

Lustre Center of Excellence – Oak Ridge National Laboratory

Applications IO Performance on
Jaguar

An investigation by the Lustre
Center of Excellence

Information contained in this report is not to be passed beyond the primary distributions list within

ORNL and the LCE at ORNL. It contains information that is pre-published for principals at ORNL.

Rights to the information within is to be preserved.

Lustre Center of Excellence – Oak Ridge National Laboratory

Table of Contents

Table of Contents

Introduction ... 2

Applications IO Model .. 2

Summary of activities ... 2

Follow up projects .. 2

Activity details.. 2
GTC with ADIOS runs on Jaguar ..2
Study Lustre Client caching...2
Interaction of Lustre I/O with MPI collectives..2
Laminar IO Prototype ..2
Transport method for ADIOS from Laminar IO prototype ..2
Benchmark for HPCMP tutuorial ..2

Lustre Center of Excellence – Oak Ridge National Laboratory 1

Introduction
Users on the Jaguar and Jaguar PF systems at Oak Ridge National Laboratory (ORNL) are not

always achieving satisfactory applications performance. The time to completion for applications is

often too long and subject to wide variability. A single application processing a similar sized data

set will vary in completion time by multiple factors on different runs. This is a source of

dissatisfaction and frustration for the users.

The Lustre Center of Excellence (LCE) has started an investigation to identify the sources of the

performance problems and variability. Mike Booth of the LCE is leading the project. This paper will

be a living document and will document the planned tasks for the investigation, the status of the

tasks and the results of the investigation.

Applications IO Model
The initial focus of the investigation is the writing of restart files. The writing of these files is a

majority of the IO performed by many of the applications. Also, the current IO model used for these

restart files means that poor or variable IO performance when writing them will have a direct impact

on the completion time of the applications.

At high level, many large scale parallel applications use a synchronous approach to writing out

restart files. All of the processes (tens of thousands in a large run) will pause at a barrier, all will

write their portion of the restart file and, when all the IO is complete, they will resume processing.

This is illustrated in the figure below:

The variability of IO performance on Jaguar XT5 is often orders of magnitude, dependent upon
variables not in the control of the user. If the IO to write the restart files is slower than expected or
more variable than the total elapsed time for the application can expand significantly as illustrated
below:

Processing Processing Processing Process-

ing

IO

IO
IO

Lustre Center of Excellence – Oak Ridge National Laboratory 2

IO model for restart files (Assumes fast, consistent IO performance)

Application time expands with slower, variable IO performance

Summary of activities
The current and planned activities for the IO investigation fall into two categories.

1. Investigations into why the “System” is not performing

2. Investigations into how to achieve the best performance out of the “System” as it exists.

The term ”System” is used here to include all products involved in IO, from the Cray I/O

system call, through the Lustre Client, to the OSTs, all the way to the disk drives.

Details for each investigation activity and results are kept in this section and will be updated on an

ongoing basis.

The activities are summarized in the table below.

Activity Status Originator

1 GTC with ADIOS runs on Jaguar Complete Scott Klasky

2 Study Lustre Client caching On hold Mike Booth

3 Interaction of Lustre I/O with MPI

collectives
On hold Mike Booth

4 Laminar IO (prototype for more

predictable IO)
On hold Scott Klasky

5 Create a new Transport Method

for ADIOS from LaminarIO
Active Scott Klasky

Process-

ing
Process-

ing
Process-

ing
Process-

ing
IO IO IO

Lustre Center of Excellence – Oak Ridge National Laboratory 3

Activity Status Originator

6 Benchmark HPCMP Tutorial

(Henry Newman)
Complete Dan Ferber

Follow up projects
Project Status Originator

1 Cache behavior/performance

Benchmark
Proposed Mike Booth

2 MPI/IO SeaStar Balance

Performance Benchmark
Proposed Mike Booth

3 Asynchronous Cache Page IO to

benefit synchronous IO

Applications

Proposed Mike Booth

4 Coordinate IO performance

investigation with Shane Canon

at NERSC

Proposed

5 Laminar IO in combination with

direct IO
Proposed

Lustre Center of Excellence – Oak Ridge National Laboratory 4

Activity details

1. GTC with ADIOS runs on Jaguar
STATUS: Complete

Learn how to run compile and run GTC. Link in ADIOS and make performance runs with

modifications made by WangDi of the LCE to the ADIOS code.

