Object based Storage
Cluster File Systems &

!'_ Parallel 1/0

Peter J. Braam

Stelias Computing

and Carnegie Mellon University
braam@cs.cmu.edu

umap_YOUT Speaker...

il

x - 1991: Full time mathematician

= 1991 - clustering, storage, file systems
= Regular faculty at Oxford, UK
= Lead Coda project at CMU 96 — 99
« Full time @ stelias: 99 —
= Current projects:
« InterMezzo: similar to Coda
= Object based storage: this talk
= A distributed lock manager for Linux

Linux A

s Stelias Computing

il

= Small

= Open source only

= Pioneers new solutions

= File Systems, Clusters & Storage

Networked File Systems

LinH_}Jﬂ
I

s Distributed file systems (InterMezzo)
= Single system image, location transparency
= Disconnected operation, replication

s Cluster file systems (Lustre)
= Sharing database files among systems
= Recovery from failed nodes

s Parallel file systems (POBIO)

= Support distributed computing
» Large files, resource management

uma_1 81K OVErview

il

= Object storage
= Components
= Lustre: object based cluster file system
= Parallel 1/0 and Object storage

= Linux clustering
s InterMezzo
= Discussion

& Object Storage

http://www.lustre.org

hmu_}élﬁ What are

-

OBSDs ?

= Object Based Storage Device
= More Iintelligent than block device

= Speak storage at “inode level”
= Create, unlink, read, write, getattr, setattr

= OBSD imp
s Device C

ementations:
river: lower half of an fs

= PDL/NASD style OBD’s — fixed protocol

= “Real obo

s” — ask disk vendors

|, Components of OB Storage

Linux A
I-_--L

= Storage Object Device Drivers

= class drivers — attach driver to interface
« Targets, clients — remote access
= Direct drivers — to manage physical storage
« Logical drivers — for storage management

= Object storage applications:
= (cluster) file systems
= Advanced storage: parallel 1/0, snapshots
= Specialized apps: caches, db’s, filesrv

Object Based Disk Object Based
File System Database

(OBDFS)
/dev/obd1l mount l Data on
on /mnt/obd /dev/obd2
type “obdfs”

v RaidO Logical OBD

S —— Driver (obdraidO)

Direct OBD driver /dev/obd?

(obdext?2) Type “raid0”

attached to
/dev/obd3 & 4

: /dev/obd1l of type

} “ext2” attached to v v
y fdevindaz Direct Direct
SBD SCSI1 OBD SCSI1 OBD

(e.g. IDE disk) /dev/obd3 /dev/obd4

Clustered Object
Based File System

Mount of /dev/obd

on host A
l FS type “lustre”

Clustered Object
Based File System

2

OBD Client Driver
Type SUNRPC

Mount of /dev/obd?2

on host B
l FS type “lustre”

/dev/obd2
Type “rpcclient’\

OBD Client Driver
Type VIA

Both targets are

Attached to /dev/obd3

Type “viaclient”

/ /dev/obd?2

/dev/obd3

Direct SCSI1 OBD

Object File System:

e file/dir data: lookup
e set/read attrs
e remainder:ask obsd

Page
Cache

Object
Device
Methods

Object based
storage device

e all allocation
e all persistence

Linu_}!& Why obd’s...

= Storage management: easier
= File system snapshots
= Hot file migration
= Hot resizing
= Raid
= Backup
= File systems:

= Clustering much simpler
= Component vs monolithic

= Example: parallel 1/0

Lin ﬁ

I Flexibility with stacking

il

= Object protocols can be “chained”,
“stacked”

= Similar to NT/VMS device driver model

= Plug and Play storage management

= Examples...

1. Hot data migration:

Linux A
I-_--L
Key principle: dynamically switch object device types
Before... During... After...
/dev/obdO /dev/obdO /dev/obdO
ext2obd } { Logical Migrator] [ext3obd
{ ext2obd } { ext3obd }

- - - T
/dev/hdal /dev/hdal /dev/hdb2 /dev/hdb2

Linux|: LOVM: can do it all - Raid

Logical Object Volume Management:

/dev/obdO
(type RAID-0)

Attachment meta data:
Stripe on /dev/obd{1,2,3}

(no objects)

Objects may be files, or not...

