to download
libtest.c and liblustreapi.c files from the Lustre source tree.

A simple C program to demonstrate striping API – libtest.c

/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-

 * vim:expandtab:shiftwidth=8:tabstop=8:

 *

 * lustredemo - simple code examples of liblustreapi functions

 */

#include <stdio.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <dirent.h>

#include <errno.h>

#include <string.h>

#include <unistd.h>

#include <stdlib.h>

#include <lustre/liblustreapi.h>

#include <lustre/lustre_user.h>

#define MAX_OSTS 1024

#define LOV_EA_SIZE(lum, num) (sizeof(*lum) + num * sizeof(*lum-
>lmm_objects))

#define LOV_EA_MAX(lum) LOV_EA_SIZE(lum, MAX_OSTS)

/*

This program provides crude examples of using the liblustre API functions

*/

/* Change these definitions to suit */

#define TESTDIR "/tmp" /* Results directory */

#define TESTFILE "lustre_dummy" /* Name for the file we create/destroy */

#define FILESIZE 262144 /* Size of the file in words */

#define DUMWORD "DEADBEEF" /* Dummy word used to fill files */
208 Striping and Other I/O Options

#define MY_STRIPE_WIDTH 2 /* Set this to the number of OST required */

#define MY_LUSTRE_DIR "/mnt/lustre/ftest"

int close_file(int fd)

{

 if (close(fd) < 0) {

 fprintf(stderr, "File close failed: %d (%s)\n", errno,
strerror(errno));

 return -1;

 }

 return 0;

}

int write_file(int fd)

{

 char *stng = DUMWORD;

 int cnt = 0;

 for(cnt = 0; cnt < FILESIZE; cnt++) {

 write(fd, stng, sizeof(stng));

 }

 return 0;

}

/* Open a file, set a specific stripe count, size and starting OST

 Adjust the parameters to suit */

int open_stripe_file()

{

 char *tfile = TESTFILE;

 int stripe_size = 65536; /* System default is 4M */

 int stripe_offset = -1; /* Start at default */

 int stripe_count = MY_STRIPE_WIDTH; /* Single stripe for this
demo */

 int stripe_pattern = 0; /* only RAID 0 at this time */

 int rc, fd;

 /*

 */

 rc = llapi_file_create(tfile,
stripe_size,stripe_offset,stripe_count,stripe_pattern);
Lustre Operations Manual 209

 /* result code is inverted, we may return -EINVAL or an ioctl error.

 We borrow an error message from sanity.c

 */

 if (rc) {

 fprintf(stderr,"llapi_file_create failed: %d (%s) \n", rc,
strerror(-rc));

 return -1;

 }

 /* llapi_file_create closes the file descriptor, we must re-open */

 fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644);

 if (fd < 0) {

 fprintf(stderr, "Can't open %s file: %d (%s)\n", tfile, errno,
strerror(errno));

 return -1;

 }

 return fd;

}

/* output a list of uuids for this file */

int get_my_uuids(int fd)

{

 struct obd_uuid uuids[1024], *uuidp; /* Output var */

 int obdcount = 1024;

 int rc,i;

 rc = llapi_lov_get_uuids(fd, uuids, &obdcount);

 if (rc != 0) {

 fprintf(stderr, "get uuids failed: %d (%s)\n",errno,
strerror(errno));

 }

 printf("This file system has %d obds\n", obdcount);

 for (i = 0, uuidp = uuids; i < obdcount; i++, uuidp++) {

 printf("UUID %d is %s\n",i, uuidp->uuid);

 }

 return 0;

}

/* Print out some LOV attributes. List our objects */

int get_file_info(char *path)
210 Striping and Other I/O Options

{

 struct lov_user_md *lump;

 int rc;

 int i;

 lump = malloc(LOV_EA_MAX(lump));

 if (lump == NULL) {

 return -1;

 }

 rc = llapi_file_get_stripe(path, lump);

 if (rc != 0) {

 fprintf(stderr, "get_stripe failed: %d (%s)\n",errno,
strerror(errno));

 return -1;

 }

 printf("Lov magic %u\n", lump->lmm_magic);

 printf("Lov pattern %u\n", lump->lmm_pattern);

 printf("Lov object id %llu\n", lump->lmm_object_id);

 printf("Lov object group %llu\n", lump->lmm_object_gr);

 printf("Lov stripe size %u\n", lump->lmm_stripe_size);

 printf("Lov stripe count %hu\n", lump->lmm_stripe_count);

 printf("Lov stripe offset %u\n", lump->lmm_stripe_offset);

 for (i = 0; i < lump->lmm_stripe_count; i++) {

 printf("Object index %d Objid %llu\n", lump-
>lmm_objects[i].l_ost_idx, lump->lmm_objects[i].l_object_id);

 }

 free(lump);

 return rc;

}

/* Ping all OSTs that belong to this filesysem */
Lustre Operations Manual 211

int ping_osts()

{

 DIR *dir;

 struct dirent *d;

 char osc_dir[100];

 int rc;

 sprintf(osc_dir, "/proc/fs/lustre/osc");

 dir = opendir(osc_dir);

 if (dir == NULL) {

 printf("Can't open dir\n");

 return -1;

 }

 while((d = readdir(dir)) != NULL) {

 if (d->d_type == DT_DIR) {

 if (! strncmp(d->d_name, "OSC", 3)) {

 printf("Pinging OSC %s ", d->d_name);

 rc = llapi_ping("osc", d->d_name);

 if (rc) {

 printf(" bad\n");

 } else {

 printf(" good\n");

 }

 }

 }

 }

 return 0;

}

int main()

{

 int file;

 int rc;

 char filename[100];

 char sys_cmd[100];
212 Striping and Other I/O Options

 sprintf(filename, "%s/%s",MY_LUSTRE_DIR, TESTFILE);

 printf("Open a file with striping\n");

 file = open_stripe_file();

 if (file < 0) {

 printf("Exiting\n");

 exit(1);

 }

 printf("Getting uuid list\n");

 rc = get_my_uuids(file);

 printf("Write to the file\n");

 rc = write_file(file);

 rc = close_file(file);

 printf("Listing LOV data\n");

 rc = get_file_info(filename);

 printf("Ping our OSTs\n");

 rc = ping_osts();

 /* the results should match lfs getstripe */

 printf("Confirming our results with lfs getsrtipe\n");

 sprintf(sys_cmd, "/usr/bin/lfs getstripe %s/%s", MY_LUSTRE_DIR,
TESTFILE);

 system(sys_cmd);

 printf("All done\n");

 exit(rc);

}

Makefile for sample application:

gcc -g -O2 -Wall -o lustredemo libtest.c -llustreapi

clean:

rm -f core lustredemo *.o

run:

make

rm -f /mnt/lustre/ftest/lustredemo

rm -f /mnt/lustre/ftest/lustre_dummy

cp lustredemo /mnt/lustre/ftest/
Lustre Operations Manual 213

214 Striping and Other I/O Options

Chapter IV - 3. Lustre Security
This chapter describes Lustre security and includes the following section:

• Using ACLs on page 215

3.1 Using ACLs

An access control list (ACL), is a set of data that informs an operating system about permissions or access
rights that each user or group has to specific system objects, such as directories or files. Each object has a
unique security attribute that identifies users who have access to it. The ACL lists each object and user
access privileges such as read, write or execute.

3.1.1 How ACLs Work
Implementing ACLs varies between operating systems. Systems that support the Portable Operating
System Interface (POSIX) family of standards share a simple yet powerful file system permission model,
which should be well-known to the Linux/Unix administrator. ACLs add finer-grained permissions to this
model, allowing for more complicated permission schemes. For a detailed explanation of ACLs on Linux,
CFS recommends the SuSE Labs article, “Posix Access Control Lists on Linux” found here:

http://www.suse.de/~agruen/acl/linux-acls/online/

CFS has implemented ACLs according to this model. Lustre supports the standard Linux ACL tools, setfacl,
getfacl, and the historical chacl, normally installed with the acl package.

3.1.2 Lustre ACLs
Lustre versions 1.4.6 and above support POSIX ACLs. When using a Lustre client at version 1.4.5 or below
with an MDS at version 1.4.6, or vice versa, the userspace program generates an “Operation not supported”
error during ACL operations.

The MDS needs to be configured to enable ACLs. This can be enabled when creating your configuration
with --mountfsoptions:

$ mkfs.lustre --fsname spfs --mountfsoptions=acl --mdt –mgs /dev/sda

Alternately, you can enable ACLs at run time by using the --acl option with mkfs.lustre:

$ mount -t lustre -o acl /dev/sda /mnt/mdt
Lustre Operations Manual 215

http://www.suse.de/~agruen/acl/linux-acls/online/

ACLs on the client are enabled at mount time when ACLs are enabled on the MDS. You do not need to
change the client configuration, and the “acl” string will not appear in the client /etc/mtab. The client acl
mount option is no longer needed. If a client is mounted with that option, then this message appears in the
MDS syslog:

...MDS requires ACL support but client does not

The message is harmless but indicates a configuration issue, which should be corrected.

If ACLs are not enabled on the MDS, then any attempts to reference an ACL on a client return an “Operation
not supported” error.

3.1.3 Examples
These examples are taken directly from the POSIX paper referenced above. ACLs on a Lustre file system
work exactly like ACLs on any Linux file system. They are manipulated with the standard tools in the
standard manner. Below, we create a directory and allow a specific user access.

[root@client lustre]# umask 027

[root@client lustre]# mkdir rain

[root@client lustre]# ls -ld rain

drwxr-x--- 2 root root 4096 Feb 20 06:50 rain

[root@client lustre]# getfacl rain

file: rain

owner: root

group: root

user::rwx

group::r-x

other::---

[root@client lustre]# setfacl -m user:chirag:rwx rain

[root@client lustre]# ls -ld rain

drwxrwx---+ 2 root root 4096 Feb 20 06:50 rain

[root@client lustre]# getfacl --omit-heade rain

user::rwx

user:chirag:rwx

group::r-x

mask::rwx

other::---
216 Lustre Security

Chapter IV - 4. Other Lustre Operating Tips
This chapter describes tips to improve Lustre operations and includes the following sections:

• Expanding the File System by Adding OSTs

• A Simple Data Migration Script

4.1 Expanding the File System by Adding OSTs

To add OSTs to existing Lustre file systems:

1 Add a new OST by passing on the following commands, run:

$ mkfs.lustre --fsname=spfs --ost --mgsnode=mds16@tcp0 /dev/sda

$ mkdir -p /mnt/test/ost0

$ mount -t lustre /dev/sda /mnt/test/ost0

2 Migrate the data (possibly).

The file system is quite unbalanced when new empty OSTs are added. New file creations are automatically
balanced. If this is a scratch file system or files are pruned at a regular interval, then no further work may be
needed. Files existing prior to the expansion can be rebalanced with an in-place copy, which can be done
with a simple script.

The basic method is to copy existing files to a temporary file, then mv the temp file over the old one. This
should not be attempted with files which are currently being written to by users or applications. This
operation redistributes the stripes over the entire set of OSTs. For a sample data migration script, see A
Simple Data Migration Script on page 220.

A very clever migration script would do the following:

• Examine the current distribution of data.

• Calculate how much data should move from each full OST to the empty ones.

• Search for files on a given full OST (using lfs getstripe).

• Force the new destination OST (using lfs setstripe).

• Copy only enough files to address the imbalance.

If an enterprising Lustre administrator wants to explore this approach further, per-OST disk-usage statistics
can be found under /proc/fs/lustre/osc/*/rpc_stats.
Lustre Operations Manual 217

Example Script:

#!/bin/bash

set -x

A script to copy and check files

To guard against corruption, the file is chksum'd

before and after the operation.

You must supply a temporary directory for the operation.

CKSUM=${CKSUM:-md5sum}

MVDIR=$1

if [$# -ne 1]; then

echo "Usage: $0 <dir to copy>"

exit 1

fi

cd $MVDIR

for i in `find . -print`

do

if directory, skip

if [-d $i]; then

echo "dir $i"

else

Check for write permission

if [! -w $i]; then

echo "No write permission for $i, skipping"

continue

fi
218 Other Lustre Operating Tips

OLDCHK=$($CKSUM $i | awk '{print $1}')

NEWNAME=$(mktemp $i.tmp.XXXXXX)

cp $i $NEWNAME

RES=$?

if [$RES -ne 0];then

echo "$i copy error - exiting"

rm -f $NEWNAME

exit 1

fi

NEWCHK=$($CKSUM $NEWNAME | awk '{print $1}')

if [$OLDCHK != $NEWCHK]; then

echo "$NEWNAME bad checksum - $i not
moved, exiting"

rm -f $NEWNAME

exit 1

else

mv $NEWNAME $i

if [$RES -ne 0];then

echo "$i move error - exiting"

rm -f $NEWNAME

exit 1

fi

fi

fi

done
Lustre Operations Manual 219

4.2 A Simple Data Migration Script

#!/bin/bash

set -x

A script to copy and check files

To guard against corruption, the file is chksum'd

before and after the operation.

You must supply a temporary directory for the operation.

CKSUM=${CKSUM:-md5sum}

MVDIR=$1

if [$# -ne 1]; then

echo "Usage: $0 <dir to copy>"

exit 1

fi

cd $MVDIR

for i in `find . -print`

do

if directory, skip

if [-d $i]; then

echo "dir $i"

else

Check for write permission

if [! -w $i]; then

echo "No write permission for $i, skipping"

continue
220 Other Lustre Operating Tips

fi

OLDCHK=$($CKSUM $i | awk '{print $1}')

NEWNAME=$(mktemp $i.tmp.XXXXXX)

cp $i $NEWNAME

RES=$?

if [$RES -ne 0];then

echo "$i copy error - exiting"

rm -f $NEWNAME

exit 1

fi

NEWCHK=$($CKSUM $NEWNAME | awk '{print $1}')

if [$OLDCHK != $NEWCHK]; then

echo "$NEWNAME bad checksum - $i not moved, \ exiting"

rm -f $NEWNAME

exit 1

else

mv $NEWNAME $i

if [$RES -ne 0];then

echo "$i move error - exiting"

rm -f $NEWNAME

exit 1

fi

fi

fi

done

4.3 Adding Multiple SCSI LUNs on Single HBA

The configuration of the kernels packaged by CFS is similar to that of the upstream RedHat and SuSE
packages. Currently, RHEL does not enable CONFIG_SCSI_MULTI_LUN because it can cause problems
with SCSI hardware.

To enable this, set the scsi_mod max_scsi_luns=xx' option (typically, xx is 128) in either modprobe.conf
(2.6 kernel) or modules.conf (2.4 kernel).

To pass this option as a kernel boot argument (in grub.conf or lilo.conf), compile the kernel with
CONFIG_SCSI_MULT_LUN=y
Lustre Operations Manual 221

4.4 Failures While Running a Client and an OST on the Same
Machine

While running a client and an OST on the same machine, the following failures can occur:

• If the client contains a dirty file system in memory and memory pressure, a kernel thread flushes
dirty pages to the file system, and it writes to a local OST. To complete the write, the OST needs to
do an allocation. Then the blocking of allocation occurs while waiting for the above kernel thread to
complete the write process and free up some memory. This is a deadlock condition.

• If the node with both a client and OST crashes, then the OST waits for the mounted client on that
node to recover. However, since the client is now in crashed state, the OST considers it to be a new
client and blocks it from mounting until the recovery completes.

As a result, running OST and client on same machine can cause a double failure and prevent a complete
recovery.

4.5 Improving Lustre Metadata Performance While Using Large
Directories

To improve metadata performance while using large directories can be improved by:

• Have more RAM on the MDS – On the MDS, more memory translates into bigger caches, thereby
increasing the metadata performance.

• Patching the core kernel on the MDS with the 3G/1G patch (if not running a 64-bit kernel), which
increases the available kernel address space. This translates into support for bigger caches on the
MDS.
222 Other Lustre Operating Tips

Chapter V - 1. User Utilities (man1)
This chapter describes user utilities and includes the following sections:

• lfs

• lfsck

• Mount

• Handling Timeouts

1.1 lfs

Use lfs, a Lustre client file system utility, to display striping information for existing files and to create a file
with a specific striping pattern.

1.1.1 Synopsis
lfs

lfs find [--atime|-A N] [--mtime|-M N] [--ctime|-C N] [--maxdepth|-D N] \ [-
-print0|-P] [--print|-p] [--obd|-O <uuid>] <dir/file>

lfs find [--quiet|-q] [--verbose|-v] [--recursive|-r] <dir|file>

lfs getstripe [--obd|-O <uuid>] [--quiet|-q] [--verbose|-v] \

[--recursive|-r] <dir/file>

lfs setstripe <filename|dirname> [--size|-s stripe_size] \

[--index|-i stripe_index] [--count|-c stripe_count]

lfs quotachown [-i] <filesystem>

lfs quotacheck [-ug] <filesystem>

lfs quotaon [-ugf] <filesystem>

lfs quotaoff [-ug] <filesystem>

lfs setquota [-u|-g] <name> <block-softlimit> <block-hardlimit> \

<inode-softlimit> <inode-hardlimit> <filesystem>

lfs quota [-o obd_uuid] [-u|-g] <name> <filesystem>

lfs setstripe <filename> <stripe-size> <start-ost> <stripe-cnt>
Lustre Operations Manual 223

lfs check <mds| osts| servers>

lfs df [-i] [-h] [path]

1.1.2 Description
The lfs utility is used to create a new file with a specific striping pattern, determine the default striping
pattern, and gather the extended attributes (object numbers and location) for a specific file and for setting
Lustre quota. It can be invoked interactively without any arguments or in a non-interactive mode with one of
the supported arguments.

To invoke lfs in an interactive mode, run:

$ lfs

lfs> help

For a complete list of available commands, type “help” at the lfs prompt. To get basic help on the description
and syntax of a command, type “help command.” The tab key activates command completion. Command
history is available via the “UP” and “DOWN” arrow keys.

Available sub-commands are:

setstripe:

• Creates a new file with a specific striping pattern.

getstripe:

• Lists the striping pattern for a given file name or files in a given directory.

• Lists the striping pattern recursively for all files in a directory tree.

• Lists the files that have objects on a specific OST.

NOTE:
In the above example, <filesystem> refers to the mount point of the Lustre file system
(default is /mnt/lustre).
224 User Utilities (man1)

Find:

Searches the directory tree rooted at the given directory or filename for the files that match the given
parameters.

Parameter Description

--atime The file was last accessed N*24 hours ago. It checks if the file was last accessed,
changed, modified N days ago, within the interval of (N+1,N] days. This number can be
specified as +N and -N, for more than and less than N days ago, respectively

--ctime The status of the file was last changed N*24 hours ago.

--mtime The data in the file was last modified N*24 hours ago.

--obd The file has an object on a specific OST.

--maxdepth Allows the find command to descend at most N levels of the directory tree.
Use [--print0|-P] [--print|-p] to print the full file name on standard output, followed by a
null character or a new line, respectively.

--name Returns only filenames that match "pattern" (a shell pattern). Use ’*’ to match any
characters (except the path separator /) and ’.’ only matches ’.’
Use ’! --name’ to exclude filenames matching pattern.

--print Prints the filename (by default).

--print0 Prints the filenames with a trailing \0 character. Programs like xargs -0 can be used to
process filenames with spaces in them.

--ost Returns only those files that have a stripe on the specified OST uuid. Currently, this can
only specify a single OST UUID.
Lustre Operations Manual 225

lfind:
The lfind option lists the striping pattern for a given file name or files in a directory or recursively for all files
in a directory tree by using one of the following options.

[--quiet|-q] [--verbose|-v] [--recursive|-r]

If one of the above options is specified, lfind works in the so-called “old” mode - filename and striping. This
mode is obsolete; use lfs getstripe instead.

NOTE:
In ’new’ mode, lfind can run on a non-Lustre file system, and can cross all Lustre / non-Lustre
mount points (and vice versa) correctly.

Parameter Description

df Reports file system disk space usage or inode usage for each MDS / OST.

quotachown Changes the owner or group of a file on OSTs of the specified file system.

quotacheck Scans the specified file system for disk usage and creates or updates quota files.

quotaon Turns on file system quotas.

quotaoff Turns off file system quotas.

setquota Sets file system quotas.

quota Displays the disk usage and limits.

check Displays the status of MDS or OSTs (specified in the command) or all servers
(MDS and OSTs).

osts Lists all OSTs for the file system.

help Provides brief help on various arguments.

exit / quit Quits the interactive lfs session.
226 User Utilities (man1)

1.1.3 Examples
To create a file striped on one OST, run:

$ lfs setstripe /mnt/lustre/file1 131072 0 1

To create a file striped on two OSTs with 128 KB on each stripe, run:

$ lfs setstripe /mnt/lustre/file1 131072 -1 2

To create a default striping pattern on an existing directory for all the new files created therein, run:

$ lfs setstripe /mnt/lustre/dir 131072 0 1

To delete the default striping pattern on a directory, run:

$ lfs setstripe -d /mnt/lustre/dir

(New files use the default striping pattern created therein.)

This is an example of setting and getting stripes, run:

$ lfs > setstripe lustre.iso 0 -1 0

$ lfs > getstripe lustre.iso

OBDS:

0: ost1_UUID ACTIVE

1: ost2_UUID_2 ACTIVE

./lustre

obdidx objid objid group

1 4 0x4 0

To list the object allocations of all the files in a given directory, run:

$ lfs find/mnt/lustre/

To list the object allocation of a given file, run:

$ lfs find/mnt/lustre/file1

stripe-size If you pass a stripe-size of 0, the file system default stripe size is used.
Otherwise, the stripe-size must be a multiple of 16 KB.

stripe-start If you pass a starting-ost of -1, a random first OST is chosen.
Otherwise, the file starts on the specified OST index (starting at 0).

stripe-count If you pass a stripe-count of 0, the file system default number of OSTs is used.
A stripe-count of -1 means that all available OSTs should be used.

