Security API & Null Policy HLD

Eric Meli

2006-03-06

1 Requirements

e General framework of Secure PTLRP§X{rpc).

e A policy module which implement the current “no security’esario, i.e.
null policy.

e Be able to support GSS and other future policies.

2 Functional Specification

2.1 Overview

The PTLRPC security is at per-user basis. For each indiVidser, before he
could use normal ptlrpc service to communicate with serr, ©ie must authen-
ticate with server and then establish a security contextéat the two peers. It
like a virtual private rpc channel, although all these clesactually use the same
“physical” PTLRPC connection. All following rpc messaged e sent/received
within this context, in one of the 3 forms:

e none: no data transform applied.

e auth: a checksum is attached to protect the message’s integnty,also
prove the genuine sender.

e priv: message is encrypted, and also prove the genuine sender.

Lustre should be able to use the wide range of existing atit@ion mechanisms,
in most cases it should be mutual authentication betweendéeat client node
and the server. We hope most security enforcement be appiiboth PTLRPC,
and transparent to upper layer. Besides normal perform&nadministration
penalty, Lustre security structure should be able to scel@ge clusters.

The overall hierarchical structure is like following graph

The Security API is a thin layer which provide security service to PTLRPC, and
is actually tightly incorporated into PTLRPC. What it does i

e Provide a set of security service APIs which be called thhowg of PTL-
RPC.

e Implement some general facilities which are needed by allrsty policies.

e Dispatch security calls to the actual underlying policy mied.

Each security policy should implement a internal secunityction set which is
prescribed by the general security API layer, in order taea@hits own security
scheme. We should at least design 2 policies:

e null: It actually didn't apply any security check at all: no autlieation,
no data protection. It act as a fall-back to current situgtand should be
wire-compatible with precedent versions of Lustre.

e gss. It's a subset (and modified) of normal user-space GSSAPleémen-
tation in kernel. It doing the following:

— Implement the function set prescribed by general security, A
— Implement general facilities for all underlying securitgamanisms.
— Dispatch security calls to correct underlying security hegsms.

Each security mechanism should implement function setptei by GSS pol-
icy, in the mechanism-specific way. Usually the real datagfi@m, signature
checking etc happened in this layer. Our first target mecais Kerberos 5.

2

We have another effort which will take care of the privacy afikdata transfer
and keep on-disk file data encrypted on OST. But here theisg@&R| also pro-
vide extra support for security of bulk data transfer: it lcobbe checksumed to
ensure data integrity, signed to ensure authenticatethaigd data integrity, or
encrypted to ensure privacy (only for on-wire privacy, agkddata still in clear
text).

In this HLD we mostly focus on the general security API layaerd the internal
of null policy. Details about GSS and Kerberos 5 mechanism will beudised in
a separate HLD.

2.2 The general security APIs

As general description:

e Each import owns atlrpc_sec structure, which describe necessary security
facilities exclusively used by this import.

e Each request on client node must associate with a securitgxip refered
by structureptlrpc_cli_ctx, which has to be refreshed and valid before be
use for RPC.

e Eachrequest on server node must also associate with atgemmiext, ref-
ered by structuretirpc_svc_ctx, which is established during initial context
negotiation.

e Security modules will be responsible to allocate & free rpgssage buffers,
because different security flavor might have special regoént on the mes-
sage buffers.

2.2.1 Security policy registration

1. sptirpc_register_policy(ptlrpc_sec policy *)
Can not sleep.

Register a security policy module. It should be called byhgaadicy module
at initializing time (module loading, etc.).

2. sptlrpc_unregister _policy(ptirpc_sec policy *)
Can not sleep.

Unregister a security policy module. It should be called bghrepolicy
module at finalizing time (module unloading, etc.).

2.2.2 Import

1. int sptlrpc_import_get_sec(obd_import *)
Might sleep on memory allocation.
Given an import, obtain a ptlrpc_sec structure and asstiaith the im-
port.
2. void sptlrpc_import_put_sec(obd_import *)
Might sleep on memory allocation.
Detach the ptlrpc_sec structure from a import, and usu&stray it.

3. int sptlrpc_import_check ctx(obd_import *)
Might sleep for a long period waiting on RPC completion.
Find out whether current user has a valid context to this t'gopeer server.