Linu_}!A

= Common case:
= Object, like inode, represents a file

= Object can also:
= represent a stripe (RAID)
=« bind an (MPI) File_View
= redirect to other objects

|
A Snapshot setup

attachment

/dev/obd1 /dev/obd? OBD logical snapshot driver

snap=current snap:8am

device= obd0 device =obd0 Attachment meta data
4 4 |

= Result:

= /dev/obd2 is read only clone
= /dev/obdl is copy on write (COW) for 8am

Snapshots In action

Li?l“i‘?lé
I

OBDFS
= mount /dev/obdl /mnt/obd
= mount /dev/obd2 /mnt/obd/8am Snap_write
= Modify /mnt/obd/files before —=5—> after

= Result:

= new copy in /mnt/obd/files
= 0ld copy in /mnt/obd/8am

v
/am fam 9am

bla bla bla bla bla bla

|, POBIO

Li;ll%

.o _Parallel Object Based 1/0
. Object Read/Write primitives
« Send multiple buffers
= To multiple disk destinations

= “true scatter/gather”, not just VM

= Needed ADIO logical object driver

= Abstract device 1/0

=« Lower level interface to implement MPI-10
= filetypes:

« MPI_Data & File type support in logical
OBD layer

Linu_}!é Collective, shared, async 1/0

= need an object open:
« that takes MPI_Comm

= waiting primitives for 1/0 completion
= Easy to do with DLM

= shared file pointers

umap_NONCONtiguous 1/0

-

I
e OBD protocol has scatter/gather non contiguous RW

: a N
Collective or shared handle open m - O m
- 21 15| |50
“ 5 o ©
: o o G oY
open with MPI > et c) +
file type S = = o oL Om
g 0 o - o| | | [B°
O - net O 5| | C
I Q B — =
Noncontiguous | 8 o0 o é o0
read/write O O E = o
> = O a©
|
<
compute node storage node

POBIO with File System

Only if comp node =
_Fast 1/0 pat% storage node

Linux ﬁ
bl
|

_

ADIO | poBIO | | & = | | POBIO || o || Direct
- . |m—| i GJ
TMP 'ORface | client 5 o P server :Dg

8 O & N | | Direct

’ Sl POBIO-FS 2 H B ~sconn BB
. = ﬁ .
Iface -1 ° © @ | | Direct

compute node (many) storage node(many)

\ /rResource path]

File Manager (one)

imap RESOUTCE Management

il

= Make explicit provisions for

= Scheduler resource records

= (Pre-)Replication of (segments of) data
= Use file manager to get handles

= Manages directory information
= Returns “fast path” file handles to replica

Management path

Compute node

Open file:
- use resource handle
- fast path to replica

POBIO — resource mgmt

_L Start jobs gFast path S Receive and store
With resource handles

Replicas of data objects
Storage nod

Replication

Initiate
replication
and re-storage

Register resource
handles & request

pre-replication

Resource management node

unap POBIO — further comments

il

= Many components already exist
= We have object based file system
= Aggregation & snapshot drivers
= Infrastructure for stacking objects

= Not monolithic:
= Can build separate components

= Would love to build a prototype

Liw'ﬁ Linux clusters

umap ClUStErs - purpose

il

= Assume:
« Have a limited number of systems
= On a secure System Area Network
= Require:
= A scalable almost single system image
» Fail-over capability
»« Load-balanced redundant services
= Smooth administration

Lin

UJ& Ultimate Goal

il

= provide generic components
= OPEN SOURCE
= Inspiration: VMS VAX Clusters

= New:
= Scalable (100,000’s nodes)
= Modular

= Need distributed, cluster & parallel FS’s
= InterMezzo, GFS/Lustre, POBIO-FS

The Linux “Cluster Cabal’:

