HLD for Open Recovery

Huang Hua

February 7, 2008

1 Introduction

This document describes the handling of open recovery in GRI€ase refer to/HLD/cmd-
open.lyx ../HLD/cmd-recovery.lyx../DLD/cmd-recovery-dld.lyand../book/recovery.lyx
for some related information.

2 Requirements
The open recovery should provide the following features:

e handle open request replay;
e handle open request resent;

e orphan handling; (there is another separate hld/dld fohamghandling emd-
orphan-handling.lyx

3 Functional specification

3.1 Something about recovery

When some failure happens, recovery is needed. Thesedwiluclude client failure,
MDS failure, OST failure and network failure. Open recovirynainly the recovery
for MDS failure.

MDS has to handle two types of open recovery: open replay ped cesent.

e Replay. Generally speaking, if a client has got reply, amdrédguest change has
not been committed by MDS, the client will send replay reqo@$/DS when
MDS does recovery. Client knows whether a request shouldgdayed or not by

3.2 Open request replay 3 FUNCTIONAL SPECIFICATION

checking the transaction number and last committed traiosacumber. This is
described in./book/recovery.lyxBut open request is a little different from other
requests. Open request is kept valid for replay purposé thietiopened file is
closed. Client keeps a reference count on the open requksepwit valid and
keep it from destroyed.

e Resent. Resent is any request that was sent but no replyeisedo/et. In case
of failure all such requests are not committed usually. djuest was committed
but not replied then reply was lost for some reason and réaariss needed. It
is only one, rare case of resend.

3.2 Open request replay

In CMD, the child object fid is always provided by client andalavays valid if client
wants to create something. When MDS does open replay, itdtioe followings:

e check the child object to see if it exists on disk: as an orpirams a common
object.

e if the child object does NOT _ exist, follow the normal opede sequence;
o if the child exists on disk, return attribute of that objeatk to client, and create

an open handle for it.

After getting the reply, client should update child fid in opequest. Therefore while
replay there is correct FID of opened object. This will allog/ito use the way above
without lookup by name, but using open by fid. Because sonegtine child has been
delete, and becomes an orphan. So, there is no name for aangigoid MDS has to
open it by fid.

3.3 Open request reconstruct

If the reply is lost, MDS should re-construct the reply foatlopen request. It should:
e restore request status from mdt_client_data which is dtoredisk within the
same transaction as the operation;

e restore locks for this request if necessary; (OPEN_LOCKoissupported in
current branch);

e return attribute for child object to reply message;

e lookup open handle in hash table, or create an open handiki$arequest, and
then return this handle to client.

3.4 Orphan handling 4 USE CASES

3.4 Orphan handling

Orphan handling will be done by MDT, together with MDD, OSTDR should keep
open count for opened file, and handle deleted open file psoper

4 Use cases

There are two types of open recovery on MDS: open replay aedmstruct open reply.
This is described in/book/recovery.lyxPlease refer to that document.

4.1 Life cycle of open and close request

we will describe the open and close requests life cycle wheriouch a new file on
client: touch /mnt/lustre/foo

1. The clientmount pointis /mnt/lustre. The client will figeetattr() for “/mnt/lustre”.

2. Theclientwill call ll_lookup_nd(), and which will call Ilookup_it() with proper
intent. In this case, the intent is open|create. If thisestibas a create flag, client
will first allocate fid for new child with the help from LMV. The client will call
Imv_intent_open(). And LMV will call proper mdc_intent dk(). MDC will
call mdc_enqueue() to communicate with MDS. The open rdquees has three
reference count.

3. Il_create_it() will be called with the same intent, andsequently the same open
request. This function will call ll_create_node(), and opequest reference
count decreases to two.

4. |I_file_open() will be called with the same intent and camsently the same open
request. Because the open has been created and opened othdbignt will
call Il_local_open() to open this object. At this point, ddo client_handle will
be allocated to hold the opened handle, and in MDC, a mdc_ala¢a will be
allocated to record the request, and set commit callback(c@mnmit_open())
and replay callback(mdc_replay_open()) for this open estjuAfter this, the
open request still has one reference count, and kept valid.

5. Afterthefile is created and open, the file will be closedwelly. So, Il_file_release()

will be called to close this file. Client will call Il_closenode_openhandle() to
close the opened handle, and which will call Imv_close(d aich will call
mdc_close(). MDC will set commit callback for this close uegt, and sends out
the close request to MDS. When MDC gets reply and knows theedlequest
has been committed, the corresponding open request wileb&et replay”.
And the obd_client_handle will be deallocated.

4.2 Open recovery handle on MDT 5 LOGIC SPECIFICATION

6. After sometime, the openrequest will be cleared fromagpgleue, and mdc_commit_open()
will be called. At that time, the mdc_open_data will be deedited. At this mo-
ment, the open request will be destroyed.

4.2 Open recovery handle on MDT

MDT check the flag of request to see if this request is a nore@liest, or a replay
request, or a resent request. MDT should re-construct thétror a resent request;
and should replay all the changes for a replay request.

4.3 Single point of failure

Lustre promises to survive from single point of failure. liete are more than one
failure at some moment, Lustre may lose some data and/odatetaT his is also true
to open request.

5 Logic specification

5.1 Replay an open request
e Check to see if the request is a replay open request. If hés):t

— if create transaction was not committed and create was Westheed to
repeat open+create; This can be checked by looking up thetotsee if it
is already exists. we can handle this situation as the naope.

— transaction was committed and all changes are on disk, soaman by
fid is needed. In this situation, we need to pack attributeshdél back to
client.

— in this scenario, the original transaction number which wetsrned to
client is used as this replay’s transaction number. That &y in replay,
the transaction number keeps the same.

5.2 reconstruct an open reply

e Check to see if the request is a resent open request. If iiyigp reconstruct it
based on last_rcvd data. Otherwise, handle this as noroadsé

e The last_rcvd data will be updated in the same transactidimeagperations.

5.3 Orphan handling in open 6 STATE MANAGEMENT

int mdt_open(struct mdt_thread_info *info) {
struct ptlrpc_request * req = mdt_info_req(info);
if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY) {
child = mdt_find_object(child_fid);
if (child exists) {
pack attribute of child back to client;
create open handle and do other things.
return 0;
} else
goto normal_case;
} else if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) {
restore request from lasv_rcvd;
check disposition to see how we ad executed this open.
pack attribute of this child object back to client;
search/create openhandle for this open.
return;
X
normal_case:
parent = mdt_find_lock_object();

5.3 Orphan handling in open
Orphan handling in open recovery is mainly about what to dbandling of open
replay request. An opened file may be deleted, and becomespharn So, when

replay open, MDS may want to open an orphan, and cleanup tpisan when file
closed. The orphan handling is described iHLD/cmd-orphans-handling.lyx

6 State management

6.1 FID

The child object fid is always provided by client and it is ddfithis is an open | create
request. This is the difference between CMD2 and CMD3.

6.2 Open Lock

Currently, we do not support open lock. So, open recoverg met care about lock
fixing up.

6.3 Parallel close request 7 FOCUS FOR INSPECTION

6.3 Parallel close request

From now on, the MDS_CLOSE request can be issued concurreitll other request
from a single client, and may be handled by MDS in parallel.

7 Focus for Inspection