2.2.3 Client request

1. int sptirpc_req get_ctx(ptlrpc_request *)
Might sleep on memory allocation.
Obtain a context of current user and associate with a request

2. void sptlrpc_req put_cred(ptlrpc_request *)
Might sleep on memory allocation.
Detach the credential from a request.

3. int sptirpc_req_refresh_cred(ptlrpc_request *, timeout)
Might sleep for a long period waiting on RPC completion.

Start refreshing credential of a request, caller could skdo wait it finish,
wait certain amount of time, or no wait at all.

4

4. int sptirpc_cli_alloc_regbuf(ptirpc_request *)

5. int sptlrpc_cli_alloc_repbuf(ptlrpc_request *)
Might sleep on memory allocation.
Allocate request or reply buffers for a request.

6. void sptlrpc_cli_free regbuf(ptlrpc_request *)

7. void sptlrpc_cli_free repbuf(ptlrpc_request *)
Can not sleep.
Free request or reply buffers for a request.

8. int sptlrpc_cli_wrap_request(ptlrpc_request *)
Might sleep on memory allocation.
Perform security transform upon request message whichtabde sent
out.
9. int sptlrpc_cli_unwrap_reply(ptlrpc_request *)
Might sleep on memory allocation.
Perform reverse security transform upon reply messagé/este

2.2.4 Server handling

1. int sptirpc_svc_unwrap_request(ptlrpc_request *)
Might sleep on memory allocation.
Perform security verify/transform upon a incoming requastiong as han-
dling context initialization & destruction request.
2. int sptlrpc_svc_alloc_rs(ptlrpc_request *)
Might sleep on memory allocation.
Allocate reply state for a request.

3. int sptlrpc_svc_wrap_reply(ptlrpc_request *)
Might sleep on memory allocation.
Perform a security transform upon a reply which will be sarit o

5

4. void sptlrpc_svc_free rs(ptlrpc_reply_state*)
Can not sleep.
Free reply state buffer.

5. void sptlrpc_svc_cleanup_req(ptlirpc_request *)
Can not sleep.
Cleanup security service data which associate with a réques

2.2.5 Bulk transfer

1. int sptirpc_bulk write_cli_wrap(ptlrpc_request *, ptirpc_bulk desc *)
Might sleep on memory allocation.
Called by client side during bulk write, to perform checkswsgnature, or
encryption on the outgoing bulk data, and pack the resudtrequest.

2. int sptlrpc_bulk_write_cli_verify(ptirpc_requestgtlrpc_bulk desc *)
Might sleep on memory allocation.
Called by client side during bulk write, to verify there’s nismatch be-
tween the client checksum and server checksum, or verifyessignature
is correct, or decrypt data.

3. int sptlrpc_bulk_write_svc_unwrap(ptlrpc_requegitiypc_bulk _desc *)
Might sleep on memory allocation.
Called by OSS side during bulk write, to verify there’s no méch be-
tween the client checksum and OSS computed, or verify cligmature is
correct, or decrypt data, and pack necessary result intp. rep

4. int sptirpc_bulk_read_svc_wrap(ptlrpc_request *patl bulk_desc *)
Might sleep on memory allocation.
Called by OSS side during bulk read, to perform checksurmasgige, or
encryption on the outgoing bulk data, and pack the resudtreply.

5. int sptirpc_bulk_read_cli_unwrap(ptirpc_requesttitge_bulk_desc *)
Might sleep on memory allocation.

3.1

a W N

10.

11.
12.

13.
14.

Called by client side during bulk read, to verify there’s nssmatch be-
tween the server checksum and client computed, or verifjessignature
is correct, or decrypt data.

Use Cases

A full RPC cycle on client side

. In context of user A, an RPC to server node is needed, aptieguest is

created.

. call sptirpc_req_get_cred() to obtain an credentiatiar A.
. call sptirpc_cli_alloc_reqbuf() to allocate requestsage buffer.
. request data is filled into request buffer.

. call sptirpc_req_refresh_cred() to refresh associatedential until we get

a valid credential.

. call sptlrpc_cli_wrap_request() to perform securigngform upon request

message.