Results were delivered to Scott Klasky.

2. Study Lustre Client caching

STATUS: On hold to pursue other activities

The observed cache management behavior of the Lustre client appears to be inconsistent with the

design.

For example: It is expected that I/O cache pages should bleed out to disk in a first in/first out and

page aging order. In studying erratic write performance on the system, performance tests focused

more and more on understanding if the cache behavior was following design. If the I/O cached

pages were asynchronously written from the system cache, the application would perceive I/O

speeds equal to memory copy speeds when measuring the time across the write call when the

system cache is clean. This was not what was being observed by the applications.

Why is this a significant issue? All I/O to the Lustre filesystem is through this Lustre client to the

system cache management. If the behavior of this part of the overall system is erratic, conclusions

built upon measurements made across the Lustre client are suspect.

The following graph plots perceived I/O performance across write statements. Each line in the

graph represents a different write size.

Lustre Center of Excellence – Oak Ridge National Laboratory 5

As the size of the record increases the perceived write speed stabilizes. There is no delay in the

program between each timed write.

The same test, but between each write, a call to sleep(1 second) was made. The time to complete

the average write on the larges write is 1/10 of a second. So, the time required to clear the buffer

under the slowest conditions is greatly exceeded by the sleep of one second.

The plot with that run is below:

Lustre Center of Excellence – Oak Ridge National Laboratory 6

It can be seen is that the perceived performance is not the one expected by asynchronous buffers

being emptied in parallel with other activities during the 1 second of sleep time.

A similar test was run, but measuring the time to complete a call to fsync. Fsync will complete

when the system cache for the file has been flushed to disk.

Lustre Center of Excellence – Oak Ridge National Laboratory 7

This graph demonstrates the amount of data written to disk during the call to sleep of 1 second, as

a function of dirty system cache. It appears that the amount of dirty cache to write to disk during

the second of sleep is erratic, but some is written each time.

Andrew Uselton of NERSC has also measured behavior inconsistencies. Andrew’s measurements

are more conclusive demonstrating erratic system cache behavior. In Andrew’s test, he serially

wrote data to a file greater than the memory size on the writing client node. At this point in the

run, it would be expected that for a first in/first out page management, the data in the system

cache would be the tail end of the file. But when reading the file back in, reads to the beginning of

the file are completed at memory copy speed, thus it was concluded that those pages were still in

cache.

We met with Shane Canon at the Lustre User Group meeting to discuss how to share information

and how to coordinate our activities with NERSC’s investigations.

Development was started on a caching simulator. The cache simulator attempts to reproduce the

first in first out cache page schema to see if response from Jaguar is consistent with design of

Lustre and Linux cache schemes. Once we are able reproduce the behavior, the desire is to set

page timeouts and see if a higher performance can be achieved for applications that write large

restart files utilizing the asynchronous feature of a page cache.

Lustre Center of Excellence – Oak Ridge National Laboratory 8

STATUS: On hold

No progress, continues to be on hold due to focus on Laminar IO data method

3. Interaction of Lustre I/O with MPI collectives
STATUS: On hold

An operating assumption by many Lustre users and developers is that I/O cannot take place

during time critical MPI collectives. The general belief is that it is faster overall to complete all IO

before beginning computations that involve tightly coupled MPI collectives than it is to allow the IO

to complete asynchronously with the computations. The understanding is that IO creates so much

interference with MPI communications that the traffic jam creates a net loss of efficiency and an

overall increase in the wall clock time to complete the job.

Mike developed a preadsheet to study the advantages of Asynchronous over Barrier Synchronous

Interaction of Lustre I/O with MPI collectives. The spreadsheet demonstrates that effective use of

cache for asynchronous io could result in dramatic savings of CPU hours and reduce the peak io

performance required to satisfy the needs of applications writing restart files.

Oleg Drokin and Mike Booth did some test investigations that eventually lead to the following test.

1200 PEs on Jaguar

1. MPI Barrier by each PE

• Barrier completes in a fraction of a second

2. Each PE writes 250Mbytes with a simple write() system call

• Write returns very quickly, in less than 0.5 seconds. This performance is the result

of memory copy of data to system cache.

3. MPI Barrier by each PE

• This barrier completes in about 5 seconds

4. MPI Barrier by each PE

• This barrier completes in about 2 seconds.

