
Security API & Null Policy HLD

Eric Mei

2006-03-06

1 Requirements

• General framework of Secure PTLRPC (sptlrpc).

• A policy module which implement the current “no security” scenario, i.e.
null policy.

• Be able to support GSS and other future policies.

2 Functional Specification

2.1 Overview

The PTLRPC security is at per-user basis. For each individual user, before he
could use normal ptlrpc service to communicate with server side, he must authen-
ticate with server and then establish a security context between the two peers. It
like a virtual private rpc channel, although all these channels actually use the same
“physical” PTLRPC connection. All following rpc messages will be sent/received
within this context, in one of the 3 forms:

• none: no data transform applied.

• auth: a checksum is attached to protect the message’s integrity,and also
prove the genuine sender.

1



• priv: message is encrypted, and also prove the genuine sender.

Lustre should be able to use the wide range of existing authentication mechanisms,
in most cases it should be mutual authentication between theuser at client node
and the server. We hope most security enforcement be appliedwithin PTLRPC,
and transparent to upper layer. Besides normal performance& administration
penalty, Lustre security structure should be able to scale to large clusters.

The overall hierarchical structure is like following graph:

TheSecurity API is a thin layer which provide security service to PTLRPC, and
is actually tightly incorporated into PTLRPC. What it does is:

• Provide a set of security service APIs which be called throughout of PTL-
RPC.

• Implement some general facilities which are needed by all security policies.

• Dispatch security calls to the actual underlying policy modules.

Each security policy should implement a internal security function set which is
prescribed by the general security API layer, in order to achieve its own security
scheme. We should at least design 2 policies:

• null: It actually didn’t apply any security check at all: no authentication,
no data protection. It act as a fall-back to current situation, and should be
wire-compatible with precedent versions of Lustre.

• gss: It’s a subset (and modified) of normal user-space GSSAPI implemen-
tation in kernel. It doing the following:

– Implement the function set prescribed by general security API.

– Implement general facilities for all underlying security mechanisms.

– Dispatch security calls to correct underlying security mechanisms.

Each security mechanism should implement function set prescribed by GSS pol-
icy, in the mechanism-specific way. Usually the real data transform, signature
checking etc happened in this layer. Our first target mechanism is Kerberos 5.

2



We have another effort which will take care of the privacy of bulk data transfer
and keep on-disk file data encrypted on OST. But here the security API also pro-
vide extra support for security of bulk data transfer: it could be checksumed to
ensure data integrity, signed to ensure authenticated origin and data integrity, or
encrypted to ensure privacy (only for on-wire privacy, on-disk data still in clear
text).

In this HLD we mostly focus on the general security API layer,and the internal
of null policy. Details about GSS and Kerberos 5 mechanism will be discussed in
a separate HLD.

2.2 The general security APIs

As general description:

• Each import owns aptlrpc_sec structure, which describe necessary security
facilities exclusively used by this import.

• Each request on client node must associate with a security context, refered
by structureptlrpc_cli_ctx, which has to be refreshed and valid before be
use for RPC.

• Each request on server node must also associate with a security context, ref-
ered by structureptlrpc_svc_ctx, which is established during initial context
negotiation.

• Security modules will be responsible to allocate & free rpc message buffers,
because different security flavor might have special requirement on the mes-
sage buffers.

2.2.1 Security policy registration

1. sptlrpc_register_policy(ptlrpc_sec_policy *)

Can not sleep.

Register a security policy module. It should be called by each policy module
at initializing time (module loading, etc.).

3



2. sptlrpc_unregister_policy(ptlrpc_sec_policy *)

Can not sleep.

Unregister a security policy module. It should be called by each policy
module at finalizing time (module unloading, etc.).

2.2.2 Import

1. int sptlrpc_import_get_sec(obd_import *)

Might sleep on memory allocation.

Given an import, obtain a ptlrpc_sec structure and associated with the im-
port.

2. void sptlrpc_import_put_sec(obd_import *)

Might sleep on memory allocation.

Detach the ptlrpc_sec structure from a import, and usually destroy it.

3. int sptlrpc_import_check_ctx(obd_import *)

Might sleep for a long period waiting on RPC completion.

Find out whether current user has a valid context to this import’s peer server.