. call sptirpc_cli_alloc_repbuf() to prepare reply buffe
. send out the rpc.

. got reply from server.

call sptirpc_cli_unwrap_reply() to perform securigrtsform upon received
reply message.

interpret the reply, finally to destroy this ptirpc_reqti

call sptirpc_cli_free_reqbuf() and ptlrpcs_cli_fregpbuf() to release re-
guest/reply message buffer.

call sptirpc_req_drop_cred() to release current crale

destroy ptlrpc_request structure.

3.2 Afull RPC cycle on server side

1. arequest arrives, call sptlrpc_svc_unwrap_requesy@tify/transform the
request message.

interpret the request.
call sptirpc_svc_alloc_rs() to allocate reply state eaply message buffer.

fill reply data into reply buffer.

o & N

call sptirpc_svc_wrap_reply() to perform security sfmm upon reply mes-
sage.

o

send reply out.

7. call sptlrpc_svc_cleanup_req() to cleanup securityiserdata associated
with the ptlrpc_request.

8. destroy ptirpc_request structure.

9. call sptlrpc_svc_free_rs() to finally release reply estand reply message
buffer.

3.3 Protect local cached data on client

1. A user’s context get expired after some period.
2. This use access a local cached object, find a matched DLUM loc

3. call sptlrpc_import_check_ctx() to find out this usersdential to corre-
sponding server has expired.

4. release DLM lock and deny the access.

3.4 File read checksum

1. Client: simply go through normal path, the underlyinguség policy will
pack the checksum flag into request, and send out request.

a & DN

3.5

OSS: prepare reply buffer, read data off disk.
OSS: call sptirpc_bulk_read_svc_wrap() to pack checkistio reply.
OSS: start & finish bulk transfer, send reply back.

Client: call sptlrpc_bulk_read_cli_unwarp() to verdigecksum.

File write checksum

. Client: before send out request, call sptirpc_bulk eviadi_wrap() to pack

checksum into request, and send out request.
OSS.: prepare reply buffer, start & finish bulk transfer.

OSS: call sptlrpc_bulk_write_svc_unwarp() to verifigcksum, which also
pack bounce checksum into reply.

OSS: write data on disk.

Client: call sptlrpc_bulk_write_cli_verify() to bouachecksum, give warn-
ing if found mismatch.

4 Logic Specification

4.1

Data structures

A ptlrpc_sec policy is a implementation of a certain security policy, by a set of
functions which conformed to the internal security API.

A ptlrpc_cli_ctx is a certain user’s security context to a certain server ndtie
main fields are: user identity, expire time, mechanism-§ipatata, etc.

A ptlrpc_svc_ctx represent the half of a security context on server side.

A ptlrpc_sec represent the overall security facility which apply on thilspc con-
nection. It mainly hold a hash table of ptlrpc_cli_ctx of iears users.

e Each import owns one and only opgrpc_sec.

9

On client, each ptlrpc_request associates with one ancooiptirpc_cli_ctx;
A ptlrpc_cli_ctx might be used by multiple ptlrpc_request, thus by multiple
thread, at the same time.

ptirpc_cli_ctx can not be recycled: after a context get expired, it will be
released, and a negtirpc_cli_ctx will be create and refreshed.

One system user could have multijpérpc _cli_ctx at the same time, each
one correspondant to a different server node.

On server, each incoming request will be associate withr@ctptlrpc_svc ctx
which will be used throughout the lifecycle of the request.

General security API layer will implement a simple algomithto maintain
credential hash tables, periodically scan and reap exprestentials, etc. .

At server side, there’s no specific structure corresponti@ch peeptlrpc_sec,
all the security contexts are created and cached by a ceaithe management
system. As a matter of fact, we use in-kernel cache servira MFSv4, so we
put all of that in GSS policy module, the API layer didn’t doy#tming on this.