Conclusions from the above test:

Lustre Center of Excellence – Oak Ridge National Laboratory 9

1. The observation that MPI is dramatically impacted by IO occurring in the background is

correct

2. The size of the impact implies an inappropriately high priority is given to IO over MPI.

a. MPI barriers are almost completely stalled by the presence of IO

b. As there is no priority scheme in the Cray SeaStar queue management

i. The perceived Priority of IO must be due to either the size and/or

quantity of requests of IO compared the size or quantity of the MPI

collective calls. In effect IO has locked MPI out of the SeaStar queue.

• SeaStar needs to be studied as it appears that IO is able to overwhelm and lock out MPI

traffic. At John Carrier's request, Kitrick Sheets is working with us to understand what is

happening on the network.

• Programs to establish benchmarks of performance criteria for MPI interaction with IO need

to be developed.

STATUS: On hold

No progress, continues to be on hold due to focus on Laminar IO data method

4. Laminar IO Prototype
STATUS: Hold, almost complete

Prototype a new IO method with more consistent IO performance.

Problem: JaguarXT5 has smaller “islands” of performance, which appears to be due to the newer

Infiniband network, and SATA drives. The same settings of stripe size and count will often yield

wild variations in performance at > 10k PE.

Per Scott Klasky’s observations, best performance is achieved when writing to the same number

of files as there are OST’s on the Jaguar XT5 system (671 OSTs).

Develop a prototype to achieve reasonably predictable and consistent I/O performance during

normal batch hours. The prototype aggregates IO to a limited number of nodes (roughly equal to

the number of OSTs in the system). The unique attribute to this aggregation is that no additional

memory is required for the aggregation. Current MPIO aggregation methods require that the

aggregation node have enough memory to collect all the buffers from the other PEs.

Lustre Center of Excellence – Oak Ridge National Laboratory 10

Two transport methods were used to move data from PEs to the aggregated writing node. The

first was called simple:

The second was called a brigade method, as it resembled a bucket brigade:

Lustre Center of Excellence – Oak Ridge National Laboratory 11

Lustre Center of Excellence – Oak Ridge National Laboratory 12

The buffer optimization to maintain asynchronous transfers and reuse of the memory space:

The best and most consistent results were achieved writing to most (450 OSTs) OSTs with a stripe

count of 1. This performance was achieved with a relatively small amount of IO per PE (8

megabytes). These runs were made during the middle of the day, with many other jobs running on

JaguarPF (XT5).

Lustre Center of Excellence – Oak Ridge National Laboratory 13

The most consistent results were achieved with the Brigade method as it has the smaller fall in

performance. These results include file creation, close and fsync.

At the same time Jay Lofstead also wrote a method similar to these, except the writer rotated

among the PEs to maintain consistent number of PEs writing to disk. This method also achieves

good results and is implemented in ADIOS.

Next request is to see if Laminar IO can benefit from Direct IO methods.

STATUS: Hold

No progress, continues to be on hold due to focus on Laminar IO data method

5. Transport method for ADIOS from Laminar IO prototype
STATUS: Active

Use the ADIOS Developer Manual section from the ADIOS Manual to create a transport method

with LaminarIO

Lustre Center of Excellence – Oak Ridge National Laboratory 14

Significant study on how to develop the transport model, first it was decided to use

adios_mpio_stagger.c. This was tightly aligned with MPI methods and now pursuing adios_posix.c

as the template to follow in implementation of Laminar driver.

Problems to be solved for Laminar as a method in ADIOS:

Prototype assumed each PE was writing the same size record. The prototype reused the space

occupied by the write record as a transfer buffer. To have a limit on the size of the transfer buffer

we must:

(1) Allocate a double buffer

(2) break a write record larger than one of the buffers into mutliple segments

(3) insert control flow into the data stream

(4) remove the control flow before write to filesystem

(5) control flow for seeks prior to writes in each PEs record

Plan:

The plan is to replace the posix writes in the adios_posix.c creating adios_posi_laminar.c with a

routine that performs a brigade aggregation

If this is successful, a read method will be devised in a similar layout.

Def in it ion of terms:

Writer = the 'rank' process that moves data to the Filesystem.

Passer = the processes that pass record data down stream to the writer.

Laminar 'write group' = one writer, n passers to that one writer.

Stream = stream of data from the writer created by the brigade passing of data to the

writer then to the filesystem.