NOTE:
The default stripe-size is 0. The default stripe-start is -1. Do NOT confuse them!
If you set stripe-start to 0, all new file creations occur on OST 0 (seldom a good idea).
Lustre Operations Manual 227

To list the extended attributes of a given file, run:

$ lfs find /mnt/lustre/foo1

OBDS:

O: OST_localhost_UUID

/mnt/lustre/foo1

obdidx objid objid group

0 1 0x1 0

To list the extended attributes of all files in a given directory, run:

$ lfs find /mnt/lustre/

fs find -r /mnt/lustre/

To recursively list objects of all the files in a given directory tree, run:

$ lfs find -r /mnt/lustre/

To recursively list all the files in a given directory that have objects on OST2-UUID, run:

$ lfs find -r --obd OST2-UUID /mnt/lustre/

To change the file owner and group, run:

$ lfs quotachown -i /mnt/lustre

To check the quota for a user and a group, run:

$ lfs quotacheck -ug /mnt/lustre

To turn on the quotas for a user and a group, run:

$ lfs quotaon -ug /mnt/lustre

To turn off the quotas for a user and a group, run:

$ lfs quotaoff -ug /mnt/lustre

To set the quotas for a user as 1 GB block quota and 10,000 file quota, run:

$ lfs setquota -u {username} 0 1000000 0 10000 /mnt/lustre

To ignore the error if the file does not exist, run the following command. For example:

$ lfs quotachown -i {file|directory} /mnt/lustre
228 User Utilities (man1)

To check the disk space in available inodes consumed by individual MDS and OST, run:

$ lfs df -i /mnt/lustre

uuid inodes used free use% mounted on

mds-1_uuid 53265600 28266 53237334 0 /mnt/lustre[MDT:0]

ost-1_uuid 24405606 41349 244054715 0 /mnt//lustre[OST:0]

ost-2_uuid 244056064 884 244055180 0 /mnt/lustre[OST:1]

To check the disk space in size available on individual MDS and OST, run:

$ lfs df -h /mnt/lustre

uuid 1k-blocks used free use% mounted on

mds-1_uuid 203.5M 12.1M 191.5M 5 /mnt/lustre[MDT:0]

ost-1_uuid 1.8G 384.7M 1.4G 20 /mnt//lustre[OST:0]

ost-2_uuid 1.8G 343.0M 1.5G 18 /mnt/lustre[OST:1]

ost-3_uuid 1.8G 332.2M 1.5G 18 /mnt/lustre[OST:2]

To list the quotas of a user, run:

$ lfs quota -u {username} /mnt/lustre

To check the status of all the servers – MDS and OSTs, run:

$ lfs check servers

OSC_localhost.localdomain_OST_localhost_mds1 active.

OSC_localhost.localdomain_OST_localhost_MNT_localhost active.

MDC_localhost.localdomain_mds1_MNT_localhost active.

To check the status of all the servers – MDSs, run:

$ lfs check mds

To check the status of all the servers – OSTs, run:

$ lfs check ost

To list all of the OSTs, run:

$ lfs osts

OBDS:

O: OST_localhost_UUID
Lustre Operations Manual 229

To list the logs of particular types, run:

$ lfs catinfo {keyword} [node name]

Keywords are: config, deletions

The node name must be provided when using the keyword config.

For example, run:

$ lfs catinfo {config|dele*tions}{mdsnode|ostnode}

To join the files, run:

$ join <filename_A> <filename_B>
230 User Utilities (man1)

1.2 lfsck

The e2fsprogs package contains an lfsck tool which does distributed coherency checking for the Lustre file
system, after e2fsck has been run. In most cases, e2fsck is sufficent to repair any file system issues and
lfsck is not required (at the small chance of having some leaked space in the file system). To avoid lengthy
downtime, you can also run lfsck once Lustre is already started (with care).

1.2.1 Synopsis

lfsck [-h|--help] [-n|--nofix] [-l|--lostfound][-d|--delete] [-f|--force]
[-v|--verbose] --mdsdb mdsdb --ostdb ost1db,[ost2db,...] filesystem

The parameters and their meanings:

NOTE:
For the above example <filesystem> refers to the mount point of the Lustre file system
(default is /mnt/lustre).

Parameter Description

-n Performs a read-only check; does not repair the file
system.

-l Puts orphaned objects into a lost+found directory in
the root of the file system.

-d Deletes orphaned objects from the file system. Since
objects on the OST are usually only one of several
stripes of a file, it is often difficult to put multiple objects
back together into a single usable file.

-h Prints a brief help message.

--mdsdb mds_database_file MDS database file created by running
e2fsck --mdsdb mds_database_file device on the MDS
backing device.

--ostdb
ost1_database_file[,ost2_database_file,...]

OST database files created by running
e2fsck --ostdb ost_database_file device on each OST
backing device.
Lustre Operations Manual 231

1.2.2 Description
If an MDS or an OST becomes corrupt, you can run a distributed check on the file system to determine what
sort of problems exist.

1 Run 'e2fsck -f' on the individual MDS / OST that had problems to fix any local file system damage.

It is a very good idea to run this e2fsck under "script" so you have a log of whatever changes it made to
the file system (in case this is needed later). After this is complete, you can bring the file system up if
necessary to reduce the outage window.

2 Run a full e2fsck of the MDS to create a database for lfsck.

The '-n' option is critical for a mounted file system, otherwise you might corrupt your file system. The
mdsdb file can grow fairly large, depending on the number of files in the file system (10 GB or more for
millions of files, though the actual file size is larger because the file is sparse). It is fastest if this is written
to a local file system because of the seeking and small writes. Depending on the number of files, this
step can take several hours to complete. In the following example, /tmp/mdsdb is the database file.

e2fsck -n -v --mdsdb /tmp/mdsdb /dev/{mdsdev}

Example:

e2fsck -n -v --mdsdb /tmp/mdsdb /dev/sdb

e2fsck 1.39.cfs1 (29-May-2006)

Warning: skipping journal recovery because doing a read-only filesystem
check.

lustre-MDT0000 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

MDS: ost_idx 0 max_id 288

MDS: got 8 bytes = 1 entries in lov_objids

MDS: max_files = 13

MDS: num_osts = 1

mds info db file written

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong (656160, counted=656058).

Fix? no

Free inodes count wrong (786419, counted=786036).

Fix? no

Pass 6: Acquiring information for lfsck

MDS: max_files = 13

MDS: num_osts = 1
232 User Utilities (man1)

MDS: 'lustre-MDT0000_UUID' mdt idx 0: compat 0x4 rocomp 0x1 incomp 0x4

lustre-MDT0000: ********** WARNING: Filesystem still has errors **********

 13 inodes used (0%)

 2 non-contiguous inodes (15.4%)

 # of inodes with ind/dind/tind blocks: 0/0/0

 130272 blocks used (16%)

 0 bad blocks

 1 large file

 296 regular files

 91 directories

 0 character device files

 0 block device files

 0 fifos

 0 links

 0 symbolic links (0 fast symbolic links)

 0 sockets

 387 files

3 Make this file accessible on all OSTs (either via a shared file system or by copying it to the OSTs – pdcp
is very useful here. It copies files to groups of hosts and in parallel, it gets installed with pdsh. You can
download it at:

http://sourceforge.net/projects/pdsh).

Run a similar e2fsck step on the OSTs. You can run this step simultaneously on OSTs. The mdsdb is
read-only in this step—a single copy can be shared by all OSTs.

e2fsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/{ostNdb} /dev/{ostNdev}

Example:

[root@oss161 ~]# e2fsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/ostdb /dev/sda

e2fsck 1.39.cfs1 (29-May-2006)

Warning: skipping journal recovery because doing a read-only filesystem
check.

lustre-OST0000 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity
Lustre Operations Manual 233

http://sourceforge.net/projects/pdsh

Pass 4: Checking reference counts

Pass 5: Checking group summary information

Free blocks count wrong (989015, counted=817968).

Fix? no

Free inodes count wrong (262088, counted=261767).

Fix? no

Pass 6: Acquiring information for lfsck

OST: 'lustre-OST0000_UUID' ost idx 0: compat 0x2 rocomp 0 incomp 0x2

OST: num files = 321

OST: last_id = 321

lustre-OST0000: ********** WARNING: Filesystem still has errors **********

 56 inodes used (0%)

 27 non-contiguous inodes (48.2%)

 # of inodes with ind/dind/tind blocks: 13/0/0

 59561 blocks used (5%)

 0 bad blocks

 1 large file

 329 regular files

 39 directories

 0 character device files

 0 block device files

 0 fifos

 0 links

 0 symbolic links (0 fast symbolic links)

 0 sockets

 368 files
234 User Utilities (man1)

4 Make the mdsdb and all of the ostdb files available on a mounted client so lfsck can be run to examine
the file system and, optionally, correct defects that it finds.

lfsck -n -v --mdsdb /tmp/mdsdb --ostdb /tmp/{ost1db},{ost2db},... /lustre/
mount/point

Example:

lfsck -n -v --mdsdb /home/mdsdb --ostdb /home/ostdb /mnt/lustre/client/

MDSDB: /home/mdsdb

OSTDB[0]: /home/ostdb

MOUNTPOINT: /mnt/lustre/client/

MDS: max_id 288 OST: max_id 321

lfsck: ost_idx 0: pass1: check for duplicate objects

lfsck: ost_idx 0: pass1 OK (287 files total)

lfsck: ost_idx 0: pass2: check for missing inode objects

lfsck: ost_idx 0: pass2 OK (287 objects)

lfsck: ost_idx 0: pass3: check for orphan objects

[0] uuid lustre-OST0000_UUID

[0] last_id 288

[0] zero-length orphan objid 1

lfsck: ost_idx 0: pass3 OK (321 files total)

lfsck: pass4: check for duplicate object references

lfsck: pass4 OK (no duplicates)

lfsck: fixed 0 errors

By default, lfsck does not repair any inconsistencies it finds, it only reports errors. It checks for three kinds
of inconsistencies:

• Inode exists but has missing objects = dangling inode. Normally, this happens if there was a
problem with an OST.

• Inode is missing but the OST has unreferenced objects = orphan object. Normally, this happens if
there was a problem with the MDS.

• Multiple inodes reference the same objects. This happens if there was corruption on the MDS or if
the MDS storage is cached and loses some, but not all, writes.

If the file system is busy, lfsck may report inconsistencies where none exist because of files and objects
being created / removed after the database files were collected. Examined the results closely; you probably
want to contact CFS Support for guidance.

The easiest problem to resolve is orphaned objects. Use the '-l' option to lfsck so it links these objects to
new files and puts them into lost+found in the Lustre file system, where they can be examined and saved
or deleted as necessary. If you are certain that the objects are not necessary, lfsck can run with the
'-d' option to delete orphaned objects and free up any space they are using.

NOTE:
The ostdb list is a comma-separated list of the ostdb files, so using wildcards in the
filename does not work.
Lustre Operations Manual 235

To fix dangling inodes, lfsck creates new zero-length objects on the OSTs if the '-c' option is given. These
files read back with binary zeros for the stripes that had objects recreated. Such files can also be read even
without lfsck repair by using this command, run:

$ dd if=/lustre/bad/file of=/new/file bs=4k conv=sync,noerror.

Because it is rarely useful to have files with large holes in them, most users delete these files after reading
them (if useful) and/or restoring them from backup.

To fix inodes with duplicate objects, lfsck copies the duplicate object to a new object, and assign that to one
of the files if the '-c' option is given. One of the files will be okay, and one will likely contain garbage; but lfsck
cannot, by itself, tell which one is correct.

NOTE:
It is not possible to write to the holes of such files without having lfsck recreate the
objects, so it is generally easier to delete these files and restore them from backup.
236 User Utilities (man1)

1.3 Mount

Lustre uses the standard Linux 'mount' command, and also supports a few extra options. For Lustre 1.4, the
server-side options should be added to the XML configuration with the –mountfsoptions= argument.

Here are the Lustre-specific options:

Server options: Description

extents Use extended attributes (required)

mballoc Use Lustre file system allocator (required)

Lustre 1.6 server options:

abort_recov Abort recovery when starting a target
(currently an lconf option)

nosvc Start only MGS/MGC servers

exclude Start with a dead OST

Client options:

flock Enable / disable flock support

user_xattr/nouser_xattr Enable / disable user-extended attributes

retry= Number of times a client will retry mount
Lustre Operations Manual 237

1.4 Handling Timeouts

Timeouts are the most common cause of hung applications. After a timeout involving an MDS or failover
OST, applications attempting to access the disconnected resource wait until the connection gets
established.

When a client performs any remote operation, it gives the server a reasonable amount of time to respond.
If a server does not reply either due to a down network, hung server, or any other reason, a timeout occurs
which requires a recovery.

If a timeout occurs, a message (similar to this one), appears on the console of the client, and in /var/log/
messages:

LustreError: 26597:(client.c:810:ptlrpc_expire_one_request()) @@@ timeout

req@a2d45200 x5886/t0 o38->mds_svc_UUID@NID_mds_UUID:12 lens 168/64 ref 1 fl

RPC:/0/0 rc 0
238 User Utilities (man1)

Chapter V - 2. Lustre Programming Interfaces
(man3)

This chapter describes public programming interfaces to control various aspects of Lustre from userspace.
These interfaces are generally not guaranteed to remain unchanged over time, although CFS will make an
effort to notify the user community well in advance of major changes. This chapter includes the following
section:

• User/Group Cache Upcall

2.1 User/Group Cache Upcall

This section describes user and group upcall.

2.1.1 Name
Use /proc/fs/lustre/mds/mds-service/group_upcall to look up a given user’s group membership.

2.1.2 Description
The group upcall file contains the path to an executable that, when properly installed, is invoked to resolve
a numeric UID to a group membership list. This utility should complete the mds_grp_downcall_data data
structure (below) and write it to the /proc/fs/lustre/mds/mds-service/group_info pseudo-file.

For a sample upcall program, see lustre/utils/l_getgroups.c in the Lustre source distribution.

2.1.3 Parameters
The name of the MDS service.

The numeric UID.
Lustre Operations Manual 239

2.1.4 Data structures

#include <lustre/lustre_user.h>

#define MDS_GRP_DOWNCALL_MAGIC 0x6d6dd620

struct mds_grp_downcall_data {

__u32 mgd_magic;

__u32 mgd_err;

__u32 mgd_uid;

__u32 mgd_gid;

__u32 mgd_ngroups;

__u32 mgd_groups[0];

};
240 Lustre Programming Interfaces (man3)

Chapter V - 3. Config Files and Module
Parameters (man5)

This section describes configuration files and module parameters and includes the following sections:

• Introduction

• Module Options

3.1 Introduction

LNET network hardware and routing are now configured via module parameters. Parameters should be
specified in the /etc/modprobe.conf file, for example:

alias lustre llite

options lnet networks=tcp0,elan0

The above option specifies that this node should use all the available TCP and Elan interfaces.

Module parameters are read when the module is first loaded. Type-specific LND modules (for instance,
ksocklnd) are loaded automatically by the lnet module when LNET starts (typically upon modprobe ptlrpc).

Under Linux 2.6, LNET configuration parameters can be viewed under /sys/module/; generic and acceptor
parameters under lnet, and LND-specific parameters under the name of the corresponding LND.

Under Linux 2.4, sysfs is not available, but the LND-specific parameters are accessible via equivalent paths
under /proc.

Important: All old (pre v1.4.6) Lustre configuration lines should be removed from the module configuration
files and replaced with the following. Make sure that CONFIG_KMOD is set in your linux.config so LNET
can load the following modules it needs. The basic module files are:

modprobe.conf (for Linux 2.6)

alias lustre llite

options lnet networks=tcp0,elan0

modules.conf (for Linux 2.4)

alias lustre llite

options lnet networks=tcp0,elan0
Lustre Operations Manual 241

For the following parameters, default option settings are shown in parenthesis. Changes to parameters
marked with a W affect running systems. (Unmarked parameters can only be set when LNET loads for the
first time.) Changes to parameters marked with Wc only have effect when connections are established
(existing connections are not affected by these changes.)

3.2 Module Options

• With routed or other multi-network configurations, use ip2nets rather than networks, so all nodes
can use the same configuration.

• For a routed network, use the same “routes” configuration everywhere. Nodes specified as routers
automatically enable forwarding and any routes that are not relevant to a particular node are
ignored. Keep a common configuration to guarantee that all nodes have consistent routing tables.

• A separate modprobe.conf.lnet included from modprobe.conf makes distributing the configuration
much easier.

• If you set “config_on_load=1”, LNET starts at modprobe time rather than waiting for Lustre to start.
This ensures routers start working at module load time.

lctl

lctl> net down

• Remember lctl ping – it is a very handy way to check your LNET configuration.

3.2.1 LNET Options
This section describes LNET options.

3.2.1.1 Network Topology
Network topology module parameters determine which networks a node should join, whether it should route
between these networks, and how it communicates with non-local networks.

Here is a list of various networks and the supported software stacks:

Network Software Stack

openib OpenIB gen1 / Mellanox Gold

iib Silverstorm (Infinicon)

vib Voltaire

o2ib OpenIB gen2

cib Cisco

mx Myrinet MX

gm Myrinet GM-2

elan Quadrics QSNet

NOTE:
Lustre ignores the loopback interface (lo0), but Lustre use any IP addresses aliased to
the loopback (by default). When in doubt, explicitly specify networks.
242 Config Files and Module Parameters (man5)

ip2nets ("") is a string that lists globally-available networks, each with a set of IP address ranges. LNET
determines the locally-available networks from this list by matching the IP address ranges with the local IPs
of a node. The purpose of this option is to be able to use the same modules.conf file across a variety of
nodes on different networks. The string has the following syntax.

<ip2nets> :== <net-match> [<comment>] { <net-sep> <net-match> }

<net-match> :== [<w>] <net-spec> <w> <ip-range> { <w> <ip-range> }

[<w>]

<net-spec> :== <network> ["(" <interface-list> ")"]

<network> :== <nettype> [<number>]

<nettype> :== "tcp" | "elan" | "openib" | ...

<iface-list> :== <interface> ["," <iface-list>]

<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>

<r-expr> :== <number> | "*" | "[" <r-list> "]"

<r-list> :== <range> ["," <r-list>]

<range> :== <number> ["-" <number> ["/" <number>]]

<comment :== "#" { <non-net-sep-chars> }

<net-sep> :== ";" | "\n"

<w> :== <whitespace-chars> { <whitespace-chars> }

<net-spec> contains enough information to uniquely identify the network and load an appropriate LND.
The LND determines the missing "address-within-network" part of the NID based on the interfaces it can
use.

<iface-list> specifies which hardware interface the network can use. If omitted, all interfaces are used.
LNDs that do not support the <iface-list> syntax cannot be configured to use particular interfaces and
just use what is there. Only a single instance of these LNDs can exist on a node at any time, and <iface-
list> must be omitted.

<net-match> entries are scanned in the order declared to see if one of the node's IP addresses
matches one of the <ip-range> expressions. If there is a match, <net-spec> specifies the network to
instantiate. Note that it is the first match for a particular network that counts. This can be used to simplify
the match expression for the general case by placing it after the special cases. For example:

ip2nets="tcp(eth1,eth2) 134.32.1.[4-10/2]; tcp(eth1) *.*.*.*"

4 nodes on the 134.32.1.* network have 2 interfaces (134.32.1.{4,6,8,10}) but all the rest have 1.

ip2nets="vib 192.168.0.*; tcp(eth2) 192.168.0.[1,7,4,12]"

This describes an IB cluster on 192.168.0.*. Four of these nodes also have IP interfaces; these four could
be used as routers.

Note that match-all expressions (For instance, *.*.*.*) effectively mask all other <net-match> entries
specified after them. They should be used with caution.
Lustre Operations Manual 243

Here is a more complicated situation, the route parameter is explained below. We have:

• Two TCP subnets

• One Elan subnet

• One machine set up as a router, with both TCP and Elan interfaces

• IP over Elan configured, but only IP will be used to label the nodes.

options lnet ip2nets=”tcp 198.129.135.* 192.128.88.98; \

elan 198.128.88.98 198.129.135.3;” \

routes=”tcp 1022@elan # Elan NID of router;\

elan 198.128.88.98@tcp # TCP NID of router “

3.2.1.2 networks ("tcp")
This is an alternative to "ip2nets" which can be used to specify the networks to be instantiated explicitly. The
syntax is a simple comma separated list of <net-spec>s (see above). The default is only used if neither
“ip2nets” nor “networks” is specified.

3.2.1.3 routes (“”)
This is a string that lists networks and the NIDs of routers that forward to them.

It has the following syntax (<w> is one or more whitespace characters):

<routes> :== <route>{ ; <route> }

<route> :== [<net>[<w><hopcount>]<w><nid>{<w><nid>}

So a node on the network tcp1 that needs to go through a router to get to the Elan network

options lnet networks=tcp1 routes="elan 1 192.168.2.2@tcp1”

The hopcount is used to help choose the best path between multiply-routed configurations.

A simple but powerful expansion syntax is provided, both for target networks and router NIDs as follows...

<expansion> :== "[" <entry> { "," <entry> } "]"

<entry> :== <numeric range> | <non-numeric item>

<numeric range> :== <number> ["-" <number> ["/" <number>]]

The expansion is a list enclosed in square brackets. Numeric items in the list may be a single number, a
contiguous range of numbers, or a strided range of numbers. For example, routes="elan 192.168.1.[22-
24]@tcp" says that network elan0 is adjacent (hopcount defaults to 1); and is accessible via 3 routers on
the tcp0 network (192.168.1.22@tcp, 192.168.1.23@tcp and 192.168.1.24@tcp).

routes="[tcp,vib] 2 [8-14/2]@elan" says that 2 networks (tcp0 and vib0) are accessible through 4 routers
(8@elan, 10@elan, 12@elan and 14@elan). The hopcount of 2 means that traffic to both these networks
will be traversed 2 routers - first one of the routers specified in this entry, then one more.

Duplicate entries, entries that route to a local network, and entries that specify routers on a non-local
network are ignored.

Equivalent entries are resolved in favor of the route with the shorter hopcount. The hopcount, if omitted,
defaults to 1 (the remote network is adjacent).

It is an error to specify routes to the same destination with routers on different local networks.
244 Config Files and Module Parameters (man5)

If the target network string contains no expansions, then the hopcount defaults to 1 and may be omitted (that
is, the remote network is adjacent). In practice, this is true for most multi-network configurations. It is an error
to specify an inconsistent hop count for a given target network. This is why an explicit hopcount is required
if the target network string specifies more than one network.

3.2.1.4 forwarding ("")
This is a string that can be set either to "enabled" or "disabled" for explicit control of whether this node should
act as a router, forwarding communications between all local networks.

A standalone router can be started by simply starting LNET (“modprobe ptlrpc”) with appropriate network
topology options.