2.2.3 Client request

1. int sptlrpc_req_get_ctx(ptlrpc_request *)

Might sleep on memory allocation.

Obtain a context of current user and associate with a request.

2. void sptlrpc_req_put_cred(ptlrpc_request *)

Might sleep on memory allocation.

Detach the credential from a request.

3. int sptlrpc_req_refresh_cred(ptlrpc_request *, timeout)

Might sleep for a long period waiting on RPC completion.

Start refreshing credential of a request, caller could choose to wait it finish,
wait certain amount of time, or no wait at all.

4



4. int sptlrpc_cli_alloc_reqbuf(ptlrpc_request *)

5. int sptlrpc_cli_alloc_repbuf(ptlrpc_request *)

Might sleep on memory allocation.

Allocate request or reply buffers for a request.

6. void sptlrpc_cli_free_reqbuf(ptlrpc_request *)

7. void sptlrpc_cli_free_repbuf(ptlrpc_request *)

Can not sleep.

Free request or reply buffers for a request.

8. int sptlrpc_cli_wrap_request(ptlrpc_request *)

Might sleep on memory allocation.

Perform security transform upon request message which about to be sent
out.

9. int sptlrpc_cli_unwrap_reply(ptlrpc_request *)

Might sleep on memory allocation.

Perform reverse security transform upon reply message received.

2.2.4 Server handling

1. int sptlrpc_svc_unwrap_request(ptlrpc_request *)

Might sleep on memory allocation.

Perform security verify/transform upon a incoming request, as long as han-
dling context initialization & destruction request.

2. int sptlrpc_svc_alloc_rs(ptlrpc_request *)

Might sleep on memory allocation.

Allocate reply state for a request.

3. int sptlrpc_svc_wrap_reply(ptlrpc_request *)

Might sleep on memory allocation.

Perform a security transform upon a reply which will be sent out.

5



4. void sptlrpc_svc_free_rs(ptlrpc_reply_state *)

Can not sleep.

Free reply state buffer.

5. void sptlrpc_svc_cleanup_req(ptlrpc_request *)

Can not sleep.

Cleanup security service data which associate with a request.

2.2.5 Bulk transfer

1. int sptlrpc_bulk_write_cli_wrap(ptlrpc_request *, ptlrpc_bulk_desc *)

Might sleep on memory allocation.

Called by client side during bulk write, to perform checksum, signature, or
encryption on the outgoing bulk data, and pack the result into request.

2. int sptlrpc_bulk_write_cli_verify(ptlrpc_request *,ptlrpc_bulk_desc *)

Might sleep on memory allocation.

Called by client side during bulk write, to verify there’s nomismatch be-
tween the client checksum and server checksum, or verify server signature
is correct, or decrypt data.

3. int sptlrpc_bulk_write_svc_unwrap(ptlrpc_request *,ptlrpc_bulk_desc *)

Might sleep on memory allocation.

Called by OSS side during bulk write, to verify there’s no mismatch be-
tween the client checksum and OSS computed, or verify clientsignature is
correct, or decrypt data, and pack necessary result into reply.

4. int sptlrpc_bulk_read_svc_wrap(ptlrpc_request *, ptlrpc_bulk_desc *)

Might sleep on memory allocation.

Called by OSS side during bulk read, to perform checksum, signature, or
encryption on the outgoing bulk data, and pack the result into reply.

5. int sptlrpc_bulk_read_cli_unwrap(ptlrpc_request *, ptlrpc_bulk_desc *)

Might sleep on memory allocation.

6



Called by client side during bulk read, to verify there’s no mismatch be-
tween the server checksum and client computed, or verify server signature
is correct, or decrypt data.

3 Use Cases

3.1 A full RPC cycle on client side

1. In context of user A, an RPC to server node is needed, a ptlrpc_request is
created.

2. call sptlrpc_req_get_cred() to obtain an credential foruser A.

3. call sptlrpc_cli_alloc_reqbuf() to allocate request message buffer.

4. request data is filled into request buffer.

5. call sptlrpc_req_refresh_cred() to refresh associatedcredential until we get
a valid credential.

6. call sptlrpc_cli_wrap_request() to perform security transform upon request
message.

