
HLD for ReaddirWang Di2006/01/251 RequirementMake readdir POSIX compliant especially for split dir nodes. According to therequirement of readdir, the dir entries should be read out according to someorder, no matter what will happen in this process, then tell-seek interface couldbe implemented based on this. But our current implementation can not assurethis, especially when the splitting happens in-between of readdir. Understandingof ext3 htree code and splitting dir in CMD is assumed in this HLD.2 De�nitionsHere are some de�nitions used in this HLD:hash value: it is computed by some kind of hash algorithm according to direntry itself.hash order: it means accessing the dir object according to the hash value.hash interval: it means an interval of hash value, which is correspondent toeach MDS for the splitted object.hash position: it means current position of dir, which is indicated by hashvalue, since the dir entry is sorted by hash value.splitting rule: it means the splitting way which MDS will use to split the dir.Current implementation use name hash to locate the object in a splittingdir.3 Functional Speci�cationIn MDS, the htree enable �ag is set default, so all the dir entries should bestored as a hash tree.
1



3.1 Current readdir implementation has some dis-advantages especially forsplitted dir. 4 USE CASE3.1 Current readdir implementation has some dis-advantagesespecially for splitted dir.
• In readdir, the client will access the entry of the dir sequentially, i.e.reading the page of the dir from MDS sequentially. But if the dir is ahash tree dir, this sequence order will bring us some troubles, since it isdi�erent with the one used by local ext3 �lesystem, which use hash order.
• Further more, if the dir is split in-between of readdir, the position of thosesplitted entries might be lost, then some entries might be gotten two times.3.2 readdir in hash orderTo keep readdir fully POSIX compliant when splitting, readdir and splittingmust follow the same order. Since the splitting is just to scatter the dir entriesto multiple MDS for load balance, so the splitting must follow some kind of hashorder. Luckily, the dir is stored as a hash tree in MDS and readdir in the bottom�lesystem(ext3) also follow the hash order. So we decide readdir and splittingwill follow this hash order. According to this splitting rule, the hash intervalwill be de�ned for each MDS, then in splitting or lookup, the hash of the direntry will be calculated to locate the right MDS. Since dir entries with samehash value will be stored in the same MDS, so the ext3 will help to resolve thehash collision. An new RPC will be de�ned to handle this new kind of readdir.Since POSIX did not specify that whether readdir and those modify ops(create/unlink)could happen concurrently, so we do not permit that to keep things simple, al-though ext3 permit that. Note: here the concurrent means modify ops justhappened in the same time as readdir in MDS.4 Use case4.1 Readdir in a no-splitted dir
• Client: issue readdir req, in which the current position(hash value) isincluded, to the MDS where dir is located at.
• Server: Retrieve entries from the dir according to the current position.
• Server: Return them back to client, and client will submit them to theupper layer caller.4.2 lookup in a splitted dir
• Client: compute the hash value according to the name.
• Client: send the req to the right MDS according to the hash value.
• Server: use this hash value to locate the entry in the dir, and return itback to client. 2



4.3 readdir in a splitted dir 5 LOGIC SPECIFICATIONS4.3 readdir in a splitted dir
• Client: send readdir req to the �rst MDS according to the hash interval.
• Server: execute readdir in hash order and �ll the request bu�er with thedir entries.
• Client: get all the entries of the MDS, the client will resort to the nextMDS in the hash interval, Until it get all the entries of the dir.4.4 Readdir and splitting happened in the same time
• One process is in-between readdir, while another process splitting the dirat the same time.
• The readdir process will continue to send read_dir request to the origi-nal MDS, until it can not �nd the next entries according to the currentposition(hash value).
• Client will check whether it reach the EOF of the dir, if not, it will reval-idate this dir and check whether the dir is split, if it is split, then decidewhere the following req should go by current hash position and hash in-terval of this inode(discussed this in Logical speci�cation) and send thereq to the right MDS.
• In the new MDS it will locate the entry by the current hash position, andreturn the following entries to client.5 Logic Speci�cations5.1 splitting dir with hash orderAccording to 0.2.2, the splitting should also follow the hash order used by ext3htree. In the htree of ext3, the index entries are stored in hash order. In thesplitting, for the splitted dir, we will de�ne one hash interval for each MDS, thenthe split will be executed according to these hash interval. The split processshould be
• Check the dir whether it should be split. Only when the count of theentries reached the upper limit number, it could be split.
• Divide total _hash_ range into equal intervals and assign each interval toseparate MDS.
• Iterate over the index entries of the dir and scatter index entries and theblocks they point to each MDS according to the hash interval.