Variable Description

acceptor The acceptor is a TCP/IP service that some LNDs use to establish
communications. If a local network requires it and it has not been disabled,
the acceptor listens on a single port for connection requests that it redirects
to the appropriate local network. The acceptor is part of the LNET module
and configured by the following options:

secure - Accept connections only from reserved TCP ports (< 1023).

all - Accept connections from any TCP port. NOTE: this is required for
liblustre clients to allow connections on non-privileged ports.

none - Do not run the acceptor.

accept_port
(988)

Port number on which the acceptor should listen for connection requests. All
nodes in a site configuration that require an acceptor must use the same
port.

accept_backlog
(127)

Maximum length that the queue of pending connections may grow to (see
listen(2)).

accept_timeout
(5, W)

Maximum time in seconds the acceptor is allowed to block while
communicating with a peer.

accept_proto_version Version of the acceptor protocol that should be used by outgoing connection
requests. It defaults to the most recent acceptor protocol version, but it may
be set to the previous version to allow the node to initiate connections with
nodes that only understand that version of the acceptor protocol. The
acceptor can, with some restrictions, handle either version (that is, it can
accept connections from both 'old' and 'new' peers). For the current version
of the acceptor protocol (version 1), the acceptor is compatible with old peers
if it is only required by a single local network.
Lustre Operations Manual 245

3.2.2 SOCKLND Kernel TCP/IP LND
The SOCKLND kernel TCP/IP LND (socklnd) is connection-based and uses the acceptor to establish
communications via sockets with its peers.

It supports multiple instances and load balances dynamically over multiple interfaces. If no interfaces are
specified by the ip2nets or networks module parameter, all non-loopback IP interfaces are used. The
address-within-network is determined by the address of the first IP interface an instance of the socklnd
encounters.

Consider a node on the “edge” of an InfiniBand network, with a low-bandwidth management Ethernet (eth0),
IP over IB configured (ipoib0), and a pair of GigE NICs (eth1,eth2) providing off-cluster connectivity. This
node should be configured with "networks=vib,tcp(eth1,eth2)” to ensure that the socklnd ignores the
management Ethernet and IPoIB.

Variable Description

timeout
(50,W)

Time (in seconds) that communictions may be stalled before the
LND completes them with failure.

nconnds
(4)

Sets the number of connection daemons.

min_reconnectms
(1000,W)

Minimum connection retry interval (in milliseconds). After a failed
connection attempt, this is the time that must elapse before the first
retry. As connections attempts fail, this time is doubled on each
successive retry up to a maximum of 'max_reconnectms'.

max_reconnectms
(60000,W)

Maximum connection retry interval (in milliseconds).

eager_ack
(0 on linux, 1 on darwin,W)

Boolean that determines whether the socklnd should attempt to flush
sends on message boundaries.

typed_conns
(1,Wc)

Boolean that determines whether the socklnd should use different
sockets for different types of messages. When clear, all
communication with a particular peer takes place on the same
socket. Otherwise, separate sockets are used for bulk sends, bulk
receives and everything else.

min_bulk
(1024,W)

Determines when a message is considered "bulk".

tx_buffer_size, rx_buffer_size
(8388608,Wc)

Socket buffer sizes. Setting this option to zero (0), allows the system
to auto-tune buffer sizes. WARNING: Be very careful changing this
value as improper sizing can harm performance.

nagle
(0,Wc)

Boolean that determines if nagle should be enabled. It should never
be set in production systems.

keepalive_idle
(30,Wc)

Time (in seconds) that a socket can remain idle before a keepalive
probe is sent. Setting this value to zero (0) disables keepalives.

keepalive_intvl
(2,Wc)

Time (in seconds) to repeat unanswered keepalive probes. Setting
this value to zero (0) disables keepalives.

keepalive_count
(10,Wc)

Number of unanswered keepalive probes before pronouncing socket
(hence peer) death.
246 Config Files and Module Parameters (man5)

enable_irq_affinity
(1,Wc)

Boolean that determines whether to enable IRQ affinity. When set,
socklnd attempts to maximize performance by handling device
interrupts and data movement for particular (hardware) interfaces on
particular CPUs. This option is not available on all platforms. This
option requires an SMP system to exist and produces best
performance with multiple NICs. Systems with multiple CPUs and a
single NIC may see increase in the performance with this parameter
disabled.

zc_min_frag
(2048,W)

Determines the minimum message fragment that should be
considered for zero-copy sends. Increasing it above the platform's
PAGE_SIZE disables all zero copy sends. This option is not
available on all platforms.

Variable Description
Lustre Operations Manual 247

3.2.3 QSW LND
The QSW LND (qswlnd) is connection-less and, therefore, does not need the acceptor. It is limited to a
single instance, which uses all Elan "rails" that are present and dynamically load balances over them.

The address-with-network is the node's Elan ID. A specific interface cannot be selected in the "networks"
module parameter.

Variable Description

tx_maxcontig
(1024)

Integer that specifies the maximum message payload (in bytes) to copy into
a pre-mapped transmit buffer.

ntxmsgs
(8)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when this pool is
exhausted).

nnblk_txmsg
(512 with a 4K page size,
256 otherwise)

Number of "reserved" message descriptors for communications that may
not block for memory. This pool must be sized large enough so it is never
exhausted.

nrxmsg_small
(256)

Number of "small" receive buffers to post (typically everything apart from
bulk data).

ep_envelopes_small
(2048)

Number of message envelopes to reserve for the "small" receive buffer
queue. This determines a breakpoint in the number of concurrent senders.
Below this number, communication attempts are queued, but above this
number, the pre-allocated envelope queue will fill, causing senders to back
off and retry. This can have the unfortunate side effect of starving arbitrary
senders, who continually find the envelope queue is full when they retry.
This parameter should therefore be increased if envelope queue overflow
is suspected.

nrxmsg_large
(64)

Number of "large" receive buffers to post (typically for routed bulk data).

ep_envelopes_large
(256)

Number of message envelopes to reserve for the "large" receive buffer
queue. For more information on message envelopes, see the
ep_envelopes_small option (above).

optimized_puts
(32768,W)

Smallest non-routed PUT that will be RDMA’d.

optimized_gets
(1,W)

Smallest non-routed GET that will be RDMA’d.
248 Config Files and Module Parameters (man5)

3.2.4 RapidArray LND
The RapidArray LND (ralnd) is connection-based and uses the acceptor to establish connections with its
peers. It is limited to a single instance, which uses all (both) RapidArray devices present. It load balances
over them using the XOR of the source and destination NIDs to determine which device to use for
communication.

The address-within-network is determined by the address of the single IP interface that may be specified by
the "networks" module parameter. If this is omitted, then the first non-loopback IP interface that is up is used
instead.

Variable Description

n_connd
(4)

Sets the number of connection daemons.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed connection
attempt, this sets the time that must elapse before the first retry. As
connections attempts fail, this time is doubled on each successive retry, up
to a maximum of the max_reconnect_interval option.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(30,W)

Time (in seconds) that communications may be stalled before the LND
completes them with failure.

ntx
(64)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when this pool is
exhausted).

ntx_nblk
(256)

Number of "reserved" message descriptors for communications that may
not block for memory. This pool must be sized large enough so it is never
exhausted.

fma_cq_size
(8192)

Number of entries in the RapidArray FMA completion queue to allocate. It
should be increased if the ralnd starts to issue warnings that the FMA CQ
has overflowed. This is only a performance issue.

max_immediate
(2048,W)

Size (in bytes) of the smallest message that will be RDMA’d, rather than
being included as immediate data in an FMA. All messages greater than
6912 bytes must be RDMA’d (FMA limit).
Lustre Operations Manual 249

3.2.5 VIB LND
The VIB LND is connection-based, establishing reliable queue-pairs over InfiniBand with its peers. It does
not use the acceptor for this. It is limited to a single instance, which uses a single HCA that can be specified
via the "networks" module parameter. It this is omitted, it uses the first HCA in numerical order it can open.
The address-within-network is determined by the IPoIB interface corresponding to the HCA used.

Variable Description

service_number
(0x11b9a2)

Fixed IB service number on which the LND listens for incoming connection
requests. NOTE: All instances of the viblnd on the same network must
have the same setting for this parameter.

arp_retries
(3,W)

Number of times the LND will retry ARP while it establishes
communications with a peer.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed connection
attempt, this sets the time that must elapse before the first retry. As
connections attempts fail, this time is doubled on each successive retry, up
to a maximum of the max_reconnect_interval option.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(50,W)

Time (in seconds) that communications may be stalled before the LND
completes them with failure.

ntx
(32)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when this pool is
exhausted).

ntx_nblk
(256)

Number of "reserved" message descriptors for communications that may
not block for memory. This pool must be sized large enough so it is never
exhausted.

concurrent_peers
(1152)

Maximum number of queue pairs and, therefore, the maximum number of
peers that the instance of the LND may communicate with.

hca_basename
("InfiniHost")

Used to construct HCA device names by appending the device number.

ipif_basename
("ipoib")

Used to construct IPoIB interface names by appending the same device
number as is used to generate the HCA device name.

local_ack_timeout
(0x12,Wc)

Low-level QP parameter. Only change it from the default value if so
advised.

retry_cnt
(7,Wc)

Low-level QP parameter. Only change it from the default value if so
advised.

rnr_cnt
(6,Wc)

Low-level QP parameter. Only change it from the default value if so
advised.

rnr_nak_timer
(0x10,Wc)

Low-level QP parameter. Only change it from the default value if so
advised.

fmr_remaps
(1000)

Controls how often FMR mappings may be reused before they must be
unmapped. Only change it from the default value if so advised.

cksum
(0,W)

Boolean that determines if messages (NB not RDMAs) should be check-
summed. This is a diagnostic feature that should not normally be enabled.
250 Config Files and Module Parameters (man5)

3.2.6 OpenIB LND
The OpenIB LND is connection-based and uses the acceptor to establish reliable queue-pairs over
InfiniBand with its peers. It is limited to a single instance that uses only IB device '0'.

The address-within-network is determined by the address of the single IP interface that may be specified by
the "networks" module parameter. If this is omitted, the first non-loopback IP interface that is up, is used
instead. It uses the acceptor to establish connections with its peers.

Variable Description

n_connd
(4)

Sets the number of connection daemons. The default value is 4.

min_reconnect_interval
(1,W)

Minimum connection retry interval (in seconds). After a failed connection
attempt, this sets the time that must elapse before the first retry. As
connections attempts fail, this time is doubled on each successive retry, up
to a maximum of 'max_reconnect_interval'.

max_reconnect_interval
(60,W)

Maximum connection retry interval (in seconds).

timeout
(50,W)

Time (in seconds) that communications may be stalled before the LND
completes them with failure.

ntx
(64)

Number of "normal" message descriptors for locally-initiated
communications that may block for memory (callers block when this pool is
exhausted).

ntx_nblk
(256)

Number of "reserved" message descriptors for communications that may
not block for memory. This pool must be sized large enough so it is never
exhausted.

concurrent_peers
(1024)

Maximum number of queue pairs and, therefore, the maximum number of
peers that the instance of the LND may communicate with.

cksum
(0,W)

Boolean that determines whether messages (NB not RDMAs) should be
check-summed. This is a diagnostic feature that should not normally be
enabled.
Lustre Operations Manual 251

3.2.7 Portals LND (Linux)
The Portals LND Linux (ptllnd) can be used as a interface layer to communicate with Sandia Portals
networking devices. This version is intended to work on Cray XT3 Linux nodes that use Cray Portals as a
network transport.

Message Buffers

When ptllnd starts up, it allocates and posts sufficient message buffers to allow all expected peers (set by
'concurrent_peers') to send one unsolicited message. The first message that a peer actually sends is a
(so-called) "HELLO" message, used to negotiate how much additional buffering to setup (typically 8
messages). If 10000 peers actually exist, then enough buffers are posted for 80000 messages.

The maximum message size is set by the max_msg_size module parameter (default value is 512). This
parameter sets the bulk transfer breakpoint. Below this breakpoint, payload data is sent in the message
itself. Above this breakpoint, a buffer descriptor is sent and the receiver gets the actual payload.

The buffer size is set by the rxb_npages module parameter (default value is 1). The default conservatively
avoids allocation problems due to kernel memory fragmentation. However, increasing this value to 2 is
probably not risky.

The ptllnd also keeps an additional rxb_nspare buffers (default value is 8) posted to account for full buffers
being handled.

Assuming a 4K page size with 10000 peers, 1258 buffers can be expected to be posted at startup,
increasing to a maximum of 10008 as peers that are actually connected. By doubling rxb_npages halving
max_msg_size, this number can be reduced by a factor of 4.

ME / MD Queue Length

The ptllnd uses a single portal set by the portal module parameter (default value of 9) for both message and
bulk buffers. Message buffers are always attached with PTL_INS_AFTER and match anything sent with
"message" matchbits. Bulk buffers are always attached with PTL_INS_BEFORE and match only specific
matchbits for that particular bulk transfer.

This scheme assumes that the majority of ME / MDs posted are for "message" buffers, and that the
overhead of searching through the preceding "bulk" buffers is acceptable. Since the number of "bulk" buffers
posted at any time is also dependent on the bulk transfer breakpoint set by max_msg_size, this seems like
an issue worth measuring at scale.

TX Descriptors

The ptllnd has a pool of so-called "tx descriptors", which it uses not only for outgoing messages, but also to
hold state for bulk transfers requested by incoming messages. This pool should scale with the total number
of peers.

To enable the building of the Portals LND (ptllnd.ko) configure with the following option:

./configure --with-portals=<path-to-portals-headers>
252 Config Files and Module Parameters (man5)

Variable Description

ntx
(256)

Total number of message descriptors.

concurrent_peers
(1152)

Maximum number of concurrent peers. Peers that attempt to connect beyond
the maximum are not allowed.

peer_hash_table_size
(101)

Number of hash table slots for the peers. This number should scale with
concurrent_peers. The size of the peer hash table is set by the module
parameter peer_hash_table_size which defaults to a value of 101. This
number should be prime to ensure the peer hash table is populated evenly. It
is advisable to increase this value to 1001 for ~10000 peers.

cksum
(0)

Set to non-zero to enable message (not RDMA) checksums for outgoing
packets. Incoming packets are always check-summed if necessary,
independent of this value.

timeout
(50)

Amount of time (in seconds) that a request can linger in a peers-active queue
before the peer is considered dead.

portal
(9)

Portal ID to use for the ptllnd traffic.

rxb_npages
(64 * #cpus)

Number of pages in an RX buffer.

credits
(128)

Maximum total number of concurrent sends that are outstanding at a given
time.

peercredits
(8)

Maximum number of concurrent sends that are outstanding to a single peer at
a given time.

max_msg_size (512) Maximum immediate message size. This MUST be the same on all nodes in
a cluster. A peer that connects with a different max_msg_size value will be
rejected.
Lustre Operations Manual 253

3.2.8 Portals LND (Catamount)
The Portals LND Catamount (ptllnd) can be used as a interface layer to communicate with Sandia Portals
networking devices. This version is intended to work on the Cray XT3 Catamount nodes using Cray Portals
as a network transport.

To enable the building of the Portals LND configure with the following option:

./configure --with-portals=<path-to-portals-headers>

The following PTLLND tunables are currently available:

Variable Description

PTLLND_DEBUG
(boolean, dflt 0)

Enables or disables debug features.

PTLLND_TX_HISTORY
(int, dflt debug?1024:0)

Sets the size of the history buffer.

PTLLND_ABORT_ON_PROTOCOL_MISMATCH
(boolean, dflt 1)

Calls abort action on connecting to a peer running
a different version of the ptllnd protocol.

PTLLND_ABORT_ON_NAK
(boolean, dflt 0)

Calls abort action when a peer sends a NAK.
(Example: When it has timed out this node).

PTLLND_DUMP_ON_NAK
(boolean, dflt debug?1:0)

Dumps peer debug and the history on receiving
a NAK.

PTLLND_WATCHDOG_INTERVAL
(int, dflt 1)

Sets intervals to check some peers for timed out
communications while the application blocks for
communications to complete.

PTLLND_TIMEOUT
(int, dflt 50)

The communication timeout (in seconds).

PTLLND_LONG_WAIT
(int, dflt debug?5:PTLLND_TIMEOUT)

The time (in seconds) after which the ptllnd prints
a warning if it blocks for a longer time during
connection establishment, cleanup after an error,
or cleanup during shutdown.
254 Config Files and Module Parameters (man5)

The following environment variables can be set to configure the PTLLND’s behavior.

Variable Description

PTLLND_PORTAL
(9)

The portal ID to use for the ptllnd traffic.

PTLLND_PID
(9)

The virtual pid on which to contact servers.

PTLLND_PEERCREDITS
(8)

The maximum number of concurrent sends that are
outstanding to a single peer at any given instant.

PTLLND_MAX_MESSAGE_SIZE
(512)

The maximum messages size. This MUST be the same on
all nodes in a cluster.

PTLLND_MAX_MSGS_PER_BUFFER
(64)

The number of messages in a receive buffer. Receive buffer
will be allocated of size
PTLLND_MAX_MSGS_PER_BUFFER times
PTLLND_MAX_MESSAGE_SIZE.

PTLLND_MSG_SPARE
(256)

Additional receive buffers posted to portals.

PTLLND_PEER_HASH_SIZE
(101)

Number of hash table slots for the peers.

PTLLND_EQ_SIZE
(1024)

Size of the Portals event queue (that is, maximum number of
events in the queue).
Lustre Operations Manual 255

3.2.9 MX LND
MXLND supports a number of load-time parameters using Linux's module parameter system. The following
variables are available:

Of the described variables, only hosts is required. It must be the absolute path to the MXLND hosts file.

For example:

options kmxlnd hosts=/etc/hosts.mxlnd

The file format for the hosts file is:

IP HOST BOARD EP_ID

The values must be space and/or tab separated where:

IP is a valid IPv4 address

HOST is the name returned by `hostname` on that machine

BOARD is the index of the Myricom NIC (0 for the first card, etc.)

EP_ID is the MX endpoint ID

To obtain the optimal performance for your platform, you may want to vary the remaining options.

n_waitd (1) sets the number of threads that process completed MX requests (sends and receives).

max_peers (1024) tells MXLND the upper limit of machines that it will need to communicate with. This
affects how many receives it will pre-post and each receive will use one page of memory. Ideally, on
clients, this value will be equal to the total number of Lustre servers (MDS and OSS). On servers, it
needs to equal the total number of machines in the storage system. cksum (0) turns on small message
checksums. It can be used to aid in troubleshooting. MX also provides an optional checksumming
feature which can check all messages (large and small). For details, see the MX README.

ntx (256) is the number of total sends in flight from this machine. In actuality, MXLND reserves half of
them for connect messages so make this value twice as large as you want for the total number of sends
in flight.

credits (8) is the number of in-flight messages for a specific peer. This is part of the flow-control system
in Lustre. Increasing this value may improve performance but it requires more memory because each
message requires at least one page.

Variable Description

 n_waitd Number of completion daemons.

max_peers Maximum number of peers that may connect.

cksum To enable small message (< 4KB) checksums, set non-zero.

ntx Number of total tx message descriptors.

credits Number of concurrent sends to a single peer.

board Index value of the Myrinet board (NIC).

ep_id MX endpoint ID.

polling Use zerio (0) to block (wait). A value > 0 will poll that many
times before blocking.

hosts IP-to-hostname resolution file.
256 Config Files and Module Parameters (man5)

board (0) is the index of the Myricom NIC. Hosts can have multiple Myricom NICs and this identifies
which one MXLND should use. This value must match the board value in your MXLND hosts file for this
host.

ep_id (3) is the MX endpoint ID. Each process that uses MX is required to have at least one MX endpoint
to access the MX library and NIC. The ID is a simple index starting at zero (0). This value must match
the endpoint ID value in your MXLND hosts file for this host.

polling (0) determines whether this host will poll or block for MX request completions. A value of 0 blocks
and any positive value will poll that many times before blocking. Since polling increases CPU usage,
CFS suggests that you set this to zero (0) on the client and experiment with different values for servers.
Lustre Operations Manual 257

258 Config Files and Module Parameters (man5)

Chapter V - 4. System Configuration Utilities
(man8)

This chapter includes system configuration utilities and includes the following sections:

• mkfs.lustre

• tunefs.lustre

• lctl

• mount.lustre

• New Utilities in Lustre 1.6

4.1 mkfs.lustre

mkfs.lustre is a utility to format a disk for a Lustre service.

4.1.1 Synopsis
mkfs.lustre <target_type> [options] device

where <target_type> is one of the following:

• OST object storage target

• MDT meta data storage target

• MGS configuration management service - one per site. This service can be combined with one --
mdt service by specifying both types.
Lustre Operations Manual 259

4.1.2 Description
mkfs.lustre is used to format a disk device in order to use it as part of a Lustre file system. After formatting,
a disk can be mounted to start the Lustre service defined by this command.

Option Description

--backfstype=fstype Force a particular format for the backing file system (like ext3,
ldiskfs)

--comment=comment Set user comment about this disk, ignored by Lustre

--device-size=KB Set device size for loop devices

--failnode=nid,... Set the NIDs of a failover partner. This option can be repeated
as desired.

--fsname=filesystem_name The Lustre file system of which this service/node will be a part.
Default file system name is lustre.

--index=index Force a particular OST or MDT index.

--mkfsoptions=opts Format options for the backing file system. For example, ext3
options could be set here.

--mountoptions=opts Set permanent mount options, equivalent to the setting in /etc/
fstab

--mgsnode=nid,... Set the NIDs of the MGS node, required for all targets other
than the MGS.

--noformat Only print woud be done; this does not affect the disk

--param key=value Set permanent parameter key to value. This option can be
repeated as desired. Typical options might include:

--param sys.timeout=40 System obd timeout

--param lov.stripe.size=2097152 Default stripe size

--param lov.stripe.count=2 Default stripe count

--param failover mode=failout Return errors instead of waiting for recovery

--quiet Print less information

--reformat Reformat an existing Lustre disk

--stripe-count-hint=stripes Used for optimizing MDT inode sizes

--verbose Print more informaiton
260 System Configuration Utilities (man8)

4.1.3 Examples
To create a file system with MGS and MDT combined on the same node (cfs21), run:

$ mkfs.lustre --fsname=testfs --mdt --mgs /dev/sda1

To create OST for file system testfs on any number of nodes using the above MGS, run:

$ mkfs.lustre --fsname=testfs --ost --mgsnode=cfs21@tcp0 /dev/sdb

To create standalone MGS on, say, node cfs22, run:

$ mkfs.lustre --mgs /dev/sda1

To create MDT for file system myfs1 on any node, using the above MGS, run:

$ mkfs.lustre --fsname=myfs1 --mdt --mgsnode=cfs22@tcp0 /dev/sda2
Lustre Operations Manual 261

4.2 tunefs.lustre

tunefs.lustre is the utility to modify the information of Lustre configuration on a disk.