7. call sptlrpc_cli_alloc_repbuf() to prepare reply buffer.

8. send out the rpc.

9. got reply from server.

10. call sptlrpc_cli_unwrap_reply() to perform security transform upon received
reply message.

11. interpret the reply, finally to destroy this ptlrpc_request.

12. call sptlrpc_cli_free_reqbuf() and ptlrpcs_cli_free_repbuf() to release re-
quest/reply message buffer.

13. call sptlrpc_req_drop_cred() to release current credential.

14. destroy ptlrpc_request structure.

7



3.2 A full RPC cycle on server side

1. a request arrives, call sptlrpc_svc_unwrap_request() to verify/transform the
request message.

2. interpret the request.

3. call sptlrpc_svc_alloc_rs() to allocate reply state andreply message buffer.

4. fill reply data into reply buffer.

5. call sptlrpc_svc_wrap_reply() to perform security transform upon reply mes-
sage.

6. send reply out.

7. call sptlrpc_svc_cleanup_req() to cleanup security service data associated
with the ptlrpc_request.

8. destroy ptlrpc_request structure.

9. call sptlrpc_svc_free_rs() to finally release reply state and reply message
buffer.

3.3 Protect local cached data on client

1. A user’s context get expired after some period.

2. This use access a local cached object, find a matched DLM lock.

3. call sptlrpc_import_check_ctx() to find out this user’s credential to corre-
sponding server has expired.

4. release DLM lock and deny the access.

3.4 File read checksum

1. Client: simply go through normal path, the underlying security policy will
pack the checksum flag into request, and send out request.

8



2. OSS: prepare reply buffer, read data off disk.

3. OSS: call sptlrpc_bulk_read_svc_wrap() to pack checksum into reply.

4. OSS: start & finish bulk transfer, send reply back.

5. Client: call sptlrpc_bulk_read_cli_unwarp() to verifychecksum.

3.5 File write checksum

1. Client: before send out request, call sptlrpc_bulk_write_cli_wrap() to pack
checksum into request, and send out request.

2. OSS: prepare reply buffer, start & finish bulk transfer.

3. OSS: call sptlrpc_bulk_write_svc_unwarp() to verify checksum, which also
pack bounce checksum into reply.

4. OSS: write data on disk.

5. Client: call sptlrpc_bulk_write_cli_verify() to bounce checksum, give warn-
ing if found mismatch.

4 Logic Specification

4.1 Data structures

A ptlrpc_sec_policy is a implementation of a certain security policy, by a set of
functions which conformed to the internal security API.

A ptlrpc_cli_ctx is a certain user’s security context to a certain server node. The
main fields are: user identity, expire time, mechanism-specific data, etc.

A ptlrpc_svc_ctx represent the half of a security context on server side.

A ptlrpc_sec represent the overall security facility which apply on thisptlrpc con-
nection. It mainly hold a hash table of ptlrpc_cli_ctx of various users.

• Each import owns one and only oneptlrpc_sec.

9



• On client, each ptlrpc_request associates with one and onlyoneptlrpc_cli_ctx;
A ptlrpc_cli_ctx might be used by multiple ptlrpc_request, thus by multiple
thread, at the same time.

• ptlrpc_cli_ctx can not be recycled: after a context get expired, it will be
released, and a newptlrpc_cli_ctx will be create and refreshed.

• One system user could have multipleptlrpc_cli_ctx at the same time, each
one correspondant to a different server node.

• On server, each incoming request will be associate with a correctptlrpc_svc_ctx
which will be used throughout the lifecycle of the request.

• General security API layer will implement a simple algorithms to maintain
credential hash tables, periodically scan and reap expiredcredentials, etc. .

At server side, there’s no specific structure correspondingto each peerptlrpc_sec,
all the security contexts are created and cached by a centralcache management
system. As a matter of fact, we use in-kernel cache service from NFSv4, so we
put all of that in GSS policy module, the API layer didn’t do anything on this.