Liny__xﬁ
I

= Peter J. Braam — CMU, Stelias Computing, Red Hat
= Stephen Tweedie — Red Hat

= Who is doing what?

s Tweedie = McVoy
= Project leader = Cluster computing
= Core cluster services = SMP clusters
= Red Hat
m Braam _
» Cluster apps & admin
= DM = UMN
= InterMezzo F5 = GFS: Shared block FS

= Lustre Cluster FS
= Many others

LinJ_J__}JA
I

Technology Overview

Modularized VAX cluster architecture (Tweedie)

Core

Transition

Support

Clients

Cluster db

Distr. Computing

Integrity

Quorum

Cluster Admin/Apps

Link Layer

Barrier Svc

Cluster FS & LVM

Channel Layer

Event system

DLM

imap EVENTS

il

= Cluster transition:
= Whenever connectivity changes
» Start by electing “cluster controller”

= Only merge fully connected sub-clusters
= Cluster id: counts “incarnations”

= Barriers:
= Distributed synchronization points

Scalability — e.g. Red Hat cluster

Liny__xﬁ

el

T — %
/redhat/usa /redhat/scotland /redhat/canada
= P = peer = File Service
= Proxy for remote core cluster = Cluster FS within cluster
= Involved in recovery = Clustered Samba/Coda etc
x Communication a Other stuff
= Point to point within core clusters = Membership / recovery
= Routable within cluster = DLM / barrier service

= Hierarchical flood fill = Cluster admin tools

Linux &

1. Lustre File System

il

s Lustre — Linux Cluster

= ODbject Based Cluster File System
= Based on OBSD’s

= Symmetric - no file manager

= Cluster wide Unix semantics: DLM

= Journal recovery

= Suitable for e.g. clustered database files

Linu_}!& Benefits of Lustre design

il

= Space & object allocation
= Managed where it Is needed
= Eliminate sharing bitmaps etc

= Consequences
= Somewhat similar to Calypso (IBM)

« IBM (Devarakonda etc): less traffic
= Much simpler locking

|
s InterMezzo

http://www.inter-mezzo.org

Linu_}gl& Target

= Replicate or cache directories
= Automatic synchronization
= Disconnected operation
= Proxy servers
= Scalable

= Purpose
= Entire System Binaries
= Home directories: laptop/desktop
= Very simple
= Coda style protocols
= Wrap around local file systems as cache

|
s Server

2. Reintegrate

1. Modify folder
collection

3. Forward
mkdir...
create... mkdir...
rmdir... create...
store... rmdir...
- store...

4. Replicators synchronized

L,inwslf Basic InterMezzo

Update propagation
@ . &fetchingwith

L ento: InterMezzo servers

Cache Manager \

A

File system
request

v mkdir...

_ no create...
Filter: data fresh? rmdir...

unlink...

link....
Local file system

Kernel Update Journal /

umap_CONCIUSION

il

= Lots of Interesting projects

= Object Based Storage
= Promising: needs exploration
= Modular structure
= Requires only commodity hardware

s InterMezzo
» Finding wide acceptance
= Lots of work needed

| Distributed Lock Manager
ngll% g

umap LOCKS & resources

il

= Purpose: generic, rich lock service

= WIll subsume “callbacks”, “leases” etc.

s Lock resources: resource database
= Organize resources In trees
= Most lock traffic iIs local

= High performance
= Node that acquires resource manages tree

| Typical simple lock sequence

" Resource mgr =
Sys A: has Vec[hash(R)]

Lock on R /

Who has R?<
Sys A

Block B’s request: p | want lock on A
Trigger owning process

Owning process:
releases lock

Grant lock to sys B

unap A few details...

il

= Callbacks:
= SiX lock modes = On blocking requests
= Acquisition of locks = On release, acquisition

= Promotion of locks
= Compatibility of locks

= First lock acquisition . Dead node was:
= Holder will manage = Mastering resources
resource tree = Owning locks

= Remotely managed = Re-master rsrc
= Keep copy at owner = Drop zombie locks

= Recovery (simplified):