4.2.1 Synopsis

tunefs.lustre [options] device

4.2.2 Description
tunefs.lustre is used to modify the configuration information on a Lustre target disk. This includes
upgrading old (pre-Lustre 1.6) disks. This does not reformat the disk or erase the target information, but
modifying the configuration information can result in an unusable file system.

WARNING
Changes made here will affect a file system only when the target is next mounted.

Options Description

--comment=comment Set user comment about this disk, ignored by Lustre.

--erase-params Remove all previous parameter information.

--failnode=nid, Set the NID(s) of a failover partner. This option can be repeated as
desired.

--fsname=filesystem_name The Lustre file system of which this service will be a part.
Default is ’lustre’.

--index=index Force a particular OST or MDT index.

--mountfsoptions=opts Set permanent mount options, equivalent to setting in /etc/fstab.

--mgs Add a configuration management service to this target.

--msgnode=nid,... Set the NID(s) of the MGS node, required for all targets other than the
MGS.

--noformat Only print what would be done; does not affect the disk.

--nomgs Remove a configuration management service to this target.

--quiet Print less information.

--verbose Print more information.

--writeconf Erase all config logs for the file system of which this target is a part. This
may prove VERY dangerous.
262 System Configuration Utilities (man8)

4.2.3 Examples
To create a file system with MGS and MDT combined on the same node (cfs21) -

$ tunefs.lustre --fsname=testfs --mdt --mgs /dev/sda1

To create OST for file system testfs on any number of nodes using the above MGS -

$ tunefs.lustre --fsname=testfs --ost --mgsnode=cfs21@tcp0 /dev/sdb

To create standalone MGS on, say, node cfs22 -

$ tunefs.lustre --mgs /dev/sda1

To create MDT for file system myfs1 on any node, using the above MGS -

$ tunefs.lustre --fsname=myfs1 --mdt --mgsnode=cfs22@tcp0 /dev/sda2
Lustre Operations Manual 263

4.3 lctl

lctl is a Lustre utility used for low level configurations of Lustre file system. It also provides low-level testing
and manages Lustre network (LNET) information.

4.3.1 Synopsis

lctl

lctl --device <devno> <command [args]>

lctl --threads <numthreads> <verbose> <devno> <command [args]

4.3.2 Description
lctl can be invoked in interactive mode by issuing the commands given below.

$ lctl

lctl> help

The most common commands in lctl are in matching pairs - like device and attach, detach and setup,
cleanup and connect, disconnect and help and quit. To get a complete listing of available commands, type
“help” on the lctl prompt. To get basic help on meaning and syntax of a command, type “help command.”
Command completion is activated with the TAB key, and command history is available via the “UP” and
“DOWN” arrow keys.

For non-interactive single threaded use, one uses the second invocation, which runs command after
connecting to the device. Some commands are used only when testing specific functionality inside Lustre
and are not normally invoked by users, theses commands are identified by the string (CFS Dev). Several
commands are old and will be removed in the next major release of Lustre. These commands are identified
with the string (Old).
264 System Configuration Utilities (man8)

Network-Related Options Description

--net <tcp/elan/myrinet> The network type to be used for the operation.

network <tcp/elans/myrinet> Indicates what kind of network is applicable for the
configuration commands that follow.

interface_list Displays the interface entries and requires the 'network'
command.

list_nids Displays network identifiers (NIDs) defined on this node.

which_nid <remote host> Identifies path to a specific host by NID.
Can be used to verify network setup and connectivity.

add_interface Adds an interface entry. (Old)

del_interface [ip] Deletes an interface entry. (Old)

peer_list Displays the peer entries.

add_peer <nid> <host> <port> Adds a peer entry. (CFS Dev)

del_peer <nid> <host> <port> Removes a peer entry. (CFS Dev)

conn_list Displays all the connected remote NIDs.

disconnect <nid> Disconnects from a remote NID. (CFS Dev)

active_tx Displays active transmits; is used only for the Elan
network type.

mynid [nid] Informs the socknal of the local NID. It defaults to host
name for TCP networks, and is automatically setup for
Elan/ Myrinet networks. (CFS Dev)

add_uuid <uuid> <nid> Associates a given UUID with an NID. (CFS Dev)

close_uuid <uuid> Disconnects a UUID.

del_uuid <uuid> Deletes a UUID association. (CFS Dev)

add_route <gateway> <target> [target] Adds an entry to the routing table for the given target.
(Old)

del_route <target> Deletes an entry for a target from the routing table. (Old)

set_route <gateway> <up/down> [<time>] Enables/ disables routes via the given gateway in the
protals routing table. <time> is used to specify when a
gateway should come back online (Old)

route_list Displays the complete routing table

fail nid|_all_ [count] Fails/ restores communications. Omitting the count
implies an indefinite fail. A count of zero indicates that
communication should be restored. A non-zero count
indicates the number of LNET messages to be dropped
after which the communication is restored. The
argument "nid" is used to specify the gateway, which is
one peer of the communication .(CFS Dev)
Lustre Operations Manual 265

show_route Displays the complete routing table, same output as
route_list.

ping nid [timeout] [pid] Checks LNET connectivity, outputs a NIDs list on the
target machine.

Device Selection Description

newdev Creates a new device.

device Selects the specified OBD device. All other commands depend on the
device being set.

cfg_device Sets the current device being configured to <$name>. (Old)

device_list Shows all devices.

lustre_build_version Displays the Lustre build version.

Device Configuration Description

attach type [name [uuid]] Attaches a type to the current device (which is set using the device
command), and gives that device a name and a UUID. This allows us to
identify the device for later use, and to know the type of that device.

setup <args...> Types specific device setup commands. For obdfilter, a setup command
tells the driver which block device it should use for storage and what
type of file system is on that device.

cleanup Cleans up a previously-setup device.

detach Removes a driver (and its name and UUID) from the current device.

lov_getconfig lov-uuid Reads LOV configuration from an MDS device. Returns default-stripe-
count, default-stripe-size, offset, pattern, and a list of OST UUIDs. (Old)

record cfg-uuid-name Records the commands that follow in the log.

endrecord Stops recording.

parse config-uuid-name Parses the log of recorded commands for a configuration.

dump_log config-uuid-
name

Displays the log of recorded commands for a config to kernel debug log.

clear_log config-name Deletes the current configuration log of recorded commands.

Network-Related Options Description
266 System Configuration Utilities (man8)

Device Operations Description

probe [timeout] Builds a connection handle to a device.
This command is used to suspend
configuration until the lctl command
ensures the availability of the MDS and
OSC services. This avoids mount failures
in a rebooting cluster.

close Closes the conneciton handle.

getattr <objid> Gets the attributes for an OST object
<objid> (CFS Dev)

setattr <objid> <mode> Sets the mode attribute for an OST object
<objid> (CFS Dev)

create [num [mode [verbose]]] Creates the specified number <num> of
OST objects with the given <mode> (CFS
Dev)

destroy <num> Starting at <objid>, destroys <num>
number of objects starting from the object
with object id <objid> (CFS Dev)

test_getattr <num> [verbose [[t]objid]] Does <num> getattrs on an OST object
<objid> (objectid+1 on each thread) (CFS
Dev)

test_brw [t]<num> [write [verbose [npages [[t]objid]]]] Does <num> bulk read/ writes on an OST
object <objid> (<npages> per I/O) (CFS
Dev)

dump_ldlm Dumps all the lock manager states. This is
very useful for debugging

activate Activates an import.

deactivate De-activates an import.

recover <connection UUID>

lookup <directory> <file> Displays the information of the given file.

notransno Disables the sending of committed
transnumber updates.

readonly Disables writes to the underlying device.

abort_recovery Aborts recovery on the MDS device.

mount_option Dumps mount options to a file.

get_stripe Shows stripe information for an echo client
object.

set_stripe <objid>[width!count[@offset] [:id:id....] Sets stripe information for an echo client

unset_stripe <objid> Unsets stripe information for an echo client
object.

del_mount_option profile Deletes a specified profile.
Lustre Operations Manual 267

set_timeout <secs> Sets the timeout (obd_timeout) for a server
to wait before failing recovery.

set_lustre_upcall </full/path/to/upcall> Sets the lustre upcall (obd_lustre_upcall)
via the lustre.upcall sysctl

llog_catlist Lists all the catalog logs on current device.

llog_info <$logname|#oid#ogr#ogen> Displays the log header information.

llog_print <$logname|#oid#ogr#ogen> [from] [to] Displays the log content information. It
displays all the records from index 1 by
default.

llog_check <$logname|#oid#ogr#ogen> [from] [to] Checks the log content information. It
checks all the records from index 1 by
default.

llog_cancel <catalog id|catalog name> <log id>
<index>

Cancels a record in the log.

llog_remove <catalog id|catalog name> <log id> Removes a log from the catalog and
erases it from the disk.

Debug Description

debug_daemon Debugs the daemon control and dumps to a file.

debug_kernel [file] [raw] Gets the debug buffer and dumps to a file.

debug_file <input> [output] Converts the kernel-dumped debug log from binary to plain
text format.

clear Clears the kernel debug buffer.

mark <text> Inserts marker text in the kernel debug buffer.

filter <subsystem id/debug mask> Filters message type from the kernel debug buffer.

show <subsystem id/debug mask> Shows the specific type of messages.

debug_list <subs/types> Lists all the subsystem and debug types.

modules <path> Provides gdb-friendly module information.

panic Forces the kernel to panic.

lwt start/stop [file] Lightweight tracing.

memhog <page count> [<gfp flags>] Memory-pressure testing.

Device Operations Description
268 System Configuration Utilities (man8)

Control Description

help Shows a complete list of commands. help <command
name> can be used to get help on a specific command

exit Closes the lctl session.

quit Closes the lctl session.

Options (that can be used to invoke lctl) Description

--device The device number to be used for the operation. The value
of devno is an integer, normally found by calling lctl
name2dev on a device name.

--threads The numthreads variable is a strictly positive integer
indicating the number of threads to be started. The devno
option is used as above.

--ignore_errors | ignore_errors Ignores errors during the script processing.

dump Saves ioctls to a file.
Lustre Operations Manual 269

4.3.3 Examples
attach

$ lctl

lctl > newdev

lctl > attach obdfilter OBDDEV OBDUUID

lctl > dl

4 AT obdfilter OBDDEV OBDUUID 1

getattr

$ lctl

lctl > newdev

lctl > attach obdfilter OBDDEV OBDUUID

lctl > dl

4 AT obdfilter OBDDEV OBDUUID 1lctl > getattr 12

id: 12

grp: 0

atime: 1002663714

mtime: 1002663535

ctime: 1002663535

size: 10

blocks: 8

blksize: 4096

mode: 100644

uid: 0

gid: 0

flags: 0

obdflags: 0

nlink: 1

valid: ffffffff

inline:

obdmd:

lctl > disconnect

Finished (success)

setup

lctl > setup /dev/loop0 extN

lctl > quit
270 System Configuration Utilities (man8)

4.3.4 Network Commands
The example below shows how to use lctl for identifying interface information and peers that are up. In this
case, we have one MDS (ft2) and two OSS nodes (d1_q_0, d2_q_0). First we display the interface
information on the MDS, and then list MDS peers:

$ lctl > network tcp up

$ lctl > interface_list

ft2: (10.67.73.181/255.255.255.0) npeer 0 nroute 2

$ lctl > peer_list

12345-10.67.73.150@tcp [1]ft2->d2_q_0:988 #6

12345-10.67.73.160@tcp [1]ft2->d1_q_0:988 #6

To identify routes and check connectivity to another node:

lctl list_nids

10.67.73.181@tcp

lctl which_nid d1_q_0

10.67.73.160@tcp

lctl ping d1_q_0

12345-0@lo

12345-10.67.73.160@tcp

'Which_nid' does a lookup of the NID, and attempts to expand it. 'which_nid' does not care about the node
state. In the example below, the machine 'dellap' is real, the machine 'bogus' and the IP '10.67.73.212' are
fake.

lctl which_nid bogus@tcp

Can't parse NID bogus@tcp

lctl which_nid dellap@tcp

10.67.73.89@tcp

lctl which_nid 10.67.73.212@tcp

10.67.73.212@tcp

lctl which_nid 10.67.758.54@tcp

Can't parse NID 10.67.758.54@tcp

NOTE:
lctl ping <target> prints all NIDs at the target, not the NIDs of nodes traversed on the way
to the target.
Lustre Operations Manual 271

4.4 mount.lustre

mount.lustre is a utility that starts a Lustre client or target service.

4.4.1 Synopsis

$ mount -t lustre [-o options] device dir

4.4.2 Description
mount.lustre is used to start a Lustre client or target service. This program should not be called directly;
rather it is a helper program invoked through mount(8) as shown in Synopsis on page 264. Lustre clients
and targets are stopped by using the umount(8) command.

There are two forms for the device option, depending on whether a client or a target service is started:

<mgsspec>:/<fsname>

This is a client mount command to mount the Lustre file system named <fsname> by contacting the
Management Service at <mgsspec>. The format for <mgsspec> is defined below.

<disk_device>

This starts the target service defined by the mkfs.lustre command on the physical disk <disk_device>

In addition to the standard mount options, Lustre understands the following client-specific options:

Options Description

<mgsspec>:=<mgsnode>[:<mgsnode>] The mgs specification may be a colon-separated list of
nodes...

<mgsnode>:=<mgsnid>[,<mgsnid>] ...and each node may be specified by a comma-separated
list of NIDs.

Options Description

flock Enable flock support.

noflock Disable flock support.

user_xattr Enable get/set user xattr.

nouser_xattr Disable user xattr.

acl Enable ACL support.

noacl Disable ACL support.
272 System Configuration Utilities (man8)

In addition to the standard mount options and backing disk type (e.g. LDISKFS) options, Lustre understands
the following server-specific options:

4.4.3 Examples
Mounting a client – no failover:

MDS nid is '10.10.0.5@tcp0'

MDT is 'mds-p' (specified by –mds in .xml file)

Mount point is '/mnt/lustre'

'client' is defined in the .xml file

mount -t lustre 10.10.0.5@tcp0:/mds-p/client /mnt/lustre

Add a failover MDS at 10.10.0.6@tcp0:

mount -t lustre 10.10.0.5@tcp0:10.10.0.6@tcp0:/mds-p/client \
/mnt/lustre

Options Description

nosvc Only start the MGC (and MGS, if co-located) for a target service, and not the
actual service.

exclude=ostlist Start a client or MDT with a (colon-separated) list of known inactive OSTs

abort_recov Abort recovery (targets only)
Lustre Operations Manual 273

4.5 New Utilities in Lustre 1.6

This section describes new utilities available in Lustre 1.6.

4.5.1 General Purpose Utilities
The following utility is located in /usr/bin.

lustre_rmmod.sh

The lustre_rmmod.sh utility removes all Lustre and LNET modules, assuming no Lustre services are
running.

4.5.2 Utilities to Manage Large Clusters
The following utilities are located in /usr/bin.

lustre_config.sh

The lustre_config.sh utility helps automate the formatting and setup of disks on multiple nodes. An entire
installation is described in a comma-separated file and passed to this script, which then formats the drives,
updates modprobe.conf and produces high-availability (HA) configuration files.

lustre_createcsv.sh

The lustre_createcsv.sh utility generates a CSV file describing the currently-running installation.

lustre_up14.sh

The lustre_up14.sh utility grabs client configuration files from old MDTs. When upgrading Lustre from 1.4.x
to 1.6.x, if the MGS is not co-located with the MDT or the client name is non-standard, this utility is used to
retrieve the old client log. For more information, see Upgrading Lustre on page 117.

NOTE:
The lustre_rmmod.sh utility does not work if Lustre modules are being used or if you
have manually fired the lctl network up command.
274 System Configuration Utilities (man8)

4.5.3 Application Profiling Utilities
The following utilities are located in /usr/bin.

lustre_req_history.sh

The lustre_req_history.sh utility (run from a client), assembles as much Lustre RPC request history as
possible from the local node and from the servers that were contacted, providing a better picture of the
coordinated network activity.

llstat.sh

The llstat.sh utility (improved in Lustre 1.6), handles a wider range of /proc files, and has command line
switches to produce more graphable output.

plot-llstat.sh

The plot-llstat.sh utility plots the output from llstat.sh using gnuplot.

4.5.4 More /proc Statistics for Application Profiling
The following utilities provide additional statistics.

vfs_ops_stats

The client vfs_ops_stats utility tracks Linux VFS operation calls into Lustre for a single PID, PPID, GID or
everything.

/proc/fs/lustre/llite/*/vfs_ops_stats

/proc/fs/lustre/llite/*/vfs_track_[pid|ppid|gid]

extents_stats

The client extents_stats utility shows the size distribution of I/O calls from the client (cumulative and by
process).

/proc/fs/lustre/llite/*/extents_stats, extents_stats_per_process

offset_stats

The client offset_stats utility shows the read/write seek activity of a client by offsets and ranges.

/proc/fs/lustre/llite/*/offset_stats

Lustre 1.6 also includes per-client and improved MDT statistics:

• Per-client statistics tracked on the servers

Each MDT and OST now tracks LDLM and operations statistics for every connected client, for
comparisons and simpler collection of distributed job statistics.

/proc/fs/lustre/mds|obdfilter/*/exports/

• Improved MDT statistics

More detailed MDT operations statistics are collected for better profiling.

/proc/fs/lustre/mds/*/stats
Lustre Operations Manual 275

4.5.5 Testing / Debugging Utilities
The following utilities are located in /usr/bin.

loadgen

The loadgen utility is a test program you can use to generate large loads on local or remote OSTs or echo
servers. For more information on loadgen and its usage, refer to:

https://mail.clusterfs.com/wikis/lustre/LoadGen

llog_reader

The llog_reader utility translates a Lustre configuration log into human-readable form.

lr_reader

The lr_reader utility translates a last received (last_rcvd) file into human-readable form.
276 System Configuration Utilities (man8)

https://mail.clusterfs.com/wikis/lustre/LoadGen

Chapter V - 5. System Limits
This chapter describes various limits on the size of files and file systems. These limits are imposed either
by the Lustre architecture or by the Linux VFS and VM subsystems. In a few cases, a limit is defined within
the code and could be changed by re-compiling Lustre. In those cases, the selected limit is supported by
CFS testing and may change in future releases. This chapter includes the following sections:

• Maximum Stripe Count

• Maximum Stripe Size

• Minimum Stripe Size

• Maximum Number of OSTs and MDSs

• Maximum Number of Clients

• Maximum Size of a File System

• Maximum File Size

• Maximum Number of Files or Subdirectories in a Single Directory

• MDS Space Consumption

• Maximum Length of a Filename and Pathname

5.1 Maximum Stripe Count

The maximum number of stripe count is 160. This limit is a hard-coded option and reflects current tested
performance limits. It may be increased in future releases. Under normal circumstances, the stripe count is
not affected by ACLs.

5.2 Maximum Stripe Size

For a 32-bit machine, the product of stripe size and stripe count (stripe_size * stripe_count) must be less
than 2^32. The ext3 limit of 2TB for a single file applies for a 64-bit machine. (Lustre can support 160 stripes
of 2 TB each on a 64-bit system.)
Lustre Operations Manual 277

5.3 Minimum Stripe Size

Due to the 64KB PAGE_SIZE on some 64-bit machines, the minimum stripe size is set to 64 KB.

5.4 Maximum Number of OSTs and MDSs

You can set the maximum number of OSTs by a compile option. The limit of 512 OSTs in Lustre 1.4.6 is
raised to 1020 OSTs in Lustre releases 1.4.7 and later. Rigorous testing is in progress to move the limit to
4000 OSTs.

The maximum number of MDSs will be determined after accomplishing MDS clustering.

5.5 Maximum Number of Clients

The number of clients is currently limited to 32768. CFS has tested up to 22000 clients.

5.6 Maximum Size of a File System

For i386 systems in 2.6 kernels, the block devices are limited to 16 TB. Each OST or MDS can have a file
system up to 8 TB (The 8 TB limit is imposed by ext3 for 2.6 kernels). You can have multiple OST file
systems on a single node. Currently, the largest Lustre file system has 448 OSTs in a single file system
(running the 1.4.3 Lustre version). There is a compile-time limit of 1020 OSTs in a single file system, giving
a single file system limit of 8 PB.

Several production Lustre file systems have around 100 OSSs in a single file system. The largest file system
in production is at least 1.3 PB (184 OSTs). All these facts indicate that Lustre would scale just fine if more
hardware is made available.

5.7 Maximum File Size

Individual files have a hard limit of nearly 16 TB on 32-bit systems imposed by the kernel memory
subsystem. On 64-bit systems this limit does not exist. Hence, files can be 64-bits in size. Lustre imposes
an additional size limit of up to the number of stripes, where each stripe is 2 TB. A single file can have a
maximum of 160 stripes, which gives an upper single file limit of 320 TB for 64-bit systems. The actual
amount of data that can be stored in a file depends upon the amount of free space in each OST on which
the file is striped.

5.8 Maximum Number of Files or Subdirectories in a Single
Directory

Lustre uses the ext3 hashed directory code, which has a limit of about 25 million files. On reaching this limit,
the directory grows to more than 2 GB depending on the length of the filenames. The maximum number of
subdirectories in the versions before Lustre 1.2.6 is 32,000. You can have unlimited subdirectories in all the
later versions of Lustre due to a small ext3 format change.

In fact, Lustre is tested with ten million files in a single directory. On a properly-configured dual-CPU MDS
with 4 GB RAM, random lookups in such a directory are possible at a rate of 5,000 files / second.
278 System Limits

5.9 MDS Space Consumption

A single MDS imposes an upper limit of 4 billion inodes. The default limit is slightly less than the device size
of 4 KB. That means about 512 MB inodes for a file system with MDS of 2 TB. This can be increased initially,
at the time of MDS file system creation, by specifying the "--mkfsoptions='-i 2048'" option on the "--add mds"
config line for the MDS.