4.2 Wire data format

The security API layer don’t specify the details wire data format, it is different
from policy to policy. But the overall rule is every on-wire RPC message must
conform to the structurelustre_msg. One lustre_msg could be embedded into
another one by just becoming a data segment of the “container” lustre_msg. So
if any security policy want to add its own data on a RPC, it needconstruct a
container lustre_msg, like following:struct lustre_msg container {...bufcount = n;bufs[0] = struct lustre_msg embedded {...bufcount = m;bufs[0] = ...;bufs[1] = ...;

10



...bufs[m-1] = ...;};bufs[1] = security payload 1;bufs[2] = security payload 2;...bufs[n-1] = ...;}
4.3 Context negotiation

The simplest context negotiation process is roughly like following:

1. Client side prepare a bunch of data, sent to server.

2. Server side verify the request, install a context, and prepare a reply send to
client.

3. Client side verify the reply, install a context.

After that, client and server will have agreement on a pair ofsecurity context.
Depend on the actual authentication scheme used, usually itrequire one or more
message exchange between client and server node to let a security context be
established.

In most cases, the security context negotiation are complexenough that can’t to-
tally fit into kernel, so we have to resort to user space tools.The content of the
negotiation messages are specific to certain authentication mechanism, and in a
secure manner.

We’ll use the normal kernel PTLRPC service to perform the message exchange,
and also the corresponding security policies in kernel might want to pack/unpack
the RPC, to encode/decode with its own special data.

Those RPCs are special, it could happen when an import is in any status except
CLOSED, the normal ptlrpc call path should be modified to support it.In error
cases, context negotiation RPCs will return “fatal” or “non-fatal” to caller. The
security API layer only provide the message transportation, caller itself should re-
sponsible to detect & recovery from errors/attacks like data be snooped, modified,
or lost.

11



4.4 RPCs through a secure channel

After a successful context negotiation, server will cache acontext half (ptlrpc_svc_ctx)
and return a handle to client; client also cache a corresponding context half (ptl-
rpc_cli_ctx). For each following normal RPC, client will perform security trans-
form upon the request (signing or encrypting) usingptlrpc_cli_ctx, and send out
with the context handle to server.

Server at first find the cachedptlrpc_svc_ctx by received context handle, and per-
form reverse security transform (verify signature or decrypting) upon the request.
Before the reply be sent out,ptlrpc_svc_ctx will again be used to signing/encrypt
the reply message, and finally send out.

Client again will useptlrpc_cli_ctx to verify/decrypt the reply. Here we don’t need
handle because one ptlrpc_request only could associated with one client context.

4.5 Context refresh

Context is refreshed by demand: it happened when a RPC is constructed and no
valid context has been found, usually that’s the first time ofa user sending RPCs to
certain server node. Usually refreshing happens betweenRQ_PHASE_NEW and
RQ_PHASE_RPC, in rare cases it might also happens withinRQ_PHASE_RPC.
We don’t define new phases of RPC, to keep minimal changes of current code.

It might take a long time to refresh a context, sosptlrpc_req_refresh_ctx() provide
both “sync” and “async” modes. The RPCs which go throughptlrpc_queue_wait()
normally refresh context in sync mode, in which caller put itself into waiting
queue until be waken up when the refresh finished or error happened. Some crit-
ical threads likeptlrpcd should never be blocked by refreshing a single context,
so it must be called in async mode. Theptlrpcd only make sure the refresh has
started, put the request into a notification list of the context, and return to the main
loop to check next on-list request. When something happen onthe context, it will
go through all the request in the notification list, and wake them up. If the request
belongs to aptlrpc_set then the set manager (i.e.ptlrpcd in this case) will be
waken up.

Refreshing a context might return various kind of errors, some of them are fa-
tal, e.g. the user has been rejected by server; some are transient problems, e.g.
temporarily network partition. The API layer should treat them differently. In

12



former case, allptlrpc_request waiting this context will abort and return failure
immediately, otherwise issue another refresh.

4.6 Context timeout

We don’t track each context’s expire time and do refresh before certain amount
of time ahead of that. We just keep using it until we found its expired and then
obtain a new context. It’s bad that a context get expired between sending request
and receiving reply which thus can’t be verified. Actually it’s not necessary to let
a context get expired at its exact expire time. Our rule is: when a ptlrpc_request
first time found its context is valid, it will be able to keep using it until the RPC
finished and release the context. And for this reason, timeout is totally managed
by API layer, security policy module don’t do any further expiry checking when
performing data transforming.