Control header = data inserted into the 'stream to demarc 'records', segments while

passing stream data between processors

Lustre Center of Excellence – Oak Ridge National Laboratory 15

Record = a single rank's data contribution to the Stream

Segment = portion of a record that can transmitted in a single message passing call. This

will be ½ the size of the malloc'ed space.

 --

Order of f i le system operat ions

For each write group,

Seek to the writer's requested seek position

Write the writer's record to disk

For each passer in the write group in order of

 Smallest rank to largest rank.

 Seek to the passer rank's requested

 Seek position

 Write passer's record

Lustre Center of Excellence – Oak Ridge National Laboratory 16

Lustre Center of Excellence – Oak Ridge National Laboratory 17

Lustre Center of Excellence – Oak Ridge National Laboratory 18

Lustre Center of Excellence – Oak Ridge National Laboratory 19

Lustre Center of Excellence – Oak Ridge National Laboratory 20

Lustre Center of Excellence – Oak Ridge National Laboratory 21

6. Benchmark for HPCMP tutuorial

STATUS: Complete

Email from Henry Newman requesting the work:

Mike,

Base on some information I got from a few users on HDF5, I am asking everyone to run the following test so I can
show the user community that aligning data is a good thing.

Many threads open a single file
One thread writes 256 bytes
Now all threads write the equivalent of 80% of memory say 1.5 GB with a starting offset of 256 bytes+(thread #*1.5
GB).
Provide MB/sec and CPU time
Then do the same test but write a 4 KB header.

Is this possible for you to do or should I ask someone else. If you can do it please provide any tuning options you
suggest for both cases.

Thanks in advance.

hsn

Henry Newman
Instrumental Inc/ CTO
2748 East 82nd Street
Bloomington, MN 55425
W 952-345-2822
F 952-345-2837

Henry indicated that the other people were using IOR as a method. After a few days of playing
with IOR, I decided it would be easier to write a c program from scratch. With this, a method to
assure that at least as many ost’s were used as PEs, up to the amount of osts on the machine.

C code developed:

#include <stdio.h>
#include "mpi.h"
#include <stdlib.h>
#include <sys/time.h>
#include <string.h>

#define _LARGEFILE64_SOURCE
#include <sys/types.h>
#include <sys/stat.h>

Lustre Center of Excellence – Oak Ridge National Laboratory 22

#include <fcntl.h>
#include <unistd.h>

#define TEST_SIZE (1024*1024*1024)
#define STRIPE_COUNT 1024*1024
#define FALSE 0
#define TRUE 1
#define FPP FALSE
#define OST_MAX 600
#define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)<(y)?(x):(y))
#define FIRST_WRITE 256
//#define HEADER 4*1024
// set this HEADER to zero when running without header
//
// Prototypes
//
long lseek64 (int fd,
 long offset,
 int whence);
int llapi_file_open (const char *name,
 unsigned long stripe_size,
 int stripe_offset,
 int stripe_count,
 int stripe_pattern);
//
int main(int argc, char **argv)
{
void *buf1, *buf2;
int fd;
double start, end, time_diff;
int rank;
int pes ;
int filenum;
char filename[256];
unsigned long offset;
int iter;

MPI_Comm comm=MPI_COMM_WORLD;
MPI_Init (&argc, &argv);

Lustre Center of Excellence – Oak Ridge National Laboratory 23

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (comm, &pes);

 MPI_Barrier (comm);

 buf1=malloc(TEST_SIZE);
 buf2=malloc(TEST_SIZE);

 if (!buf1 || !buf2)
 return ‐1;
 if (FPP == TRUE)
 filenum=rank;
 else
 filenum=pes;

 for (iter = 0 ; iter < 4 ; iter++)
 {
 if (rank == 0) printf("Iteration %d\n", iter);
 MPI_Barrier (comm);
 // Rank 0 will create the file first, envolving as many OSTs as PEs, up to a max of the
number of OSTs
 // the other PEs will wait until Rank 0 has defined the file and then they will open it
 sprintf(filename, "output.%d", filenum);
 if (rank == 0)
 { if (iter == 0) {
 fd=llapi_file_open(filename, (unsigned long)STRIPE_COUNT, 0,
MIN(OST_MAX,pes), 1);
 MPI_Barrier(comm); }
 // on all but the first iteration do not create the file,, just open it
 else {
 fd = open(filename, O_RDWR); }
 }
 else {
 MPI_Barrier(comm);
 fd = open(filename, O_RDWR);
 }

 start = MPI_Wtime(); // start write test
 offset = lseek64(fd,(long)rank*(long)(TEST_SIZE+FIRST_WRITE),SEEK_SET);
 if(FIRST_WRITE > 0) offset = write(fd, buf1,FIRST_WRITE);
 offset = write(fd, buf1, TEST_SIZE);