For newer releases of e2fsprogs, you can specify '-i 1024' to create 1 inode for every 1KB disk space. You
can also specify '-N {num inodes}' to set a specific number of inodes. Note that the inode size (-I) should not
be larger than half the inode ratio (-i). Otherwise mke2fs will spin trying to write more number of inodes than
the inodes that can fit into the device.

5.10 Maximum Length of a Filename and Pathname

This limit is 255 bytes for a single filename, the same as in an ext3 file system. The Linux VFS imposes a
full pathname length of 4096 bytes.

5.11 Maximum Number of Open Files for Lustre File Systems

Lustre does not impose maximum number of open files, but practically it depends on amount of RAM on the
MDS. There are no "tables" for open files on the MDS, as they are only linked in a list to a given client's
export. Each client process probably has a limit of several thousands of open files which depends on the
ulimit.

5.12 OSS RAM Size for a Single OST

For a single OST, there is no strict rule to size the OSS RAM. However, as a guideline, 1GB per OST is a
reasonable RAM size. This provides sufficient RAM for the OS, and an appropriate amount (600 MB) for the
metadata cache, which is very important for efficient object creation/lookup when there are many objects.

The recommended minimum RAM size is 600 MB per OST, plus 500 MB for the metadata cache. In a
failover scenario, you should double these sizes (therefore 1.2 GB per OST).

NOTE:
If, in a later release, Lustre has data cache on the OST, then there will be no limit.
Lustre Operations Manual 279

280 System Limits

Feature List
Networks
TCP . 6, 8, 21, 35, 37, 39, 41, 43, 55, 56, 57, 57, 58, 108, 115, 153, 188, 241, 244, 245, 246, 265

Elan . 5, 8, 21, 23, 35, 37, 39, 41, 55, 56, 57, 58, 100, 241, 244, 248, 265

QSW .. 248

userspace tcp

userspace portals

Utilities
lctl 9, 17, 23, 25, 26, 36, 42, 61, 151, 152, 154, 191, 242, 264, 267, 269, 271, 274

lfs . 9, 79, 81, 204, 223, 224

lfs getstripe . 204, 217, 224, 226

lfs setstripe . 156, 205, 205, 217, 224

lfs find (lfind) . 226

lfs check (lfsck) . 231, 232, 235, 236

mount.lustre. 9, 17, 18, 272

mkfs.lustre 17, 18, 21, 24, 47, 49, 181, 191, 192, 215, 259, 260, 272, 274

Special System Cell Behavior
disabling POSIX locking

group locks
Lustre Operations Manual 281

Modules
LNET . 18, 37, 40, 42, 193, 241, 242, 245, 274

acceptor. 37, 241, 245, 246, 248, 250, 251

accept_port . 245

accept_backlog . 245

accept_timeout . 245

accept_proto_version . 245

config_on_load . 242

networks .

routes.

ip2nets . 36, 39, 55, 56, 242, 243, 244, 246

forwarding (obsolete). 245

implicit_loopback

small_router_buffers

large_router_buffers

tiny_router_buffer

SOCKLND Kernel TCP/IP LND . 246

timeout. 246

nconnds . 246

min_reconnectms . 246

max_reconnectms . 246

eager_ack . 246

typed_conns . 246

min_bulk . 246

tx_buffer_size, rx_buffer_size . 246

nagle . 246

keepalive_idle . 246

keepalive_intvl . 246

keepalive_count. 246

enable_irq_affinity . 247

zc_min_frag . 247
282 Feature List

QSW LND . 248

tx_maxconfig . 248

ntxmsgs . 248

nnblk_txmsg . 248

nrxmsg_small . 248

ep_envelopes_small . 248

nrxmsg_large. 248

ep_envelopes_large . 248

optimized_puts . 248

optimized_gets . 248

RapidArray LND . 249

n_connd. 249

min_reconnect_interval . 249

max_reconnect_interval . 249

timeout. 249

ntx . 249

ntx_nblk . 249

fma_cq_size . 249

max_immediate . 249

VIB LND . 250

service_number . 250

arp_retries . 250

min_reconnect_interval . 250

max_reconnect_interval . 250

timeout. 250

ntx . 250

ntx_nblk . 250

concurrent_peers. 250

hca_basename . 250

ipif_basename . 250

local_ack_timeout . 250

retry_cnt. 250

rnr_cnt . 250

rnr_nak_timer . 250

fmr_remaps . 250

cksum . 250
Lustre Operations Manual 283

OpenIB LND . 251

n_connd. 251

min_reconnect_interval . 251

max_reconnect_interval . 251

timeout. 251

ntx . 251

ntx_nblk . 251

concurrent_peers. 251

cksum . 251

Portals LND (Linux) . 252

ntx . 253

concurrent_peers. 253

peer_hash_table_size . 253

cksum . 253

timeout. 253

portal . 253

rxb_npages . 253

credits . 253

peercredits. 253

max_msg_size. 253

Portals LND (Catamont) . 254

PT LLND_PORTAL . 255

PT LLND_PID . 255

PT LLND_PEERCREDITS . 255

PT LLND_MAX_MESSAGE_SIZE . 255

PT LLND_MAX_MSGS_PER_BUFFER . 255

PT LND_MSG_SPARE . 255

PT LLND_PEER_HASH_SIZE . 255

PT LLND_EQ_SIZE. 255

Lustre APIs

User/Group Cache Upcall . 239

Striping using ioctls . 208

Direct I/O . 207
284 Feature List

Task List
Key Concepts
software

clients . 54

OSTs . 6

MDT. 6

data in /proc

User Tasks
free space

start servers. 54

change ACL

getstripe. 168

setstripe . 168

Direct I/O . 153

flock

group locks

Administrator Tasks
Build

Install

new

Downgrade

Configure

change configure

change server IP

migrate OST
Lustre Operations Manual 285

add storage

grow disk

add oss

Stop - start

mount / unmount (-force)

init.d/lustre scripts

failover by hand

get status

/proc

/var/log/messages

Tuning

Architect Tasks
Networking

understand hardware options

naming: nid’s networks

Multihomed servers

routes
286 Task List

Version Log

Manual Version Date Details of Edits Bug

1.9 11/2/07 1. Updated content in Bonding chapter. n/a

2. Updated content in Lustre Troubleshooting and Tips chapter n/a

3. Updated content in Lustre Security chapter. n/a

4. Added PIOS Test Tool topic to Lustre I/O Kit chapter. 11810

5. Updated content in Chapter IV - 2. Striping and Other I/O
Options, Striping Using ioctl section.

12032

6. Updated content in Chapter III - 2. LustreProc, Section 2.2.3
Client Read-Write Offset Survey and Section 2.2.4 Client
Read-Write Extents Survey.

12033

7. Updated content in Chapter V - 4. System Configuration
Utilities (man8), Section 4.3.4 Network commands.

12034

8. Updated content in Lustre Installation chapter. 12035

9. Updated content in Chapter V - 1. User Utilities (man1),
Section 1.2 lfsck.

12036

10. Updated content in RAID chpater 12040 /
12070

11. Updated content in Striping and Other I/O Options, lfs
setstripe - Setting Striping Patterns section.

12042

12. Updated content in Configuring the Lustre Network
chapter.

12426

13. Updated content in System Limits chapter. 12492

14. Updated content in User Utilities (man1) chapter. 12799

15. Updated content in Lustre Configuration chapter. 13529

16. Updated content in Section 4.1.11 of Lustre
Troubleshooting Tips chapter.

13810 /
11325

17. Updated content in Prerequisites and Lustre Installation
chapters.

13851

18. Updated content in Starting LNET section, Configuring the
Lustre Network chapter.

14024

1.8 09/29/07 1. Added new chapter (POSIX) to manual. 12048

2. Added new chapter (Benchmarking) to manual. 12026

3. Added new chapter (Lustre Recovery) to manual. 12049 /
12141

4. Updated content in Configuring Quotas chapter. 13433

5. Updated content in More Complicated Configurations chapter. 12169
Lustre Operations Manual 287

6. Updated content in Lustre Proc chapter. 12385 /
12383 /
12039

7. Corrected Section 4.1.1.2 errors. 12981

8. Merge MXLND information from Myricom. 12158

9. Updated content in Configuring Lustre Examples chapter. 12136

10. Updated content in RAID chapter. 12170 /
12140

11. Updated content in Configuration Files Module Parameters
chapter.

12299

1.7 08/30/07 1. Add mballoc3 content to Lustre Proc chapter. 12384 /
10816

1.6 08/23/07 1. Updated content in Expanding the File System by Adding OSTs. 13118

2. Updated content in Failover chapter. 13022 /
12168 /
12143

3. Mechanics of Lustre readahead. 13022

4. Updated content in Lustre Troubleshooting and Tips chapter. 12164 /
12037 /
12047 /
12045

5. Updated content in Free Space and Quotas chapter. 12037

6. Updated content in Lustre Operating Tips chapter. 12037

7. Added new appendix - Knowledge Base chapter. 12037

1.5 07/20/07 1. Updated content in Lustre Installation chapter. 12037

2. Updated content in Failover chapter. 12037

3. Updated content in Bonding chapter. 12037

4. Updated content in Striping and I/O Options chapter (mined from
CFS Junkyard).

12037 /
12025

5. Updated content in Lustre Operating Tips chapter. 12037

6. Developmental edit of remaining chapters in manual. 11417

7. Add new chapter (Lustre SNMP Module) to manual. 12037

8. Add new chapter (Backup and Recovery) to manual. 12037

1.4 07/08/07 1. Content added to Configuring Lustre Network chapter (mined from
CFS Junkyard).

12037

2. Content added to LustreProc chapter (mined from CFS Junkyard). 12037

3. Content added to Lustre Troubleshooting Tips chapter (mined from
CFS Junkyard).

12037

4. Content added to Lustre Tuning chapter (mined from CFS
Junkyard).

12037

Manual Version Date Details of Edits Bug
288 Version Log

5. Content added to Prerequisites chapter (mined from CFS
Junkyard).

12037 /
12174

6. Complete re-development of manual’s index. 11417

7. Developmental edit of selected chapters in manual. 11417

1.3 06/08/07 1. Update to 2.2.1.1 - added Note 12483

2. Enhancements to 3.3 DDN Tuning chapter. 12173

3. Updates to user utilities (man1) content.

4. Add lfsck and e2fsck content to Lustre Programming Interfaces
(man2) chapter.

12036

5. Removed x.x.x MDS Space Utilization content. 12483

6. Add training slide edits to manual. 12478

7. Enhanced 8.1.5 Formatting section.

1.2 05/25/07 1. Added Striping Using ioctl (Part IV Chapter 2) 12032

2. Added Client Read/Write Offset Survey and
Read/Write Extents Survey content
(Part III Chapter 2)

12033

3. Added Building RPMs content (Part II Chapter 2) 12035

4. Added Setting the Striping Pattern content and I/O
(Part IV Chapter 2 - lfs setstripe)

12036

5. Added Free Space Management content
(Part III Chapter 2 - 2.1.1 /proc entries)

12175 /
12039 /
12028

6. Added /proc content and I/O
(Part III Chapter 2 - 2.1.1 /proc entries)

12172

7. Update DDN Tuning content 12173 /
12142

8. Added new 1.6 utilities content 12176

9. Add mballoc content and I/O 12384

10. Added Options for Formatting MDS and OST and
Formatting content (Part III Chapter 3 - 3.2)

12483

11. Added Creating an External Journal content

12. Revise System Limits content

1.1 02/03/07 1. Upgraded all chapters from 1.4 to 1.6 version of Lustre.

2. Introduction and information of new features of Lustre 1.6 like
MountConf, MGS, MGC, and so on.

3. Introduction and information of utilities like mkfs.justre,
mount.lustre and tunefs.lustre.

4. Removed lmc and lconf utilities.

5. Added Chapter II - 10. Upgrading Lustre from 1.4 to 1.6.

Manual Version Date Details of Edits Bug
Lustre Operations Manual 289

6. Removed the Appendix Upgrading from 1.4.5 to 1.4.6.

7. Added information on how to remove an OST permanently.

Manual Version Date Details of Edits Bug
290 Version Log

Knowledge Base
The Knowledge Base is a collection of tips and general information regarding Lustre.

How to reclaim the 5 percent of disk space reserved for root?

Why are applications hanging?

How do I abort recovery? Why would I want to?

What does "denying connection for new client" mean?

How do I set a default debug level for clients?

How can I improve Lustre metadata performance when using large directories (> 0.5 million files)?

File system refuses to mount because of UUID mismatch

How do I set up multiple Lustre file systems on the same node?

Is it possible to change the IP address of a OST? MDS? Change the UUID?

How do I replace an OST or MDS?

How do I configure recoverable / failover object servers?

How do I resize an MDS / OST file system?

How do I backup / restore a Lustre file system?

How do I control multiple services on one node independently?

What extra resources are required for automated failover?

Is there a way to tell which OST a process on a client is using?

I need multiple SCSI LUNs per HBA - what is the best way to do this?

Can I run Lustre in a heterogeneous environment (32-and 64-bit machines)?

How do I clean up a device with lctl?

How to build and configure Infiniband support for Lustre

Can the same Lustre file system be mounted at multiple mount points on the same client system?

How do I identify files affected by a missing OST?

How-To: New Lustre network configuration

How to fix bad LAST_ID on an OST

Why can't I run an OST and a client on the same machine?
Lustre Operations Manual 291

How to reclaim the 5 percent of disk space reserved for root?
If your file system normally looks like this:

$ df -h /mnt/lustre
Filesystem Size Used Avail Use% Mounted on
databarn 100G 81G 14G 81% /mnt/lustre

You might be wondering: where did the other 5 percent go? This space is reserved for the root user.

Currently, all Lustre installations run the ext3 file system internally on service nodes. By default, ext3
reserves 5 percent of the disk for the root user.

To reclaim this space for use by all users, run this command on your OSSs:

tune2fs [-m reserved_blocks_percent] [device]

This command takes effect immediately. You do not need to shut down Lustre beforehand or restart Lustre
afterwards.

Why are applications hanging?
The most common cause of hung applications is a timeout. For a timeout involving an MDS or failover OST,
applications attempting to access the disconnected resource wait until the connection is
re-established.

In most cases, applications can be interrupted after a timeout with the KILL, INT, TERM, QUIT, or ALRM
signals. In some cases, for a command which communicates with multiple services in a single system call,
you may have to wait for multiple timeouts.

How do I abort recovery? Why would I want to?
If an MDS or OST is not gracefully shut down, for example a crash or power outage occurs, the next time
the service starts it is in "recovery" mode.

This provides a window for any existing clients to re-connect and re-establish any state which may have
been lost in the interruption. By doing so, the Lustre software can completely hide failure from user
applications.

The recovery window ends when either:

• All clients which were present before the crash have reconnected; or

• A recovery timeout expires

This timeout must be long enough to for all clients to detect that the node failed and reconnect. If the window
is too short, some critical state may be lost, and any in-progress applications receive an error. To avoid this,
the recovery window of Lustre 1.x is conservatively long.

If a client which was not present before the failure attempts to connect, it receives an error, and a message
about recovery displays on the console of the client and the server. New clients may only connect after the
recovery window ends.

If the administrator knows that recovery will not succeed, because the entire cluster was rebooted or
because there was an unsupported failure of multiple nodes simultaneously, then the administrator can
abort recovery.
292 Knowledge Base

With Lustre 1.4.2 and later, you can abort recovery when starting a service by adding --abort-recovery to
the lconf command line. For earlier Lustre versions, or if the service has already started, follow these steps:

1 Find the correct device. The server console displays a message similar to:

"RECOVERY: service mds1, 10 recoverable clients, last_transno 1664606"

2 Obtain a list of all Lustre devices. On the MDS or OST, run:

lctl device_list

3 Look for the name of the recovering service, in this case "mds1":

3 UP mds mds1 mds1_UUID 2

4 Instruct Lustre to abort recovery, run:

lctl --device 3 abort_recovery

The device number is on the left.

What does "denying connection for new client" mean?
When service nodes are performing recovery after a failure, only clients which were connected before the
failure are allowed to connect. This enables the cluster to first re-establish its pre-failure state, before normal
operation continues and new clients are allowed to connect.

How do I set a default debug level for clients?
If using zeroconf (mount -t lustre), you can add a line similar to the following to your modules.conf:

post-install portals sysctl -w portals.debug=0x3f0400

This sets the debug level, whenever the portals module is loaded, to whatever value you specify. The value
specified above is a good starting choice, and will become the in-code default in Lustre 1.0.2, as it provides
useful information for diagnosing problems without materially impairing the performance of Lustre.)

How can I improve Lustre metadata performance when using large directories
(> 0.5 million files)?
On the MDS, more memory translates into bigger caches and, therefore, higher performance. One of the
requirements for higher metadata performance is to have lots of RAM on the MDS.

The other requirement (if not running a 64-bit kernel) is to patch the core kernel on the MDS with the
3G/1G patch to increase the available kernel address space. This, again, translates into having support for
bigger caches on the MDS.

Usually the address space is split in a 3:1 ratio (3G for userspace and 1G for kernel). The 3G/1G patch
changes this ratio to 3G for kernel/1G for user (3:1) or 2G for kernel and 2G for user (2:2).
Lustre Operations Manual 293

File system refuses to mount because of UUID mismatch
When Lustre exports a device for the first time on a target (MDS or OST), it writes a randomly-generated
unique identifier (UUID) to the disk from the .xml configuration file. On subsequent exports of that device,
the Lustre code verifies that the UUID on disk matches the UUID in the .xml configuration file.

This is a safety feature which avoids many potential configuration errors, such as devices being renamed
after the addition of new disks or controller cards to the system, cabling errors, etc. This results in messages,
such as the following, appearing on the system console, which normally indicates a system configuration
error:

af0ac_mds_scratch_2b27fc413e does not match last_rcvd UUID
8a9c5_mds_scratch_8d2422aa88

In some cases, it is possible to get the incorrect UUID in the configuration file, for example by regenerating
the .xml configuration file a second time. In this case, you must specify the device UUIDs when the
configuration file is built with the --ostuuid or --mdsuuid options to match the original UUIDs instead of
generating new ones each time.

lmc -add ost --node ostnode --lov lov1 --dev /dev/sdc --ostuuid
3dbf8_OST_ostnode_ddd780786b

lmc -add mds --node mdsnode --mds mds_scratch --dev /dev/sdc --mdsuuid
8a9c5_mds_scratch_8d2422aa88

How do I set up multiple Lustre file systems on the same node?
Assuming you want to have separate file systems with different mount locations, you need a dedicated MDS
partition and Logical Object Volume (LOV) for each filessystem. Each LOV requires a dedicated OST(s).

For example, if you have an MDS server node, mds_server, and want to have mount points /mnt/foo and
/mnt/bar, the following lines are an example of the setup (leaving out the --add net lines):

Two MDS servers using distinct disks:

lmc -m test.xml --add mds --node mds_server --mds foo-mds --group foo-mds
--fstype ldiskfs --dev /dev/sda
lmc -m test.xml --add mds --node mds_server --mds bar-mds --group bar-mds
--fstype ldiskfs --dev /dev/sdb

Now for the LOVs:

lmc -m test.xml --add lov --lov foo-lov --mds foo-mds --stripe_sz 1048576
--stripe_cnt 1 --stripe_pattern 0
lmc -m test.xml --add lov --lov bar-lov --mds bar-mds --stripe_sz 1048576
--stripe_cnt 1 --stripe_pattern 0

Each LOV needs at least one OST:
lmc -m test.xml --add ost --node ost_server --lov foo-lov --ost foo-ost1 --group
foo-ost1 --fstype ldiskfs --dev /dev/sdc
lmc -m test.xml --add ost --node ost_server --lov bar-lov --ost bar-ost1 --
group
bar-ost1 --fstype ldiskfs --dev /dev/sdd
294 Knowledge Base

Set up the client mount points:
lmc -m test.xml --add mtpt --node foo-client --path /mnt/foo --mds foo-mds --lov
foo-lov
lmc -m test.xml --add mtpt --node bar-client --path /mnt/bar --mds bar-mds --lov
bar-lov

If the Lustre file system "foo" already exists, and you want to add the file system "bar" without reformatting
foo, use the group designator to reformat only the new disks:

ost_server> lconf --group bar-ost1 --select bar-ost1 --reformat test.xml
mds_server> lconf --group bar-mds --select bar-mds --reformat test.xml

If you change the --dev that foo-mds uses, you also need to commit that new configuration (foo-mds must
not be running):

mds_server> lconf --group foo-mds --select foo-mds --write_conf test.xml

Is it possible to change the IP address of a OST? MDS? Change the UUID?
The IP address of any node can be changed, as long as the rest of the machines in the cluster are updated
to reflect the new location. Even if you used hostnames in the xml config file, you need to regenerate the
configuration logs on your metadata server.

It is also possible to change the UUID, but unfortunately it is not very easy as two binary files would need
editing.

How do I set striping on a file?
To stripe a file across <n> OSTs with stripesize of blocks per stripe, run:

lfs setstripe <new_filename> <stripe_size> <stripe_offset> <stripe_count>

This creates "new_filename" (which must not already exist).

CFS strongly recommends that the stripe_size value be 1MB or larger (size in bytes). Best performance is
seen with one or two stripes per file unless it is a file that has shared IO from a large number of clients, when
the maximum number of stripes is best (pass -1 as the stripe count to get maximum striping).

The stripe_offset (OST index which holds the first stripe, subsequent stripes are created on sequential
stripes) should be "-1" which means allocate stripes in a round-robin manner. Abusing the stripe_offset
value leads to uneven usage of the OSTs and premature file system usage.

Most users want to use:

lfs setstripe <new_filename> 2097152 -1 N

Or use system-wide default stripe size:

lfs setstripe <new_filename> 0 -1 N

You may want to make a simple wrapper script that only accepts the <stripe_count> parameter. Usage info
via "lfs help setstripe".

NOTE:
If you want both mount points on a client, you can use the same client node name for both
mount points.
Lustre Operations Manual 295

How do I set striping for a large number of files at one time?