Because system time might be different between nodes, it’s possible that a security
context get expired on server but client doesn’t know it. In this case server will
return a special error, policy module’sunwrap_reply() should detect it and notify
upper layer resend the RPC. This also could happen when server crashed and
come up again, all the previous security contexts have been lost.

4.7 Reverse context

We don’t simply use normal context negotiation for reverse connection, because:

• It will not add any extra security strength.

• What we need is just a secure data extrange channel, extra authentication
has no point.

• It could add non-negligible administration and performance overhead.

Reverse import also owns aptlrpc_sec structure, and there’s at least one (and
uaually only one) context of root user, because DLM callbackonly be issued
within root’s context. This context is directly derived from the normal context at
OBD_CONNECT time, instead of using normal security negotiation, and hasthe
same expiry as its sibling context.

13



On client side,pinger thread could be use to check every import periodically.
When it found root’s context of an import is about to expire, anew context will
be obtained and issue aOBD_CONNECT using the new context, thus server will
have the chance to refresh the context in its reverse import.

Client should do theOBD_CONNECT at least earlier than the maximum allowed
time difference between nodes before the context expiry time, otherwise server
might have a period which has no valid context available thuspossibly lead to the
client be evicted.

4.8 Managing message buffers

Now the message buffer allocation and free are delegated to policy layer. The pol-
icy module could freely arrange the buffer layout, but has toconform to following
rules:

• The buffers must be big enough to hold all the data, includingsecurity pay-
load, for request and reply.

• Provide consistant view to PTLRPC layer:

– After sptlrpc_cli_alloc_reqbuf(), the request->rq_reqmsg must point
to a buffer which allow caller fill in request message.

– After sptlrpc_cli_unwrap_reply(), the request->rq_repmsg must point
to the clear text of reply message sent from server.

– After sptlrpc_svc_unwarp_request(), the request->rq_reqmsg must point
to the clear text of request message sent from client.

– After sptlrpc_svc_alloc_rs(), an reply_state structure must be allo-
cated, and request->rq_repmsg must point to a buffer which allow
caller fill in reply message.

• All the allocation and free must most mess with pre-allocated urgent buffers,
on both client and server.

14



4.9 Protect locally cached data

In MDC and OSC layer, whenever we found a matched DLM lock, we need also
check whether current user owns a valid context to server node. If not, we create a
new credential and try to refresh it, until we have a valid credential or encountered
fatal errors. In latter case the DLM lock will be released andreturn failure to caller.

4.10 Secure reply ACK

Currently the ACK of reply in LNET layer, which some transaction depend on, is
insecure. Now we replace it with a higher level ACK in PTLRPC layer, which is
guaranteed to be secure.

At server side, each “difficult” reply state has a ACK number,which is unique
within an export. This number could be a simple ever increasing natural number,
and the all the reply_state of an export somehow get sorted and could be indexed
by the ACK number. This ACK number is filled in reply message and send to
client.

At client side, all pending ACK numbers are record inside import. For normal
outgoing request, it pack the pending ACK numbers into the request, and be pro-
tected by the security transform. The ACK numbers should be separate kept in
case of resend. Then server could finally release those pending reply_state and
associated locks.

The ACK notification should not be going with context negotiation RPC because
not secure at that time, and also not OBD_CONNECT (even in recovery) because
connection not supposed to be established yet.

For a very inactive connection, the longest time that a reply_state hanging on
server side is theobd_timeout, when the next pinger will arrive with ACK notifi-
cation. (FIXME: whether it’s acceptable to delay the ACK notificationto next
time pinger wait? How bad will this affect server?)

For some RPC which is marked as “no resend” (e.g. ping), if theRPC failed we
should put back the ACK numbers it carrying to import, in order to allow other
requests pick them up later.

Note here we has an assumption that we trust that client kernel is not modified.
The ACK notifications could be sent with different poeple’s context, which the
server has to trust.

15



It would be the best to allow both two kind of ACK. Thenull policy applies no
security, and it need to 100% compatible with old version of Lustre, so we should
be able to allow PTLRPC connections running withnull policy still use the LNET
layer ACK; while other connections with strong security automatically switch to
PTLRPC layer ACK mechanism.