3



5.2 Readdir with hash order 6 STATE MANAGEMENT5.2 Readdir with hash orderIn ext3 readdir, the current entry hash value is stored in f_pos to indicate thecurrent position. To assure lustre client also know it, MDS should return itto client and client should record it in its f_pos. Then client could retrievethe entries from MDS by this hash position, not by o�set as the original. Theprocess of readdir in client should be
• Client �rst check where the req should go according to the current hashposition in f_pos and the hash interval.
• The dir entries are returned in reply bu�er according to the current hashposition.
• The client retrieve the entries from the reply bu�er, and reply them to thecaller.
• Calculate the last entry hash value of the retrieve, then record it in thef_pos to indicate current hash position.A new readdir rpc handler will be de�ned in MDS. The process of readdir inMDS should be
• Unpack the req, and get the current position from the request.
• Got and lock the dir. Here the lock should prevent deleting and creatingthe entry in this dir at the same time.
• Locate the current position of dir and read entries from the bottom �lesys-tem.
• pack and return the entries back to the client.Note: The above discussions are all about h-tree dir, since the htree enable �agis set default for MDS.6 State Management6.1 splitting dir lockAs for dir, those modi�ed operations are not permitted when reading, so itshould be locked by LCK_PWmode to prevent any modi�cation before reading.While when those modi�ed operations being executed on the dir, it could notbe read as well.

4



6.2 Recovery for splitting dir 7 ALTERNATIVE6.2 Recovery for splitting dirSince several MDSes are involved into the splitting of the dir, we need somecluster rollback mechanism to implement the recovery of splitting. When split-ting
• correspondent records of this dir will be written into some kinds of logs inthe Master MDS.
• Then splitting the dir.
• When each MDS �nish splitting, it will send cancel log cookie req to theMaster MDS to cancel these logs.In MDS recovery, it will check these llog, if it found some, the dir will be rollbackto the original state by some cluster rollback mechanism, which is discussed inother HLD.7 Alternative7.1 Not permit splitting in progress of readdirAnother alternative way to avoid con�icts between splitting and readdir is thatsplitting is not permitted when the dir is opened, which means some otherprocesses are in progress of readdir. So if the dir is open, the splitting would bedelayed until the dir is closed.7.2 Another splitting ruleThere is another splitting rule which can be used for de�ning the hash intervalfor each MDS.1. Get the total count of the index entry of the dir. For 2-level hash trees(the max level of current ext3 hash tree), we should get the count of thesecond level. There may need some patches in ext3 to export the entriescount to MDS.2. Divide the count of index entries by the number of MD servers, the resultis D.3. For the hash interval in MDS_1, seek and get the hash value of D_thentry in the dir, and which is the upper limit of the dir's hash interval inMDS_1, and the lower limit is 0.4. For the hash interval in MDS_n, its lower value is MDS_(n-1)'s uppervalue, and its upper value is the hash value of n*D_th entry. If this valueis same as the lower value, we should resort to next entry, until we getdi�erent upper value for this hash interval.5



9 INSPECTION SUMMARY5. If the hash interval of the splitted dir in MDS_n is (lower_n, upper_n).then for all entries of the splitted dir in the MDS_n, their hash value are<= upper_n and > lower_n.6. These hash interval and corresponding number of MD servers should bestored in splitted dir EA. Then when client do lookup, it could get theright MDS number according to these hash interval and the hash value ofthe name.Since this hash interval de�nition will need store another EA for the splitteddir. And the tea-hash method, which ext3 used, could also distribute the wholeentries evenly across whole hash value �eld (hash value is 31 bit for ext3, so thehash value �eld should be (0, 0x7���f)).8 Focus of Inspection1. Is splitting policy reasonable?9 Inspection Summary

6