You can set a default striping on a directory, and then any regular files created within that directory inherit
the default striping configuration. To do this, first create a directory if necessary and then set the default
striping in the same manner as you do for a regular file:

lfs setstripe <directory> <stripe_size> -1 <stripe_count>

If the stripe_size value is zero (0), it uses the system-wide stripe size. If the stripe_count value is zero (0),
it uses the default stripe count. If the stripe_count value is -1, it stripes across all available OSTs. The best
performance for many clients writing to individual files is at 1 or 2 stripes per file, and maximum stripes for
large shared-I/O files (i.e. many clients reading or writing the same file at one time).

If I set the striping of N and B for a directory, do files in that directory inherit the striping or revert to
the default?

All new files get the new striping parameters, and existing files will keep their current striping (even if
overwritten). To "undo" the default striping on a directory (to use system-wide defaults again) set the striping
to "0 -1 0".

Can I change the striping of a file or directory after it is created?

You cannot change the striping of a file after it is created. If this is important (e.g., performance of reads on
some widely-shared large input file) you need to create a new file with the desired striping and copy the data
into the old file. It is possible to change the default striping on a directory at any time, although you must
have write permission on this directory to change the striping parameters.

How do I replace an OST or MDS?
The OST filesystem is simply a normal ext3 filesystem, so you can use any number of methods to copy the
contents to the new OST.

If possible, connect both the old OST disk and new OST disk to a single machine, mount them, and then
use rsync to copy all of the data between the OST filesystems. For example:

mount -t ext3 /dev/old /mnt/ost_old
mount -t ext3 /dev/new /mnt/ost_new

rsync -aSv /mnt/ost_old/ /mnt/ost_new # note trailing slash on ost_old/

If you are unable to connect both sets of disk to the same computer, use:

rsync to copy over the network using rsh (or ssh with "-e ssh"):
rsync -aSvz /mnt/ost_old/ new_ost_node:/mnt/ost_new

The same can be done for the MDS, but it needs an additional step:

cd /mnt/mds_old; getfattr -R -e base64 -d . > /tmp/mdsea;
<copy all MDS files as above>; cd /mnt/mds_new; setfattr --restore=/tmp/mdsea
296 Knowledge Base

How do I configure recoverable / failover object servers?
There are two object server modes: the default failover (recoverable) mode, and the fail-out mode. In fail-
out mode, if a client becomes disconnected from an object server because of a server or network failure,
applications which try to use that object server will receive immediate errors.

In failover mode, applications attempting to use that resource pause until the connection is restored, which
is what most people want. This is the default mode in Lustre 1.4.3 and later.

To disable failover mode:

1 If this is an existing Lustre configuration, shut down all client, MDS, and OSS nodes.

2 Change the configuration script to add --failover to all "ost" lines.

Change lines like:

lmc --add ost ...

to:

lmc --add ost ... --failover

and regenerate your Lustre configuration file.

3 Start your object servers.

They should report that recovery is enabled to syslog:

Lustre: 1394:0:(filter.c:1205:filter_common_setup()) databarn-ost3:
recovery enabled

4 Update the MDS and client configuration logs. On the MDS, run:

lconf --write_conf /path/to/lustre.xml

5 Start the MDS as usual.

6 Mount Lustre on the clients.
Lustre Operations Manual 297

How do I resize an MDS / OST file system?
This is a method to back up the MDS, including the extended attributes containing the striping data. If
something goes wrong, you can restore it to a newly-formatted larger file system, without having to back up
and restore all OSS data.

It is possible to run out of space or inodes in both the MDS and OST file systems. If these file systems reside
on some sort of virtual storage device (e.g., LVM Logical Volume, RAID, etc.) it may be possible to increase
the storage device size (this is device-specific) and then grow the file system to use this increased space.

1 Prior to doing any sort of low-level changes like this, back up the file system and/or device. See How
do I backup / restore a Lustre file system?

2 After the file system or device has been backed up, increase the size of the storage device as
necessary. For LVM this would be:

lvextend -L {new size} /dev/{vgname}/{lvname}

or

lvextend -L +{size increase} /dev/{vgname}/{lvname}

3 Run a full e2fsck on the filesystem, using the CFS e2fsprogs (available from the CFS customer
download site or http://ftp.lustre.org/other/e2fsprogs). Run:

e2fsck -f {dev}

4 Resize the file system to use the increased size of the device. Run:

resize2fs -p {dev}

How do I backup / restore a Lustre file system?
Several types of Lustre backups are available.

CLIENT FILE SYSTEM-LEVEL BACKUPS

It is possible to back up Lustre file systems from a client (or many clients in parallel working in different
directories), via any number of user-level backup tools like tar, cpio, Amanda, and many enterprise-level
backup tools. However, due to the very large size of most Lustre file systems, full backups are not always
possible. Doing backups of subsets of the filesystem (subdirectories, per user, incremental by date, etc.)
using normal file backup tools is still recommended, as this is the easiest method from which to restore data.

TARGET RAW DEVICE-LEVEL BACKUPS

In some cases, it is desirable to do full device-level backups of an individual MDS or OST storage device
for various reasons (before hardware replacement, maintenance or such). Doing full device-level backups
ensures that all of the data is preserved in the original state and is the easiest method of doing a backup.

If hardware replacement is the reason for the backup or if there is a spare storage device then it is possible
to just do a raw copy of the MDS/OST from one block device to the other as long as the new device is at
least as large as the original device using the command:

dd if=/dev/{original} of=/dev/{new} bs=1M

If hardware errors are causing read problems on the original device then using the command below allows
as much data as possible to be read from the original device while skipping sections of the disk with errors:

dd if=/dev/{original} of=/dev/{new} bs=4k conv=sync,noerror

WARNING:
if this data is very important to you, we strongly recommend that you try to back it
up before you proceed.
298 Knowledge Base

http://ftp.lustre.org/other/e2fsprogs
http://ftp.lustre.org/other/e2fsprogs

Even in the face of hardware errors, the ext3 filesystem is very robust and it may be possible to recover file
system data after e2fsck is run on the new device.

TARGET FILE SYSTEM-LEVEL BACKUPS

In other cases, it is desirable to make a backup of just the file data in an MDS or OST file system instead of
backing up the entire device (e.g., if the device is very large but has little data in it, if the configuration of the
parameters of the ext3 filesystem need to be changed, to use less space for the backup, etc).

In this case it is possible to mount the ext3 filesystem directly from the storage device and do a file-level
backup. Lustre MUST BE STOPPED ON THAT NODE.

To back up such a filesystem properly also requires that any extended attributes (EAs) stored in the
filesystem be backed up, but unfortunately current backup tools do not properly save this data so an extra
step is required.

1 Make a mountpoint for the mkdir /mnt/mds file system.

2 Mount the file system there.

• For 2.4 kernels use: mount -t ext3 {dev} /mnt/mds

• For 2.6 kernels use: mount -t ldiskfs {dev} /mnt/mds

3 Change to the mount point being backed up. Type:

cd /mnt/mds

4 Back up the EAs. Type:

getfattr -R -d -m '.*' -P . > ea.bak

The getfattr command is part of the "attr" package in most distributions.

If the getfattr command returns errors like "Operation not supported" then your kernel does not
support EAs correctly. STOP and use a different backup method, or contact CFS for assistance.

5 Verify that the ea.bak file has properly backed up your EA data on the MDS.

Without this EA data your backup is not useful. You can look at this file with "more" or a text editor, and
it should have an item for each file like:

file: ROOT/mds_md5sum3.txt

trusted.lov=0s0AvRCwEAAABXoKUCAAAAAAAAAAAAAAAAAAAQAAEAAADD5QoAAAAAAAAAAAAAA
AAAAAAAAAEAAAA=

6 Back up all file system data. Type:

tar czvf {backup file}.tgz

7 Change out of the mounted file system. Type.

cd -

8 Unmount the file system. Type:

umount /mnt/mds

Follow the same process on each of the OST device file systems. The backup of the EAs (described in
Step 4), is not currently required for OST devices, but this may change in the future.
Lustre Operations Manual 299

To restore the file-level backup you need to format the device, restore the file data, and then restore the EA
data.

1 Format the new device. The easiest way to get the optimal ext3 parameters is to use lconf --
reformat {config}.xml ONLY ON THE NODE being restored.

If there are multiple services on the node, then this reformats all of the devices on that node and should
NOT be used. Instead, use the step below:

• For MDS file systems, use: mke2fs -j -J size=400 -I {inode_size} -i 4096 {dev}

where {inode_size} is at least 512, and possibly larger if you have a default,

stripe count > 10 (inode_size = power_of_2_>=_than(384 + stripe_count * 24)).

• For OST filesystems, use: mke2fs -j -J size=400 -I 256 -i 16384 {dev}

2 Enable ext3 filesystem directory indexing. Type:

tune2fs -O dir_index {dev}

3 Mount the file system. Type:

• For 2.4 kernels use: mount -t ext3 {dev} /mnt/mds

• For 2.6 kernels use: mount -t ldiskfs {dev} /mnt/mds

4 Change to the new file system mount point. Type:

cd /mnt/mds

5 Restore the file system backup. Type:

tar xzvpf {backup file}

6 Restore the file system EAs. Type:

setfattr --restore=ea.bak

7 Remove the (now invalid) recovery logs. Type:

rm OBJECTS/* CATALOGS

Again, the restore of the EAs (described in Step 6) is not currently required for OST devices, but this may
change in the future.

If the file system was used between the time the backup was made and when it was restored, then the "lfsck"
tool (part of the CFS e2fsprogs) can be run to ensure the filesystem is coherent. If all of the device
filesystems were backed up at the same time after the whole Lustre filesystem was stopped this is not
necessary. The file system should be immediately usable even if lfsck is not run, though there will be IO
errors reading from files that are present on the MDS but not the OSTs, and files that were created after the
MDS backup will not be accessible/visible.
300 Knowledge Base

How do I control multiple services on one node independently?
You can do this by assigning an OST (or MDS) to a specific group, often with a name that relates to the
service itself (e.g. ost1a, ost1b, ...). In the lmc configuration script, put each OST into a separate group,
use:

lmc --add ost --group <name> ...

When starting up each OST use:

lconf --group <name> {--reformat,--cleanup,etc} foo.xml

to start up each one individually.

Unless a group is specified all of the services on the that node will be affected by the command.

Beginning with Lustre 1.4.4, managing individual services has been substantially simplified.
The group / select mechanics are gone, and you can operate purely on the basis of service names:

lconf --service <service> [--reformat --cleanup ...] foo.xml

For example, if you add the service ost1-home, type:

lmc --add ost --ost ost1-home ...

You can start it with:

lconf --service ost1-home foo.xml

As before, if you do not specify a service, all services configured for that node will be affected by your
command.
Lustre Operations Manual 301

What extra resources are required for automated failover?
To automate failover with Lustre, you need power management software, remote control power equipment,
and cluster management software.

Power Management Software

PowerMan, by the Lawrence Livermore National Laboratory, is a tool that manipulates remote power control
(RPC) devices from a central location. PowerMan natively supports several RPC varieties. Expect-like
configurability simplifies the addition of new devices. For more information about PowerMan, see:

http://www.llnl.gov/linux/powerman/

Other power management software is available, but PowerMan is the best we have used so far, and the
one with which we are most familiar.

Power Equipment

A multi-port, Ethernet-addressable RPC is relatively inexpensive. For recommended products, see the list
of supported hardware on the PowerMan website.

If you can afford them, Linux Networx ICEboxes are very good tools. They combine both remote power
control and remote serial console in a single unit.

Cluster management software

There are two options for cluster management software that have been implemented successfully by Lustre
customers. Both software options are open source and available free for download.

• Heartbeat

The Heartbeat program is one of the core components of the High-Availability Linux (Linux-HA)
project. Heartbeat is highly-portable, and runs on every known Linux platform, as well as FreeBSD
and Solaris.

For information, see: http://linux-ha.org/heartbeat/

To download, see: http://linux-ha.org/download/

• Red Hat Cluster Manager (CluManager)

Red Hat Cluster Manager allows administrators to connect separate systems (called members or
nodes) together to create failover clusters that ensure application availability and data integrity
under several failure conditions.

Administrators can use Red Hat Cluster Manager with database applications, file sharing services,
web servers, and more.

NOTE:
CluManager requires two 10M LUNs visible to each member of a failover group.

For more information, see: http://www.redhat.com/docs/manuals/enterprise/RHEL-3-
Manual/cluster-suite/

For more download, see: http://ftp.redhat.com/pub/redhat/linux/enterprise/3/en/RHCS/
i386/SRPMS/

In the future, CFS hopes to publish more information and sample scripts to configure
Heartbeat and CluManager with Lustre.
302 Knowledge Base

http://www.llnl.gov/linux/powerman/
http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/cluster-suite/
http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/cluster-suite/
http://ftp.redhat.com/pub/redhat/linux/enterprise/3/en/RHCS/i386/SRPMS/
http://linux-ha.org/heartbeat/
http://linux-ha.org/download/
http://www.llnl.gov/linux/powerman/

Is there a way to tell which OST a process on a client is using?
If a process is doing I/O to a file, use the lfs getstripe command to see the OST to which it is writing.

Using cat as an example, run:

$ cat > foo

While that is running, on another terminal, run:

$ readlink /proc/$(pidof cat)/fd/1

/barn/users/jacob/tmp/foo

You can also ls -l /proc/<pid>/fd/ to find open files using Lustre.

$ lfs getstripe $(readlink /proc/$(pidof cat)/fd/1)

OBDS:

0: databarn-ost1_UUID ACTIVE

1: databarn-ost2_UUID ACTIVE

2: databarn-ost3_UUID ACTIVE

3: databarn-ost4_UUID ACTIVE

/barn/users/jacob/tmp/foo

 obdidx objid objid group

 2 835487 0xcbf9f 0

The output shows that this file lives on obdidx 2, which is databarn-ost3.

To see which node is serving that OST, run:

$ cat /proc/fs/lustre/osc/*databarn-ost3*/ost_conn_uuid

NID_oss1.databarn.87k.net_UUID

The above also works with connections to the MDS - just replace osc with mdc and ost with mds in the
above command.

I need multiple SCSI LUNs per HBA - what is the best way to do this?
The kernels packaged by CFS are configured approximately the same as the upstream Ret Hat and SuSE
packages.

Currently, RHEL does not enable CONFIG_SCSI_MULTI_LUN because it is said to causes problems with
some SCSI hardware.

If you need to enable this, you must set 'option scsi_mod max_scsi_luns=xx' (xx is typically 128) in either
modprobe.conf (2.6 kernel) or modules.conf (2.4 kernel).

Passing this option as a kernel boot argument (in grub.conf or lilo.conf) will not work unless the kernel is
compiled with CONFIG_SCSI_MULT_LUN=y
Lustre Operations Manual 303

Can I run Lustre in a heterogeneous environment (32-and 64-bit machines)?
As of Lustre v1.4.2, this is supported with different word sizes. It is also supported for clients with different
endianness (for example, i368 and PPC).

One limitation is that the PAGE_SIZE on the client must be at least as large as the PAGE_SIZE of the
server.

In particular, ia64 clients with large pages (up to 64KB pages) can run with i386 servers (4KB pages). If
i386 clients are running with ia64 servers, the ia64 kernel must be compiled with 4kB PAGE_SIZE.

How do I clean up a device with lctl?
How do I destroy this object using lctl based on the following information:

lctl > device_list

0 UP obdfilter ost003_s1 ost003_s1_UUID 3

1 UP ost OSS OSS_UUID 2

2 UP echo_client ost003_s1_client 2b98ad95-28a6-ebb2-10e4-46a3ceef9007

1 Try:

lconf --cleanup --force

2 If that does not work, start lctl (if it is not running already). Then, starting with the highest-numbered
device and working backward, clean up each device:

root# lctl
lctl> cfg_device ost003_s1_client
lctl> cleanup force
lctl> detach
lctl> cfg_device OSS
lctl> cleanup force
lctl> detach
lctl> cfg_device ost003_s1
lctl> cleanup force
lctl> detach

At this point it should also be possible to unload the Lustre modules.
304 Knowledge Base

How to build and configure Infiniband support for Lustre
The kernels distributed by CFS do not yet include 3rd-party Infiniband modules. As a result, our Lustre
packages can not include IB network drivers for Lustre either, however we do distribute the source code.
You will need to build your Infiniband software stack against the CFS kernel, and then build new Lustre
packages. If this is outside your realm of expertise, and you are a CFS enterprise support customer, we can
help.

• Volatire

To build Lustre with Voltaire Infiniband sources, add: --with-vib=<path-to-voltaire-
sources> as an argument to the configure script.

To configure Lustre, use: --nettype vib --nid <IPoIB address>

• OpenIB generation 1 / Mellanox Gold

To build Lustre with OpenIB Infiniband sources, add --with-openib=<path_to_openib
sources> as an argument to the configure script.

To configure Lustre, use: --nettype openib --nid <IPoIB address>

• Silverstorm

A Silverstorm driver for Lustre is available.

• OpenIB 1.0

An OpenIB 1.0 driver for Lustre is available.

Currently (v1.4.5) the Voltaire IB module (kvibnal) will _not work on the Altix system. This is due to hardware
differences in the Altix system.

To build Silverstorm with Lustre, configure Lustre with:

--with-iib=<path to silverstorm sources>

Can the same Lustre file system be mounted at multiple mount points on the same
client system?
Yes, this is perfectly safe.
Lustre Operations Manual 305

How do I identify files affected by a missing OST?
If an OST is missing for any reason, you may need to know what files are affected.

The file system should still be operational, even though one OST is missing, so from any mounted client
node it is possible to generate a list of files that reside on that OST.

In such situations it is advisable to mark the missing OST unavailable so clients and the MDS do not time
out trying to contact it. On MDS+client nodes:

lctl dl # to generate a list of devices, find the OST device number
lctl --device N deactivate # N will be different between the MDS and
clients

If the OST later becomes available it needs to be reactivated:

lctl --device N activate

Determine all the files striped over the missing OST:

lfs find -R -o {OST_UUID} /mountpoint

This returns a simple list of filenames from the affected file system.

It is possible to read the valid parts of a striped file (if necessary):

dd if=filename of=new_filename bs=4k conv=sync,noerror

Otherwise, it is possible to delete these files with "unlink" or "munlink".

If you need to need to know specifically which parts of the file are missing data you first need to determine
the striping pattern, which includes the index of the missing OST:

lfs getstripe -v {filename}

The following computation is used to determine which offets in the file are affected:

[(C*N + X)*S, (C*N + X)*S + S - 1], N = { 0, 1, 2, ...}

where:

 C = stripe count

 S = stripe size

 X = index of bad ost for this file

Example: for a file with 2 stripes, stripe size = 1M, bad OST is index 0 you would have holes in your file at:

[(2*N + 0)*1M, (2*N + 0)*1M + 1M - 1], N = { 0, 1, 2, ...}

If the file system can't be mounted, there isn't anything currently that would parse metadata directly from an
MDS. If the bad OST is definitely not starting, options for mounting the filesystem anyway are to provide a
loop device OST in its place, or to replace it with a newly formatted OST. In that case the missing objects
are created and will read as zero-filled.
306 Knowledge Base

How-To: New Lustre network configuration
Updating Lustre's network configuration during an upgrade to version 1.4.6.

Outline necessary changes to Lustre configuration for the new networking features in v. 1.4.6. Further
details may be found in the Lustre manual excerpts found at:

https://wiki.clusterfs.com/cfs/intra/FrontPage?action=AttachFile&do=get&target=LustreManual.pdf

Backwards Compatibility

The 1.4.6 version of Lustre itself uses the same wire protocols as the previous release, but has a different
network addressing scheme and a much simpler configuration for routing.

In single-network configurations, LNET can be configured to work with the 1.4.5 networking (portals) so that
rolling upgrades can be performed on a cluster. See the 'portals_compatibility' parameter below.

When 'portals_compatibility' is enabled, old XML configuration files remain compatible. lconf automatically
converts old-style network addresses to the new LNET style.

If a rolling upgrade is not required (that is, all clients and servers can be stopped at one time), then follow
the standard procedure:

1 Shut down all clients and servers

2 Install new packages everywhere

3 Edit the Lustre configuration

4 Update the configuration on the MDS with 'lconf --write_conf'

5 Restart

New Network Addressing

A NID is a Lustre network address. Every node has one NID for each network to which it is attached.

The NID has the form <address>[@<network>], where the <address> is the network address and
<network> is an identifier for the network. (network type + instance)

Examples:

First TCP network: 192.73.220.107@tcp0

Second TCP network: 10.10.1.50@tcp1

Elan: 2@elan

The "--nid '*' " syntax for the generic client is still valid.

Modules/modprobe.conf

Network hardware and routing are now configured via module parameters, specified in the usual locations.
Depending on your kernel version and Linux distribution, this may be /etc/modules.conf,
/etc/modprobe.conf, or /etc/modprobe.conf.local.

All old Lustre configuration lines should be removed from the module configuration file. The RPM install
should do this, but check to be certain.

The base module configuration requires two lines:

alias lustre llite
options lnet networks=tcp0
Lustre Operations Manual 307

A full list of options can be found at Module Parameters on page 37. Detailed examples can be found in the
section, 'Configuring the Lustre Network'. Some brief examples:

Example 1: Use eth1 instead of eth0:

options lnet networks="tcp0(eth1)"

Example 2: Servers have two tcp networks and one Elan network. Clients are either TCP or Elan.

Servers: options lnet 'networks="tcp0(eth0,eth1),elan0"

Elan clients: options lnet networks=elan0

TCP clients: options lnet networks=tcp0

Portals Compatibility

If you are upgrading Lustre on all clients and servers at the same time, then you may skip this section.

If you need to keep the filesystem running while some clients are upgraded, the following module parameter
controls interoperability with pre-1.4.6 Lustre.

NOTE:
Compatibility between versions is not possible if you are using portals routers/gateways.
If you use gateways, you must update the clients, gateways, and servers at the same time.

portals_compatibility="strong"|"weak"|"none"

"strong" is compatible with Lustre 1.4.5, and 1.4.6 running in either 'strong' or 'weak'
compatibility mode.

Since this is the only mode compatible with 1.4.5, all 1.4.6 nodes in the cluster must use
"strong" until the last 1.4.5 node has been upgraded.

"weak" is not compatible with 1.4.5, or with 1.4.6 running in "none" mode.

"none" is not compatible with 1.4.5, or with 1.4.6 running in 'strong' mode.

For more information, see Upgrading Lustre on page 117.