Lustre Center of Excellence – Oak Ridge National Laboratory 24

 fsync(fd);
 MPI_Barrier(comm);
 end = MPI_Wtime(); // end write test

 time_diff = end‐start;
 if(rank==0) printf("%d pes write speed: %lf MB/sec, %lf seconds\n",
 pes, (long)pes*(double)TEST_SIZE/time_diff/1024/1024,time_diff);
 MPI_Barrier(comm);

 start = MPI_Wtime(); // start read test
 offset = lseek64(fd,(long)rank*(long)(TEST_SIZE+FIRST_WRITE),SEEK_SET);
 offset = read(fd, buf2, TEST_SIZE);
 fsync(fd); // fsync here for consistancy,, but as we have only been reading it should
have no effect
 MPI_Barrier(comm);
 end = MPI_Wtime(); // end read test

 time_diff = end‐start;
 if(rank==0) printf("%d pes read speed: %lf MB/sec, %lf seconds\n",
 pes, (long)pes*(double)TEST_SIZE/time_diff/1024/1024 ,time_diff);
 close(fd);

 }
 free(buf1);
 free(buf2);
MPI_Barrier (comm);

 return 0;
}

#define uint64_t unsigned long
#define uint32_t unsigned int
#define uint16_t unsigned short
#define lastost 671
#include <sys/ioctl.h>
#include <fcntl.h>
#define LL_IOC_LOV_SETSTRIPE _IOW ('f', 154, long)
struct lov_user_ost_data { /* per‐stripe data structure */
 uint64_t l_object_id; /* OST object ID */
 uint64_t l_object_gr; /* OST object group (creating MDS number) */

Lustre Center of Excellence – Oak Ridge National Laboratory 25

 uint32_t l_ost_gen; /* generation of this OST index */
 uint32_t l_ost_idx; /* OST index in LOV */
} __attribute__((packed));
struct lov_user_md { /* LOV EA user data (host‐endian) */
 uint32_t lmm_magic; /* magic number = LOV_USER_MAGIC_V1 */
 uint32_t lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
 uint64_t lmm_object_id; /* LOV object ID */
 uint64_t lmm_object_gr; /* LOV object group */
 uint32_t lmm_stripe_size; /* size of stripe in bytes */
 uint16_t lmm_stripe_count; /* num stripes in use for this object */
 uint16_t lmm_stripe_offset; /* starting stripe offset in lmm_objects */
 struct lov_user_ost_data lmm_objects[0]; /* per‐stripe data */
} __attribute__((packed));

#define LOV_USER_MAGIC 0x0BD10BD0
#define O_LOV_DELAY_CREATE 0100000000

int llapi_file_open(const char *name,
 unsigned long stripe_size, int stripe_offset,
 int stripe_count, int stripe_pattern)
{
 struct lov_user_md lum = { 0 };

 int fd, rc = 0;
 int isdir = 0;
 int page_size;

 fd = open(name, O_CREAT | O_LOV_DELAY_CREATE, 0666);

 if (fd <= 0) {
 fprintf(stderr, "error open the file %s \n", name);
 return ‐1;
 }
/* consider that stripe_offset is the OST number */
 stripe_offset=stripe_offset%lastost;
/* Initialize IOCTL striping pattern structure */
 lum.lmm_magic = LOV_USER_MAGIC;
 lum.lmm_pattern = stripe_pattern;
 lum.lmm_stripe_size = stripe_size;
 lum.lmm_stripe_count = stripe_count;
 lum.lmm_stripe_offset = stripe_offset;

Lustre Center of Excellence – Oak Ridge National Laboratory 26

 if (ioctl(fd, LL_IOC_LOV_SETSTRIPE, &lum)) {
 fprintf(stderr, "error setstripe %s \n", name);
 return ‐1;
 }

 return fd;

}

Galen reach an agreement at the Lustre Scalability Summit with Henry Newman on how to
share results. Consolidated results for the runs on both Jaguar XT5 and XT4.

STATUS: Complete

Lustre Center of Excellence – Oak Ridge National Laboratory 27