4.11 Protect bulk transfer

Currently lustre has a CRC32 checksum implementation against bulk I/O, now
we’ll replace it with a more general mechanism in security API layer. The shared
secret between the secure ptlrpc connection peers can’t be used to encrypt on-
disk file data, because there’s no permanent keys available.But we can use it to
protect file data transfering across insecure network. There’s following grades of
protection:

• NONE: no protection.

• CSUM: exchange checksum of bulk data, make sure data integrity.

• SIGN: signature on bulk data, make sure the authenticated originand data
integrity.

• PRIV: encrypt bulk data.

In CSUM or SIGN mode, the computed checksum or signature will be packed
into RPC’s security payload, transparent to upper layer lustre_msg, bulk data will
remain unchanged; InPRIV mode, encrypted file data will be transfered as bulk
data, but extra related data will be packed into RPC’s security payload. Something
special inPRIV mode:

• write:

– client: need allocate extra pages to hold the encrypted data, which
participate in the bulk transfer.

– server: decrypt could be done in-place.

• read:

16



– client: decrypt could be done in-place.

– server: need allocate extra pages to hold the encrypted data, which
participate in the bulk transfer.

Besides CPU overhead, the extra pages inPRIV mode should not bring prohibited
memory pressure, because normally at any given time, the percent of pages which
during I/O should not be too high.

We perhaps could encode a flag into security flavor which indicate whether it need
some kind of protection on bulk I/O, thus underlying security policy will pack all
the data we need and be transparent to upper layers.

4.12 Impact on recovery

As described abovely, the security API has minimum changes on recovery.

For context negotiation RPCs: If they are sent before the import connected or in
recovery status, then the failure will not trigger any recovery event; If they are sent
when the import is connected, the failure may trigger recovery on the import; In
any case, the context negotiation RPC should never be automatically resent, just
return error to caller and let caller decide how to proceed.

An request might be resend multiple times, and it could be handed to security
module for wrapping for several times. Each ptlrpc_requesthas a flag to indicate
whether the security transform has been applied on the message or not, thus the
security policy module could take different action on the message according to the
flag.

In case of server reboot, all the old contexts will be lost, thus server can’t unpack
any RPCs from client nodes, includingOBD_CONNECT request. In this case
server will return an error notification, but must in clear text. Client then flush the
old context, establish a new one and continue the rest of recovery.

4.13 Possible attacks

4.13.1 Replay attack

The null policy is vulnerable to replay attack, because itself is notsecure at all.
GSSAPI standard required a mechanism described in RFC 2203 to be imple-
mented to prevent replay attack. We’ll describe it in another HLD.

17



4.13.2 Snoop or modifying data

For a real security context upon a connection implemented under GSS or other
policies, snoop could be prevented by encrypt data, and bothsignature and en-
cryption could prevent data be modified by a man in the middle.Again thenull
policy is of course vulnerable to the attack.

4.13.3 DOS attack

The only clear text sent across network without protection is the error notification
from server to client, described in section 4.10. A malicious guy could intercept
reply and forge the error messages to force client flush old contexts, thus achieve
a kind of DOS attack.

There are probably many other kinds of DOS attacks. For example, a user repeat-
edly create tons of security negotiation RPCs from many client nodes to a single
server, to cause server be overloaded.

Many security system can’t resist DOS attack by itself, so does Lustre security
API. It could be addressed by some extra mechanisms not covered by this HLD.

4.14 null policy

Thenull policy module will be extremely simple:

• All users share a singleptlrpc_cli_ctx, which never expired, no refresh is
needed, no error notification will be sent by server nodes.

• All imports share a singleptlrpc_sec structure.

• Security transform is actually did nothing upon request/reply messages, no
extra checking either.

• Still use reply ACK service from LNET layer, no ACK notification needed.

• Support “NONE” and “CSUM” mode for bulk I/O.

• The wire protocol is 100% compatible with current versions of Lustre.

18



5 State Management

Theptlrpc_cli_ctx might be concurrently accessed by multiple threads, make sure
the operations, e.g. checking expiry etc., are atomic.

No disk format changes involved.

No serious impact on recovery.

6 Alternatives

7 Focus of Inspection

19