NOTE:
Lustre v.1.4.2 through v.1.4.5 clients are only compatible zero-conf mounting from a 1.4.6
MDS if the MDS was originally formatted with Lustre 1.4.5 or earlier. If the files ystem was
formatted with v.1.4.6 on the MDS, or "lconf --write-conf" was run on the MDS then the
backward compatibility is lost. It is still possible to mount 1.4.2 through 1.4.5 clients with
"lconf --node {client_node} {config}.xml".
308 Knowledge Base

How to fix bad LAST_ID on an OST
The file system must be stopped on all servers prior to performing this procedure.

For hex <–> decimal translations:

Use GDB:

(gdb) p /x 15028
$2 = 0x3ab4

Or bc:

echo "obase=16; 15028" | bc

1 Determine a reasonable value for LAST_ID. Check on the MDS:

mount -t ldiskfs /dev/<mdsdev> /mnt/mds
od -Ax -td8 /mnt/mds/lov_objid

There is one entry for each OST, in OST index order. This is what the MDS thinks the last in-use object
is.

2 Determine the OST index for this OST.

od -Ax -td4 /mnt/ost/last_rcvd

It will have it at offset 0x8c.

3 Check on the OST. With debugfs, check LAST_ID:

debugfs -c -R 'dump /O/0/LAST_ID /tmp/LAST_ID' /dev/XXX ; od -Ax -td8 /tmp/
LAST_ID"

4 Check objects on the OST:

mount -rt ldiskfs /dev/{ostdev} /mnt/ost
note the ls below is a number one and not a letter L
ls -1s /mnt/ost/O/0/d* | grep -v [a-z] |
 sort -k2 -n > /tmp/objects.{diskname}

tail -30 /tmp/objects.{diskname}

This shows you the OST state. There may be some pre-created orphans, check for zero-length objects.
Any zero-length objects with IDs higher than LAST_ID should be deleted. New objects will be pre-
created.

If the OST LAST_ID value matches that for the objects existing on the OST, then it is possible the
lov_objid file on the MDS is incorrect. Delete the lov_objid file on the MDS and it will be re-created from
the LAST_ID on the OSTs.

If you determine the LAST_ID file on the OST is incorrect (that is, it does not match what objects exist,
does not match the MDS lov_objid value), then you have decided on a proper value for LAST_ID.

Once you have decided on a proper value for LAST_ID, use this repair procedure.

1 Access:

mount -t ldiskfs /dev/{ostdev} /mnt/ost

2 Check the current:

od -Ax -td8 /mnt/ost/O/0/LAST_ID

3 Be very safe, only work on backups:

cp /mnt/ost/O/0/LAST_ID /tmp/LAST_ID

4 Convert binary to text:

xxd /tmp/LAST_ID /tmp/LAST_ID.asc
Lustre Operations Manual 309

5 Fix:

vi /tmp/LAST_ID.asc

6 Convert to binary:

xxd -r /tmp/LAST_ID.asc /tmp/LAST_ID.new

7 Verify:

od -Ax -td8 /tmp/LAST_ID.new

8 Replace:

cp /tmp/LAST_ID.new /mnt/ost/O/0/LAST_ID

9 Clean up:

umount /mnt/ost

Why can't I run an OST and a client on the same machine?
Consider the case of a "client" with dirty file system pages in memory and memory pressure. A kernel thread
is woken to flush dirty pages to the file system, and it writes to local OST. The OST needs to do an allocation
in order to complete the write. The allocation is blocked, waiting for the above kernel thread to complete the
write and free up some memory. This is a deadlock.

Also, if the node with both a client and OST crash, then the OST waits, during recovery, for the client that
was mounted on that node to recover. However, since the client crashed, it is considered a new client to the
OST, and is blocked from mounting until recovery completes. As a result, this is currently considered a
double failure and recovery cannot complete successfully.
310 Knowledge Base

Glossary
A
ACL (Access Control List). An extended attribute associated with a file which contains authorization
directives.

Administrative OST failure – A configuration directive given to a cluster to declare that an OST has failed,
so errors can be immediately returned.

C
CFS – Cluster File Systems, Inc., a United States corporation founded in 2001 by Peter J. Braam to develop,
maintain and support Lustre.

CMD – Clustered metadata, a collection of metadata targets implementing a single file system namespace.

CMOBD – Cache Management OBD. A special device which implements remote cache flushed and
migration among devices.

COBD – Caching OBD. A driver which decides when to use a proxy or a locally-unning cache and when to
go to a master server. Formerly, this abbreviation was used for the term ’collaborative cache’.

Collaborative Cache – A read cache instantiated on nodes that can be clients or dedicated systems. It
enables client-to-client data transfer, thereby enabling enormous scalability benefits for mostly read-only
situations. A collaborative cache is not currently implemented in Lustre.

Completion Callback – An RPC made by an OST or MDT to another system, usually a client, to indicate
that the lock request is now granted.

Configlog – An llog file used in a node, or retrieved from a management server over the network with
configuration instructions for Lustre systems at startup time.

Configuration lock – A lock held by every node in the cluster to control configuration changes. When
callbacks are received, the nodes quiesce their traffic, cancel the lock and await configuration changes after
which they reacquire the lock before resuming normal operation.
Lustre Operations Manual 311

D
Default stripe pattern – Information in the LOV descriptor that describes the default stripe count used for
new files in a file system. This can be amended by using a directory stripe descriptor or a per-file stripe
descriptor.

Direct I/O – A mechanism which can be used during read and write system calls. It bypasses the kernel
I/O cache to memory copy of data between kernel and application memory address spaces.

Directory stripe descriptor – An extended attribute that describes the default stripe pattern for files
underneath that directory.

E
EA – See Extended Attribute.

Eviction – The process of eliminating server state for a client that is not returning to the cluster after a
timeout or if server failures have occurred.

Export – The state held by a server for a client that is sufficient to transparently recover all in-flight
operations when a single failure occurs.

Extended Attribute (EA) – A small amount of data which can be retrieved through a name associated with
a particular inode. Examples of extended attributes are ACLs, striping information, and crypto keys.

Extent Lock – A lock used by the OSC to protect an extent in a storage object for concurrent control of
read/write, file size acquisition and truncation operations.

F
Failback – The failover process in which the default active server regains control over the service.

Failout OST – An OST which is not expected to recover if it fails to answer client requests. A failout OST
can be administratively failed, thereby enabling clients to return errors when accessing data on the failed
OST without making additional network requests.

Failover – The process by which a standby computer server system takes over for an active computer
server after a failure of the active node. Typically, the standby computer server gains exclusive access to a
shared storage device between the two servers.

FID (Lustre File Identifier). A collection of integers which uniquely identify a file or object. The FID structure
contains a sequence, identity and version number.

Fileset – A group of files that are defined through a directory that represents a file system’s start point.

FLDB (FID Location Database). This database maps a sequence of FIDs to a server which is managing the
objects in the sequence.

Flight Group – Group or I/O transfer operations initiated in the OSC, which is simultaneously going
between two endpoints. Tuning the flight group size correctly leads to a full pipe.
312 Glossary

G
Glimpse callback – An RPC made by an OST or MDT to another system, usually a client, to indicate to
tthat an extent lock it is holding should be surrendered if it is not in use. If the system is using the lock, then
the system should report the object size in the reply to the glimpse callback. Glimpses are introduced to
optimize the acquisition of file sizes.

GNS (Global Namespace). A GNS enables clients to access files without knowing their location. It also
enables an administrator to aggregate file storage across distributed storage devices and manage it as a
single file system.

Group Lock –

Group upcall –

GSS (Group Sweeping Scheduling). A disk sched uling strategy in which requests are served in cycles, in
a round-robin manner.

H
Htree – An indexing system for large directories used by ext3. Originally implemented by Daniel Phillips and
completed by CFS.

I
Import – The state held by a client to fully recover a transaction sequence after a server failure and restart.

Intent Lock – A special locking operation introduced by Lustre into the Linux kernel. An intent lock
combines a request for a lock, with the full information to perform the operation(s) for which the lock was
requested. This offers the server the option of granting the lock or performing the operation and informing
the client of the operation result without granting a lock. The use of intent locks enables metadata operations
(even complicated ones), to be implemented with a single RPC from the client to the server.

IOV – I/O vector. A buffer destined for transport across the network which contains a collection (a/k/a as a
vector) of blocks with data.

J
Join File –

K
Kerberos – An authentication mechanism, optionally available in Lustre 1.8 as a GSS backend.

L
LAID – Lustre RAID. A mechanism whereby the LOV stripes I/O over a number of OSTs with redundancy.
This functionality is expected to be introduced in Lustre 2.0.

LBUG – A bug that Lustre writes into a log indicating a serious system failure.

LDLM (Lustre Distributed Lock Manager).

lfind – A subcommand of lfs to find inodes associated with objects.

lfs – A Lustre file system utility named after fs (AFS), cfs (Coda), and ifs (Intermezzo).

lfsck (Lustre File System Check). A distributed version of a disk file system checker. Normally, lfsck does
not need to be run, except when file systems are damaged through multiple disk failures and other means
that cannot be recovered using file system journal recovery.
Lustre Operations Manual 313

liblustre (Lustre library). A user-mode Lustre client linked into a user program for Lustre fs access. liblustre
clients cache no data, do not need to give back locks on time, and can recover safely from an eviction. They
should not participate in recovery.

Llite (Lustre lite). This term is in use inside the code and module names to indicate that code elements are
related to the Lustre file system.

Llog (Lustre log). A log of entries used internally by Lustre. An llog is suitable for rapid transactional
appends of records and cheap cancellation of records through a bitmap.

Llog Catalog (Lustre log catalog). An llog with records that each point at an llog. Catalogs were introduced
to give llogs almost infinite size. llogs have an originator which writes records and a replicator which cancels
record (usually through an RPC), when the records are not needed.

LMV (Logical Metadata Volume). A driver to abstract in the Lustre client that it is working with a metadata
cluster instead of a single metadata server.

LND (Lustre Network Driver). A code module that enables LNET support over a particular transport, such
as TCP and various kinds of InfiniBand, Elan or Myrinet.

LNET (Lustre Networking). A message passing network protocol capable of running and routing through
various physical layers. LNET forms the underpinning of LNETrpc.

LNETrpc – An RPC protocol layered on LNET. This protocol deals with stateful servers and has exactly-
once semantics and built in support for recovery.

Load-balancing MDSs – A cluster of MDSs that perform load balancing of on system requests.

Lock Client – A module that makes lock RPCs to a lock server and handles revocations from the server.

Lock Server – A system that manages locks on certain objects. It also issues lock callback requests, calls
while servicing or, for objects that are already locked, completes lock requests.

LOV (Logical Object Volume). The object storage analog of a logical volume in a block device volume
management system, such as LVM or EVMS. The LOV is primarily used to present a collection of OSTs as
a single device to the MDT and client file system drivers.

LOV descriptor – A set of configuration directives which describes which nodes are OSS systems in the
Lustre cluster, providing names for their OSTs.

Lustre – The name of the project chosen by Peter Braam in 1999 for an object-based storage architecture.
Now the name is commonly associated with the Lustre file system.

Lustre client – An operating instance with a mounted Lustre file system.

Lustre file – A file in the Lustre file system. The implementation of a Lustre file is through an inode on a
metadata server which contains references to a storage object on OSSs.

Lustre Lite – A preliminary version of Lustre developed for LLNL in 2002. With the release of Lustre 1.0 in
late 2003, Lustre Lite became obsolete.

Lvfs – A library that provides an interface between Lustre OSD and MDD drivers and file systems; this
avoids introducing file system-specific abstractions into the OSD and MDD drivers.
314 Glossary

M
Mballoc – An advanced block allocation protocol introduced by CFS into the ext3 disk file system. It is
capable of efficiently managing the allocation of large (typically 1 MB), contiguous disk extents.

MDC (Metadata Client). A metadata code module which uses LNETrpc to interact with the MDT. Also, an
instance of an object device operating on an MDT through the network protocol.

MDD (Metadata Device). Currently implemented using the directory structure and extended attributes of
disk file systems.

MDS (Metadata Server). A computer system or software package that runs the Lustre metadata services.

MDS client – Same as MDC.

MDS server – Same as MDS.

MDT (Metadata Target). A metadata device made available through the Lustre meta-data network protocol.

Metadata Write-back Cache – A cache of metadata updates (mkdir, create, setattr, other operations) which
an application has performed, but ave not yet been flushed to a storage device or server. InterMezzo is one
of the first network file systems to have a metadata write-back cache.

MGS (Management Service). A software module that manages the startup configuration and changes to the
configuration. Also, the server node on which this system runs.

Mount object –

Mountconf – The Lustre configuration protocol (introduced in version 1.6) which formats disk file systems
on servers with the mkfs.lustre program, and prepares them for automatic incorporation into a Lustre cluster.

N
NAL – An older, obsolete term for LND.

NID (Network Identifier). Encodes the type, network number and network address of a network interface on
a node for use by Lustre.

NIO API – A subset of the LNET RPC module that implements a library for sending large network requests,
moving buffers with RDMA.
Lustre Operations Manual 315

O
OBD (Object Device). The base class of layering software constructs that provides Lustre functionality.

OBD API – See Storage Object API.

OBD type – Module that can implement the Lustre object or metadata APIs. Examples of OBD types include
the LOV, OSC and OSD.

Obdfilter – An older name for the OSD device driver.

OBDFS (Object Based File System). A now obsolete single node object file system that stores data and
metadata on object devices.

Object device – An instance of a object that exports the OBD API.

Object storage – Refers to a storage-device API or protocol involving storage objects. The two most well
known instances of object storage are the T10 iSCSI storage object protocol and the Lustre object storage
protocol (a network implementation of the Lustre object API). The principal difference between the Lustre
and T10 protocols is that Lustre includes locking and recovery control in the protocol and is not tied to a
SCSI transport layer.

opencache – A cache of open file handles. This is a performance enhancement for NFS.

Orphan objects – Storage objects for which there is no Lustre file pointing at them. Orphan objects can
arise from crashes and are automatically removed by an llog recovery. When a client deletes a file, the MDT
gives back a cookie for each stripe. The client then sends the cookie and directs the OST to delete the stripe.
Finally, the OST sends the cookie back to the MDT to cancel it.

Orphan handling – A component of the metadata service which allows for recovery of open, unlinked files
after a server crash. The implementation of this feature retains open, unlinked files as orphan objects until
it is determined that no clients are using them.

OSC (Object Storage Client). The client unit talking to an OST (via an OSS).

OSD (Object Storage Device). A generic, industry term for storage devices with more extended interface
than block-oriented devices, such as disks. Lustre uses this name to describe to a software module that
implements an object storage API in the kernel. Lustre also uses this name to refer to an instance of an
object storage device created by that driver. The OSD device is layered on a file system, with methods that
mimic create, destroy and I/O operations on file inodes.

OSS (Object Storage Server). A system that runs an object storage service software stack.

OSS (Object Storage Server). A server OBD that provides access to local OST's.

OST (Object Storage Target). An OSD made accessible through a network protocol. Typically, an OST is
associated with a unique OSD which, in turn is associated with a formatted disk file system on the server
containing the storage objects.

P
Pdirops – A locking protocol introduced in the VFS by CFS to allow for concurrent operations on a single
directory inode.

pool – A group of OSTs can be combined into a pool with unique access permissions and stripe
characteristics. Each OST is a member of only one pool, while an MDT can serve files from multiple pools.
A client accesses one pool on the the file system; the MDT stores files from / for that client only on that pool's
OSTs.

Portal – A concept used by LNET. LNET messages are sent to a portal on a NID. Portals can receive
packets when a memory descriptor is attached to the portal. Portals are implemented as integers.

Examples of portals are the portals on which certain groups of object, metadata, configuration and locking
requests and replies are received.

Ptlrpc – An older term for LNETrpc.
316 Glossary

R
Raw operations – VFS operations introduced by Lustre to implement operations such as mkdir, rmdir, link,
rename with a single RPC to the server. Other file systems would typically use more operations. The
expense of the raw operation is omitting the update of client namespace caches after obtaining a successful
result.

Remote user handling –

Replay – The concept of re-executing a server request after the server lost information in its memory
caches and shut down. The replay requests are retained by clients until the server(s) have confirmed that
the data is persistent on disk. Only requests for which a client has received a reply are replayed.

Re-sent request – A request that has seen no reply can be re-sent after a server reboot.

Revocation Callback – An RPC made by an OST or MDT to another system, usually a client, to revoke a
granted lock.

Rollback – The concept that server state is in a crash lost because it was cached in memory and not yet
persistent on disk.

Root squash – A mechanism whereby the identity of a root user on a client system is mapped to a different
identity on the server to avoid root users on clients gaining broad permissions on servers. Typically, for
management purposes, at least one client system should not be subject to root squash.

routing – LNET routing between different networks and LNDs.

RPC (Remote Procedure Call). A network encoding of a request.

S
Storage Object API – The API that manipulates storage objects. This API is richer than that of block
devices and includes the create / delete of storage objects, read / write of buffers from and to certain offsets,
set attributes and other storage object metadata.

Storage objects – A generic concept that refers to data containers, similar or identical to file inodes.

Stride – A contiguous, logical extent of a Lustre file written to a single OST.

Stride size – The maximum size of a stride, typically 4 MB.

Stripe count – The number of OSTs holding objects for a RAID0-striped Lustre file.

Striping metadata – The extended attribute associated with a file that describes how its data is distributed
over storage objects. See also default stripe pattern.

T
T10 object protocol – An object storage protocol tied to the SCSI transport layer.

W
Wide striping – Strategy of using many OSTs to store stripes of a single file. This obtains maximum
bandwidth to a single file through parallel utilization of many OSTs.

Z
zeroconf – A method to start a client without an XML file. The mount command gets a client startup llog
from a specified MDS. This is an obsolete method in Lustre 1.6 and later.
Lustre Operations Manual 317

318 Glossary

Index
A

abort recovery .26
aborting recovery (knowledge base) 292
access control list (ACL)215
ACLs

examples . 216
Lustre support . 215

active / active configuration, failover62
adding multiple LUNs on a single HBA221

B

backing up/restoring a Lustre file system
(knowledge base) .298

backup
device-level . 130
file-level . 130

backup and restore .129
benchmark

Bonnie++ . 140
IOR . 141
IOzone . 142

bonding .105
configuring Lustre 115
module parameters 108
references . 115
requirements . 106
setting up . 109

bonding NICs .108
Bonnie++ benchmark .140
building .128
building a kernel .27

installing Quilt . 27
preparing the kernel tree 28
selecting a patch series 27

building Lustre .29
configuration options 30
liblustre . 31

building the Lustre SNMP module 128
building/configuring InfiniBand for Lustre

(knowledge base) .305
Lustre Operations Manual
C

changing IP address or UUID on an OST
or MST (knowledge base) 295
cleaning up a device with lctl

(knowledge base) . 304
client node, mounting Lustre 21
client read/write

extents survey .169
offset survey .168

command
lfs .223
lfsck .231
mount .237

complicated configurations,
multihomed servers 55

components, Lustre . 2
config files and module parameters (man5) . . . 241
configuration

abort recovery .26
changing a server NID 26
examples .43
permanently removing an OST25
writeconf .25

configuring Lustre network 37
configuring recoverable/failover

object servers (knowledge base) 297
consistent clocks . 11
controlling multiple services on one node

(knowledge base) . 301

D

DDN tuning . 183
setting maxcmds .184
setting readahead and MF 183
setting segment size183
setting write-back cache184

denying connection for new client message
(knowledge base) . 293

designing a Lustre network 35
determining which OST a client process is

using (knowledge base) 303
device-level backup . 130
device-level restore . 131
319

downgrade
file system . 125
Lustre version 1.6.3 to version 1.4.11 125
requirements . 125

downloading Lustre .7

E

Elan (Quadrics Elan) .6
Elan to TCP routing

modprobe.conf . 58
start clients . 58
start servers . 58

environmental requirements11
consistent clocks . 11
kernel I/O elevators 11
SSH access . 11
universal UID/GID . 11

Ethernet .6

F

failout .24
failover .23, 59

active / active configuration 62
configuring MDS and OSTs 62
connection handling 61
hardware requirements 62
Heartbeat . 60
MDS . 62
OST . 61
power equipment . 60
power management software 60
role of nodes . 61
setup with Heartbeat V1 63
setup with Heartbeat V2 72
software, considerations 77
starting / stopping a resource 62

failover, Heartbeat V1
configuring Heartbeat 64
installing software . 63
Mon setup . 69

failover, Heartbeat V2
configuring hardware 72
installing software . 72
operating . 76

file striping .201
file system

making/starting . 19
name . 21

file-level backup .130
fixing bad LAST_ID on an OST

(knowledge base) .309
free space

management . 206
querying . 197

G
g
g

h
h
H
H

H
H

I

I

I
I
i

i

i

I
i

i

i
i
i
I
I

320
G

ID . 11
m (Myrinet) . 6
roup ID (GID) . 11

H

andling timeouts . 238
anging applications (knowledge base) 292
BA, adding SCSI LUNs 221
eartbeat configuration

with STONITH . 67
without STONITH . 64

eartbeat V1, failover setup 63
eartbeat V2, failover setup 72

I

/O kit
Lustre . 149
prerequisites . 149
running tests . 150

/O kit tool
obdfilter_survey . 151
ost_survey . 156
PIOS . 157
sgpdd_survey . 150

/O options . 201, 207
/O tunables . 166
dentifying files affected by missing OST

(knowledge base) 306
mproving Lustre metadata performance

(knowledge base) 293
mproving Lustre metadata performance with

large directories . 222
nfinicon InfiniBand (iib) . 6
nstalling . 127

Lustre SNMP module 127
nstalling Lustre . 16

core requirements . 10
debugging tools . 10
HA software . 10

nstalling Quilt . 27
nteroperability, lustre 117
octl . 208
OR benchmark . 141
Ozone benchmark . 142
Index