4.2 \Wire data format

The security API layer don'’t specify the details wire datenfat, it is different
from policy to policy. But the overall rule is every on-wirdPR message must
conform to the structuréustre msg. One lustre_msg could be embedded into
another one by just becoming a data segment of the “contdumdre _msg. So

if any security policy want to add its own data on a RPC, it needstruct a
container lustre_msg, like following:

struct lustre_msg container {

bufcount = n;
bufs[0] = struct lustre_msg embedded {

bufcount = m;
bufs[0] e
bufs[1] e

10

bufs[m-1] = ...;
I
bufs[1] = security payload 1;
bufs[2] = security payload 2;

bufs[n-1] = ...;

4.3 Context negotiation
The simplest context negotiation process is roughly liklevang:

1. Client side prepare a bunch of data, sent to server.

2. Server side verify the request, install a context, anggmea reply send to
client.

3. Client side verify the reply, install a context.

After that, client and server will have agreement on a paisexfurity context.
Depend on the actual authentication scheme used, usugdiguire one or more
message exchange between client and server node to let dtyseomtext be
established.

In most cases, the security context negotiation are congiexigh that can't to-
tally fit into kernel, so we have to resort to user space todle content of the
negotiation messages are specific to certain authenticatechanism, and in a
secure manner.

We'll use the normal kernel PTLRPC service to perform thesage exchange,
and also the corresponding security policies in kernel migint to pack/unpack
the RPC, to encode/decode with its own special data.

Those RPCs are special, it could happen when an import isyirst@tus except
CLOSED, the normal ptlrpc call path should be modified to supportnterror
cases, context negotiation RPCs will return “fatal” or “Aatal” to caller. The
security API layer only provide the message transportatiater itself should re-
sponsible to detect & recovery from errors/attacks likadeg snooped, modified,
or lost.

11

4.4 RPCs through a secure channel

After a successful context negotiation, server will cacheratext half ptirpc_svc_ctx)
and return a handle to client; client also cache a correspgrabntext half ptl-
rpc_cli_ctx). For each following normal RPC, client will perform sedwyrirans-
form upon the request (signing or encrypting) usptigpc _cli_ctx, and send out
with the context handle to server.

Server at first find the cachgrpc_svc_ctx by received context handle, and per-
form reverse security transform (verify signature or dpting) upon the request.
Before the reply be sent oyttlrpc_svc_ctx will again be used to signing/encrypt
the reply message, and finally send out.

Client again will useptlrpc_cli_ctxto verify/decrypt the reply. Here we don’t need
handle because one ptirpc_request only could associateene client context.

4.5 Contextrefresh

Context is refreshed by demand: it happened when a RPC israotexl and no
valid context has been found, usually that's the first tima o$er sending RPCs to
certain server node. Usually refreshing happens betw€eiPHASE NEW and
RQ_PHASE_RPC, in rare cases it might also happens witRQ_PHASE RPC.
We don't define new phases of RPC, to keep minimal changes@rdicode.

It might take a long time to refresh a context,sptirpc_req _refresh_ctx() provide
both “sync” and “async” modes. The RPCs which go thropittpc_queue wait()
normally refresh context in sync mode, in which caller pseit into waiting
gueue until be waken up when the refresh finished or errordrsgh Some crit-
ical threads likeptlrpcd should never be blocked by refreshing a single context,
so it must be called in async mode. Tpiérpcd only make sure the refresh has
started, put the request into a notification list of the ceiptend return to the main
loop to check next on-list request. When something happehenontext, it will
go through all the request in the notification list, and wdient up. If the request
belongs to gptlrpc_set then the set manager (i.gotlrped in this case) will be
waken up.

Refreshing a context might return various kind of erroranemf them are fa-
tal, e.g. the user has been rejected by server; some aréetrapsoblems, e.g.
temporarily network partition. The API layer should trelem differently. In

12

former case, alptirpc_request waiting this context will abort and return failure
immediately, otherwise issue another refresh.

4.6 Contexttimeout

We don't track each context’s expire time and do refresh fieefertain amount
of time ahead of that. We just keep using it until we found kpieed and then
obtain a new context. It's bad that a context get expired betwsending request
and receiving reply which thus can't be verified. Actuallyg itot necessary to let
a context get expired at its exact expire time. Our rule isenvh ptlrpc_request
first time found its context is valid, it will be able to keepngg it until the RPC
finished and release the context. And for this reason, titnisdotally managed
by API layer, security policy module don’'t do any further eypchecking when
performing data transforming.