K

Kerberos
Lustre setup . 95
Lustre-Kerberos flavors 102

kernel
building . 27
I/O elevators . 11
tree, preparing . 28

kernel-modules-.rpm .8
kernel-smp-.rpm .8
kernel-source-.rpm .8
knowledge base

aborting recovery . 292
backing up/restoring a Lustre file system . 298
building/configuring InfiniBand for Lustre . 305
changing IP address or UUID on an OST

or MDS . 295
cleaning up a device with lctl 304
configuring recoverable/failover object

servers . 297
controlling multiple services on one node . 301
denying connection for new client

message . 293
determining which OST a client process is

using . 303
fixing bad LAST_ID on an OST 309
hanging applications 292
identifying files affected by missing OST . . 306
improving Lustre metadata performance . . 293
mounting Lustre file system at multiple

mount points . 305
multiple file systems on one node 294
reclaiming disk space 292
replacing an OST or MDS 296
resizing an MDS/OST file system 298
resources required for failover 302
running an OST and client on same

machine . 310
running Lustre in a heterogeneous

environment . 304
setting default debug level for clients 293
setting striping on a file 295
updating Lustre’s network configuration . . 307
using multiple SCSI LUNs per HBA 303
UUID mismatch . 294

L

lfs command .223
lfs getstripe .204
lfsck command .231
liblustre .31
llog_reader utility .276
llstat.sh utility .275
LND .5
Lustre Operations Manual
LNET
starting .41
stopping .42
tunables .180

loadgen utility . 276
locking proc entries . 175
lr_reader utility . 276
LUNs, adding . 221
lustre

downgrading .117
interoperability .117
upgrading .117

Lustre client node . 4
Lustre Network Driver (LND) 5
Lustre programming interfaces (man3) 239
Lustre SNMP module127, 128
lustre-.rpm . 8
lustre_config.sh utility . 274
lustre_createcsv.sh utility 274
lustre_req_history.sh utility 275
lustre_rmmod.sh utility 274
lustre_up14.sh utility . 274
LustreProc . 161
lustre-source-.rpm . 8

M

man1
lfs .223
lfsck .231
mount .237

man3
user/group cache upcall 239

man5
LNET options .242
module options .242
MX LND .256
OpenIB LND .251
Portals LND (Catamount) 254
portals LND (Linux)252
QSW LND .248
RapidArray LND .249
VIB LND .250

man8
extents_stats utility extents_stats utility . . .275
lctl .264
llog_reader utility .276
llstat.sh .275
loadgen utility .276
lr_reader utility .276
lustre_config.sh .274
lustre_createcsv.sh utility 274
lustre_req_history.sh275
lustre_rmmod.sh utility 274
lustre_up14.sh utility274
mkfs.lustre .259
mount.lustre .272
321

offset_stats utility . 275
plot-llstat.sh . 275
system configuration utilities 259
tunefs.lustre . 262
vfs_ops_stats utility vfs_ops_stats utility . . 275

managing free space .206
mballoc .171
mballoc3 .174
MDS

failover . 62
failover configuration 62

MDS / OST formatting
calculating MDS size 181
overriding default formatting options 181
planning for inodes 181

MDS threads .180
MDT .3
Mellanox-Gold InfiniBand6
Meta Data Target (MDT) 3
mod5, SOCKLND kernel TCP/IP LND 246
modprobe.conf .55, 58
module

Lustre . 2
setup . 18

mount command .237
mount with inactive OSTs23
MountConf .17
mounting Lustre file system at multiple

mount points (knowledge base) 305
multihomed server

Lustre complicated configurations 55
modprobe.conf . 55
start clients . 57
start server . 57

multiple file systems on one node
(knowledge base) .294

multiple Lustres, running 24
multiple NICs .108
Myrinet .6

N

network
bonding . 105

network identifier (NID) .6
networks, supported

Elan (Quadrics Elan) 6
gm (Myrinet) . 6
iib (Infinicon InfiniBand) 6
o2ib (OFED) . 6
openlib (Mellanox-Gold InfiniBand) 6
ra (RapidArray) . 6
tcp (Ethernet) . 6
vib (Voltaire InfiniBand) 6

NIC
bonding . 108
multiple . 108

N
N
n

o
o
O
o
o
o

O

O
o
o

p
p
p
P
p
p
p
p
p

Q
q
q

r
R

322
ID . 6
ID, changing . 26
ode

active / active . 61
active / passive . 61

O

2ib (OFED) . 6
bdfilter_survey tool . 151
FED . 6
ffset_stats utility . 275
penlib (Mellanox-Gold InfiniBand) 6
perating tips

adding OSTs . 217
data migration script, simple 220

ST
adding . 217
failover . 61
failover configuration 62
inactive, mount . 23
removing permanently 25
threads . 179

ST block I/O stream, watching 170
st_survey tool . 156
verview, Lustre . 1

P

atch series, selecting 27
atched Linux kernel . 2
erforming direct I/O . 207
IOS test tool . 157
lot-llstat.sh utility . 275
ower equipment . 60
ower management software 60
re-packaged releases, Lustre 8
roc entries

debug support . 176
introduction . 162
locking . 175

Q

uadrics Elan . 6
uerying file system space 197
uotas

administering . 81
allocating . 82
configuring . 80
creating files . 81
working with . 79

R

a (RapidArray) . 6
AID
Index

considerations for backend storage 85
creating an external journal 92
disk performance management 87
formatting . 87
performance considerations 86
selecting storage for the MDS and OSS . . . 86
understanding double failures with

RAID5 hardware and software 86
RapidArray .6
readahead, using .171
reclaiming disk space (knowledge base) 292
replacing an OST or MDS (knowledge base) . .296
resizing an MDS/OST file system

(knowledge base) .298
resources required for failover

(knowledge base) .302
restore

device-level . 131
routing, elan to TCP .58
RPC stream tunables .166
RPC stream, watching 167
RPM packages .8

kernel-modules-.rpm 8
kernel-smp-.rpm . 8
kernel-source-.rpm . 8
lustre-.rpm . 8
lustre-source-.rpm . 8

running a client and OST on the same
machine .222

running an OST and client on same machine
(knowledge base) .310

running Lustre in a heterogeneous
environment (knowledge base)304

running multiple Lustres24

S

security .215
server

starting automatically 22
stopping . 22

setting
maxcmds . 184
readahead and MF 183
SCSI I/O sizes . 188
segment size . 183
write-back cache . 184

setting default debug level for clients
(knowledge base) .293

setting striping on a file (knowledge base)295
sgpdd_survey tool .150
simple configuration

CSV file, configuring Lustre 47
network, combined MGS/MDT 43
network, separate MGS/MDT 45
TCP network, Lustre simple configurations . 43

SNMP .127
Lustre Operations Manual
SSH access . 11
starting

file system .19
LNET .41
Lustre on an OST node20
server, automatically22

stopping
LNET .42
server .22

striping . 201
advantages .202
disadvantages .202
lfs getstripe .204
size .203
using ioctl .208

supported configurations, Lustre 8
supported networks

Elan (Quadrics Elan) .6
gm (Myrinet) .6
iib (Infinicon InfiniBand)6
o2ib (OFED) .6
openlib (Mellanox-Gold InfiniBand)6
ra (RapidArray) .6
tcp (Ethernet) .6
vib (Voltaire InfiniBand)6

system limits
maximum file size .278
maximum file system size278
maximum length of a filename and

pathname .279
maximum number of clients 278
maximum number of files or

subdirectories in a directory278
maximum number of open files for

Lustre file systems. 279
maximum number of OSTs and MDSs278
maximum stripe count277
maximum stripe size277
MDS space consumption 279
minimum stripe size 278
OSS RAM size for single OST 279

T

tcp (Ethernet) . 6
timeouts, handling . 238
troubleshooting

changing parameters 191
considerations in connecting a SAN with

Lustre .193
default striping .191
drawbacks in doing multi-client

O_APPEND writes196
erasing a file system192
handling timeouts on initial Lustre setupd . .196
323

handling/debugging "bind
address already in use" error 193

handling/debugging "Lustre Error
xxx went back in time" 196

handling/debugging error "28" 194
identifying missing OST 190
Lustre Error

"slow start_page_write" 196
Lustre, general . 187
OST object missing or damaged 189
OSTs become read-only 189
reclaiming reserved disk space 192
replacing an existing OST or MDS 194
setting I/O SCSI I/O sizes 188
triggering watchdog for pid NNN 195
write performance better than read

performance . 188
tunables

RPC stream . 166
tuning

DDN . 183
formatting the MDS and OST 181
large-scale . 186
Lustre . 179
module options . 179

U

UID .11
universal UID/GID .11
updating Lustre’s network configuration

(knowledge base) .307
upgrade

multiple file systems (shared MGS) 123
requirements . 118
single file system . 120
starting clients . 119
supported paths . 119
version 1.4.11 (and later) to version 1.6.3 . 118

user ID (UID) .11
user utilities (man1) .223
userspace utilities .2
using .128

Lustre SNMP module 128
quotas . 199

using multiple SCSI LUNs per HBA
(knowledge base) .303

utilities, new, v1.6 .274
UUID mismatch (knowledge base)294

V

Voltaire InfiniBand (vib) .6

W

writeconf .25
324
 Index

	Chapter I - 1. A Cluster with Lustre
	1.1 What is Lustre?
	1.2 Lustre Software
	1.3 Lustre Components
	1.3.1 MGS
	1.3.2 MDT
	1.3.3 OSTs
	1.3.4 Lustre Client Nodes
	1.3.5 LNET

	Chapter I - 2. Understanding Lustre Networking
	2.1 Introduction to LNET
	2.2 Supported Network Types
	2.3 Important Terms

	Chapter II - 1. Prerequisites
	1.1 Preparing to Install Lustre
	1.1.1 How to Get Lustre
	1.1.2 Supported Configurations

	1.2 Using a Pre-packaged Lustre Release
	1.2.1 Choosing a Pre-packaged Kernel
	1.2.2 Lustre Tools
	1.2.3 Other Required Software

	1.3 Environmental Requirements
	1.3.1 SSH Access
	1.3.2 Consistent Clocks
	1.3.3 Universal UID/GID
	1.3.4 Choosing a Proper Kernel I/O Scheduler
	1.3.5 Changing the I/O Scheduler

	1.4 Memory Requirements
	1.4.1 Determining MDS Memory

	Chapter II - 2. Lustre Installation
	2.1 Installing Lustre
	2.1.1 MountConf

	2.2 Quick Configuration of Lustre
	2.2.1 Simple Configurations
	2.2.2 More Complex Configurations
	2.2.3 Other Configuration Tasks

	2.3 Building from Source
	2.3.1 Building Your Own Kernel
	2.3.2 Building Lustre
	2.3.3 Building From Source

	2.4 Building a Lustre Source Tarball
	2.4.1 Lustre Source Tarball from Lustre Source RPM
	2.4.2 Lustre Source Tarball from CVS

	Chapter II - 3. Configuring the Lustre Network
	3.1 Designing Your Lustre Network
	3.1.1 Identify All Lustre Networks
	3.1.2 Identify Nodes to Route Between Networks
	3.1.3 Identify Network Interfaces to Include/Exclude from LNET
	3.1.4 Determine Cluster-wide Module Configuration
	3.1.5 Determine Appropriate Mount Parameters for Clients

	3.2 Configuring Your Lustre Network
	3.2.1 Module Parameters
	3.2.2 Module Parameters - Routing
	3.2.3 Downed Routers

	3.3 Starting and Stopping LNET
	3.3.1 Starting LNET
	3.3.2 Stopping LNET

	Chapter II - 4. Configuring Lustre - Examples
	4.1 Simple TCP Network
	4.1.1 Lustre with Combined MGS/MDT
	4.1.2 Lustre with Separate MGS and MDT

	Chapter II - 5. More Complicated Configurations
	5.1 Multihomed Servers
	5.1.1 Modprobe.conf
	5.1.2 Start Servers
	5.1.3 Start Clients

	5.2 Elan to TCP Routing
	5.2.1 Modprobe.conf
	5.2.2 Start servers
	5.2.3 Start clients

	Chapter II - 6. Failover
	6.1 What is Failover?
	6.1.1 The Power Management Software
	6.1.2 Power Equipment
	6.1.3 Heartbeat
	6.1.4 Connection Handling During Failover
	6.1.5 Roles of Nodes in a Failover

	6.2 OST Failover Review
	6.3 MDS Failover Review
	6.4 Configuring MDS and OSTs for Failover
	6.4.1 Starting / Stopping a Resource
	6.4.2 Active / Active Failover Configuration
	6.4.3 Hardware Requirements for Failover

	6.5 Setting Up Failover with Heartbeat V1
	6.5.1 Installing the Software
	6.5.2 Mon (Status Monitor)

	6.6 Setting Up Failover with Heartbeat V2
	6.6.1 Installing the Software
	6.6.2 Configuring the Hardware
	6.6.3 Operation

	6.7 Considerations with Failover Software and Solutions

	Chapter II - 7. Configuring Quotas
	7.1 Working with Quotas
	7.1.1 Configuring Disk Quotas
	7.1.2 Creating Quota Files and Quota Administration
	7.1.3 Quota Allocation

	Chapter II - 8. RAID
	8.1 Considerations for Backend Storage
	8.1.1 Reliability
	8.1.2 Selecting Storage for the MDS and OSS
	8.1.3 Understanding Double Failures with Software and Hardware RAID5
	8.1.4 Performance Considerations
	8.1.5 Formatting

	8.2 Insights into Disk Performance Measurement
	8.2.1 Sample Graphs

	8.3 Creating an External Journal

	Chapter II - 9. Kerberos
	9.1 What is Kerberos?
	9.2 Lustre Setup with Kerberos
	9.2.1 Configuring Kerberos for Lustre
	9.2.2 Types of Lustre-Kerberos Flavors

	Chapter II - 10. Bonding
	10.1 Network Bonding
	10.2 Requirements
	10.3 Using Lustre with Multiple NICs versus Bonding NICs
	10.4 Bonding Module Parameters
	10.5 Setting Up Bonding
	10.5.1 Examples

	10.6 Configuring Lustre with Bonding
	10.7 Bonding References

	Chapter II - 11. Upgrading Lustre
	11.1 Lustre Interoperability
	11.2 Upgrading from Version 1.4.11 to Version 1.6.3
	11.2.1 Upgrade Requirements
	11.2.2 Supported Upgrade Paths
	11.2.3 Starting Clients
	11.2.4 Upgrading a Single File System
	11.2.5 Upgrading Multiple File Systems with a Shared MGS

	11.3 Downgrading Lustre from Version 1.6.3 to Version 1.4.11
	11.3.1 Downgrade Requirements
	11.3.2 Downgrading a File System

	Chapter II - 12. Lustre SNMP Module
	12.1 Installing the Lustre SNMP Module
	12.2 Building the Lustre SNMP Module
	12.3 Using the Lustre SNMP Module

	Chapter II - 13. Backup and Restore
	13.1 Lustre Backups
	13.1.1 Client Filesystem-level Backups
	13.1.2 Performing Device-level Backups
	13.1.3 Performing File-level Backups

	13.2 Restoring from a File-level Backup

	Chapter II - 14. POSIX
	14.1 Installing POSIX
	14.2 Running the Test Suite Against Lustre
	14.3 Isolating and Debugging Failures

	Chapter II - 15. Benchmarking
	15.1 Bonnie++ Benchmark
	15.2 IOR Benchmark
	15.3 IOzone Benchmark

	Chapter II - 16. Lustre Recovery
	16.1 Recovering Lustre
	16.2 Types of Failure
	16.2.1 Client Failure
	16.2.2 MDS Failure (and Failover)
	16.2.3 OST Failure
	16.2.4 Network Partition

	Chapter III - 1. Lustre I/O Kit
	1.1 Lustre I/O Kit Description and Prerequisites
	1.1.1 Downloading an I/O Kit
	1.1.2 Prerequisites to Using an I/O Kit

	1.2 Running I/O Kit Tests
	1.2.1 sgpdd_survey
	1.2.2 obdfilter_survey
	1.2.3 ost_survey

	1.3 PIOS Test Tool
	1.3.1 Synopsis
	1.3.2 PIOS I/O Modes
	1.3.3 PIOS Parameters
	1.3.4 PIOS Examples

	Chapter III - 2. LustreProc
	2.1 Introduction
	2.1.1 /proc Entries for Lustre

	2.2 Lustre I/O Tunables
	2.2.1 Client I/O RPC Stream Tunables
	2.2.2 Watching the Client RPC Stream
	2.2.3 Client Read-Write Offset Survey
	2.2.4 Client Read-Write Extents Survey
	2.2.5 Watching the OST Block I/O Stream
	2.2.6 Mechanics of Lustre Readahead
	2.2.7 mballoc History
	2.2.8 mballoc3 Tunables

	2.3 Locking
	2.4 Debug Support
	2.4.1 RPC Information for Other OBD Devices

	Chapter III - 3. Lustre Tuning
	3.1 Module Options
	3.1.1 OST Threads
	3.1.2 MDS Threads
	3.1.3 LNET Tunables

	3.2 Options for Formatting MDS and OST
	3.2.1 Planning for Inodes
	3.2.2 Calculating MDS Size
	3.2.3 Overriding Default Formatting Options

	3.3 DDN Tuning
	3.3.1 Setting Readahead and MF
	3.3.2 Setting Segment Size
	3.3.3 Setting Write-Back Cache
	3.3.4 Setting maxcmds
	3.3.5 Further Tuning Tips

	3.4 Large-Scale Tuning for Cray XT and Equivalents
	3.4.1 Network Tunables

	Chapter III - 4. Lustre Troubleshooting and Tips
	4.1 Lustre Error Messages and Logs
	4.1.1 Lustre Error Messages
	4.1.2 Lustre Logs

	4.1 Lustre Performance Tips
	4.1.1 Setting SCSI I/O Sizes
	4.1.2 Write Performance Better Than Read Performance
	4.1.3 OST Object is Missing or Damaged
	4.1.4 OSTs Become Read-Only
	4.1.5 Identifying a Missing OST
	4.1.6 Changing Parameters
	4.1.7 Default Striping
	4.1.8 Erasing a File System
	4.1.9 Reclaiming Reserved Disk Space
	4.1.10 Considerations in Connecting a SAN with Lustre
	4.1.11 Handling/Debugging "Bind: Address already in use" Error
	4.1.12 Replacing An Existing OST or MDS
	4.1.13 Handling/Debugging Error "- 28"
	4.1.14 Triggering Watchdog for pid NNN
	4.1.15 Handling Timeouts on Initial Lustre Setup
	4.1.16 Handling/Debugging "LustreError: xxx went back in time"
	4.1.17 Lustre Error: "Slow Start_Page_Write"
	4.1.18 Drawbacks in Doing Multi-client O_APPEND Writes

	Chapter IV - 1. Free Space and Quotas
	1.1 Querying File System Space
	1.2 Using Quota

	Chapter IV - 2. Striping and Other I/O Options
	2.1 File Striping
	2.1.1 Advantages of Striping
	2.1.2 Disadvantages of Striping
	2.1.3 Stripe Size

	2.2 Individual Files and Directories Examined with lfs getstripe
	2.3 lfs setstripe - Setting Striping Patterns
	2.3.1 Changing Striping for a Subdirectory
	2.3.2 Using a Specific Striping Pattern for a Single File

	2.4 Free Space Management
	2.4.1 Round-Robin Allocator
	2.4.2 Weighted Allocator
	2.4.3 Adjusting the Weighting Between Free Space and Location

	2.5 Performing Direct I/O
	2.5.1 Making File System Objects Immutable

	2.6 Other I/O Options
	2.6.1 End-to-End Client Checksums

	2.7 Striping Using ioctl

	Chapter IV - 3. Lustre Security
	3.1 Using ACLs
	3.1.1 How ACLs Work
	3.1.2 Lustre ACLs
	3.1.3 Examples

	Chapter IV - 4. Other Lustre Operating Tips
	4.1 Expanding the File System by Adding OSTs
	4.2 A Simple Data Migration Script
	4.3 Adding Multiple SCSI LUNs on Single HBA
	4.4 Failures While Running a Client and an OST on the Same Machine
	4.5 Improving Lustre Metadata Performance While Using Large Directories

	Chapter V - 1. User Utilities (man1)
	1.1 lfs
	1.1.1 Synopsis
	1.1.2 Description
	1.1.3 Examples

	1.2 lfsck
	1.2.1 Synopsis
	1.2.2 Description

	1.3 Mount
	1.4 Handling Timeouts

	Chapter V - 2. Lustre Programming Interfaces (man3)
	2.1 User/Group Cache Upcall
	2.1.1 Name
	2.1.2 Description
	2.1.3 Parameters
	2.1.4 Data structures

	Chapter V - 3. Config Files and Module Parameters (man5)
	3.1 Introduction
	3.2 Module Options
	3.2.1 LNET Options
	3.2.2 SOCKLND Kernel TCP/IP LND
	3.2.3 QSW LND
	3.2.4 RapidArray LND
	3.2.5 VIB LND
	3.2.6 OpenIB LND
	3.2.7 Portals LND (Linux)
	3.2.8 Portals LND (Catamount)
	3.2.9 MX LND

	Chapter V - 4. System Configuration Utilities (man8)
	4.1 mkfs.lustre
	4.1.1 Synopsis
	4.1.2 Description
	4.1.3 Examples

	4.2 tunefs.lustre
	4.2.1 Synopsis
	4.2.2 Description
	4.2.3 Examples

	4.3 lctl
	4.3.1 Synopsis
	4.3.2 Description
	4.3.3 Examples
	4.3.4 Network Commands

	4.4 mount.lustre
	4.4.1 Synopsis
	4.4.2 Description
	4.4.3 Examples

	4.5 New Utilities in Lustre 1.6
	4.5.1 General Purpose Utilities
	4.5.2 Utilities to Manage Large Clusters
	4.5.3 Application Profiling Utilities
	4.5.4 More /proc Statistics for Application Profiling
	4.5.5 Testing / Debugging Utilities

	Chapter V - 5. System Limits
	5.1 Maximum Stripe Count
	5.2 Maximum Stripe Size
	5.3 Minimum Stripe Size
	5.4 Maximum Number of OSTs and MDSs
	5.5 Maximum Number of Clients
	5.6 Maximum Size of a File System
	5.7 Maximum File Size
	5.8 Maximum Number of Files or Subdirectories in a Single Directory
	5.9 MDS Space Consumption
	5.10 Maximum Length of a Filename and Pathname
	5.11 Maximum Number of Open Files for Lustre File Systems
	5.12 OSS RAM Size for a Single OST

	Feature List
	Networks
	Utilities
	Special System Cell Behavior
	Modules

	Task List
	Key Concepts
	User Tasks
	Administrator Tasks
	Architect Tasks

	Version Log
	Knowledge Base
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