Because system time might be different between nodesp$'siple that a security
context get expired on server but client doesn’t know it. His tase server will
return a special error, policy modulaiswrap_reply() should detect it and notify
upper layer resend the RPC. This also could happen whenrsmaghed and
come up again, all the previous security contexts have lesn |

4.7 Reverse context

We don't simply use normal context negotiation for reversenection, because:

o It will not add any extra security strength.

e What we need is just a secure data extrange channel, extrargigation
has no point.

e It could add non-negligible administration and perforne@ngerhead.

Reverse import also owns g@lrpc_sec structure, and there’s at least one (and
uaually only one) context of root user, because DLM callbanky be issued
within root’s context. This context is directly derived fnathe normal context at
OBD_CONNECT time, instead of using normal security negotiation, andthas
same expiry as its sibling context.

13

On client side,pinger thread could be use to check every import periodically.
When it found root’s context of an import is about to expireyeav context will

be obtained and issue@BD_CONNECT using the new context, thus server will
have the chance to refresh the context in its reverse import.

Client should do th€©BD_CONNECT at least earlier than the maximum allowed
time difference between nodes before the context expirg tiotherwise server
might have a period which has no valid context available passibly lead to the
client be evicted.

4.8 Managing message buffers

Now the message buffer allocation and free are delegatealittypayer. The pol-
icy module could freely arrange the buffer layout, but hasaieform to following
rules:

e The buffers must be big enough to hold all the data, includewyrity pay-
load, for request and reply.

e Provide consistant view to PTLRPC layer:

— After sptlrpc_cli_alloc_reqgbuf(), the request->rq_resgrmust point
to a buffer which allow caller fill in request message.

— After sptlrpc_cli_unwrap_reply(), the request->rq_reggnmust point
to the clear text of reply message sent from server.

— After sptlrpc_svc_unwarp_request(), the request->mgmisy must point
to the clear text of request message sent from client.

— After sptlrpc_svc_alloc_rs(), an reply_state structunestrbe allo-
cated, and request->rg_repmsg must point to a buffer whiichva
caller fill in reply message.

e Allthe allocation and free must most mess with pre-allodatgent buffers,
on both client and server.

14

4.9 Protect locally cached data

In MDC and OSC layer, whenever we found a matched DLM lock, eednalso
check whether current user owns a valid context to servee.nbdot, we create a
new credential and try to refresh it, until we have a validlergial or encountered
fatal errors. In latter case the DLM lock will be released eetdrn failure to caller.

4.10 Secure reply ACK

Currently the ACK of reply in LNET layer, which some trandantdepend on, is
insecure. Now we replace it with a higher level ACK in PTLRR®@dr, which is
guaranteed to be secure.

At server side, each “difficult” reply state has a ACK numbehjch is unique
within an export. This number could be a simple ever increpsatural number,
and the all the reply_state of an export somehow get sort@d¢a@md be indexed
by the ACK number. This ACK number is filled in reply messagd aend to
client.

At client side, all pending ACK numbers are record inside amp For normal

outgoing request, it pack the pending ACK numbers into tiq@est, and be pro-
tected by the security transform. The ACK numbers shoulddpasite kept in
case of resend. Then server could finally release those meemneply state and
associated locks.

The ACK notification should not be going with context negtitia RPC because
not secure at that time, and also not OBD_CONNECT (even iovag) because
connection not supposed to be established yet.

For a very inactive connection, the longest time that a regigte hanging on
server side is thebd_timeout, when the next pinger will arrive with ACK notifi-
cation. FIXME: whether it's acceptable to delay the ACK notificatioto next
time pinger wait? How bad will this affect serve)?

For some RPC which is marked as “no resend” (e.g. ping), iRR€E failed we
should put back the ACK numbers it carrying to import, in artieallow other
requests pick them up later.

Note here we has an assumption that we trust that client kisrmet modified.
The ACK notifications could be sent with different poepletmtext, which the
server has to trust.

15

It would be the best to allow both two kind of ACK. Theill policy applies no

security, and it need to 100% compatible with old version adtce, so we should
be able to allow PTLRPC connections running withl policy still use the LNET

layer ACK; while other connections with strong securityauatically switch to

PTLRPC layer ACK mechanism.

4.11 Protect bulk transfer

Currently lustre has a CRC32 checksum implementation agaurik 1/0, now
we’ll replace it with a more general mechanism in securityl Biger. The shared
secret between the secure ptlrpc connection peers can’sduto encrypt on-
disk file data, because there’s no permanent keys availBoiewe can use it to
protect file data transfering across insecure network. &fiéollowing grades of
protection:

e NONE: no protection.

e C3UM: exchange checksum of bulk data, make sure data integrity.

e SGN: signature on bulk data, make sure the authenticated axigindata
integrity.

e PRIV: encrypt bulk data.

In CSUM or SGN mode, the computed checksum or signature will be packed

into RPC'’s security payload, transparent to upper laydrdusnsg, bulk data will
remain unchanged; IRRIV mode, encrypted file data will be transfered as bulk
data, but extra related data will be packed into RPC'’s sgopayload. Something
special inPRIV mode:

e Write:

— client: need allocate extra pages to hold the encrypted data, which

participate in the bulk transfer.
— server: decrypt could be done in-place.

e read:

16

— client: decrypt could be done in-place.

— server: need allocate extra pages to hold the encrypted data, which
participate in the bulk transfer.

Besides CPU overhead, the extra pagd2Rhv mode should not bring prohibited
memory pressure, because normally at any given time, tleepeof pages which
during 1/0 should not be too high.

We perhaps could encode a flag into security flavor which atdiavhether it need
some kind of protection on bulk I/O, thus underlying segupiblicy will pack all
the data we need and be transparent to upper layers.

4.12 Impact on recovery

As described abovely, the security APl has minimum changegcovery.

For context negotiation RPCs: If they are sent before theontngonnected or in
recovery status, then the failure will not trigger any reagvevent; If they are sent
when the import is connected, the failure may trigger recpea the import; In
any case, the context negotiation RPC should never be atitatharesent, just
return error to caller and let caller decide how to proceed.

An request might be resend multiple times, and it could bedbdrto security

module for wrapping for several times. Each ptlrpc_reqghasta flag to indicate
whether the security transform has been applied on the messanot, thus the

security policy module could take different action on thessage according to the
flag.

In case of server reboot, all the old contexts will be losisteerver can't unpack
any RPCs from client nodes, includif@BD_CONNECT request. In this case
server will return an error notification, but must in cleattteClient then flush the
old context, establish a new one and continue the rest ofeego

4.13 Possible attacks
4.13.1 Replay attack

The null policy is vulnerable to replay attack, because itself issesture at all.
GSSAPI standard required a mechanism described in RFC 2208 imple-
mented to prevent replay attack. We’ll describe it in anottieD.

17

4.13.2 Snoop or modifying data

For a real security context upon a connection implementetku®SS or other
policies, snoop could be prevented by encrypt data, and $igtiature and en-
cryption could prevent data be modified by a man in the middigain thenull
policy is of course vulnerable to the attack.

4.13.3 DOS attack

The only clear text sent across network without protectsathe error notification
from server to client, described in section 4.10. A malisiguy could intercept
reply and forge the error messages to force client flush ahdests, thus achieve
a kind of DOS attack.

There are probably many other kinds of DOS attacks. For el@grapser repeat-
edly create tons of security negotiation RPCs from manyntiedes to a single
server, to cause server be overloaded.

Many security system can't resist DOS attack by itself, sesdbustre security
API. It could be addressed by some extra mechanisms notexbtgrthis HLD.

4.14 null policy

Thenull policy module will be extremely simple:
e All users share a singlgtirpc_cli_ctx, which never expired, no refresh is
needed, no error notification will be sent by server nodes.
e All imports share a singlptlrpc_sec structure.

e Security transform is actually did nothing upon requeptirenessages, no
extra checking either.

¢ Still use reply ACK service from LNET layer, no ACK notificati needed.
e Support “NONE” and “CSUM” mode for bulk 1/O.

e The wire protocol is 100% compatible with current versiohkustre.

18

5 State Management

Theptlrpc_cli_ctx might be concurrently accessed by multiple threads, maiee su
the operations, e.g. checking expiry etc., are atomic.

No disk format changes involved.

No serious impact on recovery.

6 Alternatives

7 Focus of Inspection

19

