
Bug #14115: EAs in dnode

Girish Shilamkar

2007-12-29

1 Introduction

ZFS has feature of file fork, which is additional data associated with a file system object
(like EAs - extended attributes).

There are many consumers who would like a mechanism for storing EAs much nearer
to the metadata of file. Mac OS/X requires finder info in EAs, pNFS metadata server
requires EAs for storing layout information and Lustre requires LOV extended attribute
data, to name some. So EAs in dnode is solution which caters tothis requirement

The document discusses how libnvpair can be used to fulfill the need for storing EAs
in dnode.

2 Architecture

2.1 Requirements

1. Fast access to Lustre EA values.

2. The overhead to to store the EAs should not be more than approximately 128
bytes + 48 bytes/EA.

3. EAs should be accessible via ZPL as this will allow the DMU to be mounted as
ZFS for debugging purpose.

2.2 Architectural description

2.2.1 Current Scenario:

|<———————————”bonus” buffer(320) ——————————–>|

|<———- znode (264)——————>|<——————- data(56)———–>|

1

2.2 Architectural description 2 ARCHITECTURE

In the dnode, the last few bytes after storing znode are vacant. Antivirus scanstamp
might be stored in this areas, sometimes in case of the objectbeing symlink the target
will be stored in this space if the space available is enough.This space is increased by
increasing the size of the dnode (https://bugzilla.lustre.org/show_bug.cgi?id=14113).
The increase in the size will enable storing some more information in it i.e extended
attributes (EAs).

2.2.2 libnvpair for in-dnode EAs:

libnvpair is a library for manipulating <name, value> pairs. libnvpair is used for pack-
ing nv pairs to memory buffers and saving it onto the disk .

The typical usage of nvpairs is as follows:

1. Get the data i.e packed nvlist into memory.

2. Unpack this list.

3. Lookup the desired name in this list.

4. Add new nvpair.

5. Pack this nvlist into memory.

6. Write this memory to persistent storage.

A typical reading of EAs would involve reading the packed nvpairs from the dnode_phys_t
and then decoding into nvlist_t. The consumer can then read the EAs from this nvlist.
An abstraction layer i.e. set of APIs will be provided which will encapsulate all the
nvlist operations so that the implementation of this feature is not consumer specific.

dmu_[set/get]_xattr() are the APIs which are used for handling the extended attributes.
These APIs will use the libnvpair methods to store the extended attributes in the dnode
in XDR format.

The dnode will require a new flag to indicate presence of nvlist in dnode which will be
stored in znode_phys_t.#define ZFS_INDNODE_XATTR 0x100 /* Dnode has EAs */
One of the pad fields will be modified to be used for store the size of packed nvlist.struct znode_phys {...uint64_t zp_nvsize; /* 152 - NVlist size for EAs in dnode */uint64_t zp_pad[2]; /* 160 - future */...}

2

2.2 Architectural description 2 ARCHITECTURE

As the lookups to this list will be frequent, when libnvpair is used for EAs, the pointer
to unpacked nvlist is stored in dnode_t (dn_xattr), to allowEAs from the in-memory
unpacked nvlist.

Changes to struct dnode_t :struct dnode_t {krwlock_t dn_struct_rwlock;....../* nvlist for unpacked nvlist. */nvlist_t *dn_xattr;}
When for the first time an EA is to be accessed from dnode the packed nvlist is read
from the disk and the unpacked nvlist pointer is added to struct dnode_t. The packing
of nvlist can be done lazily in dnode_sync() but as there can be multiple transaction
groups (open, quiescing and syncing) there can be differentgroups of EAs for same
dnode. In order to avoid the problem of multiple transactions been processed the nvlist
is packed and stored to bonus buffer whenever the nvlist is updated in dmu_setxattr.

2.2.3 Handling existing data in bonus buffer:

Symlinks:

The existing space in bonus buffers is sometimes used for storing symlinks if the sym-
link is small enough to fit into it. If the EAs are stored after following the symlink then
it is assured that EAs will be stored in dnode which doesn’t contain symlink.

Antivirus Scanstamp:

The antivirus scanstamp can be handled by DMU code. The DMU code if finds a
scanstamp on existing dnode it will add it to the nvlist thus becoming the part of EAs.
All the new additions of the antivirus scanstamp will then becompletely handled by
dmu_[set/get]_xattr functions. This will necessarily imply moving antivirus scanstamp
from realm of ZPL to DMU.

2.2.4 Overflow of EAs:

In case the bonus buffer space is not enough for EAs then zp_xattr which stores the
object id of ZAP object (containing mapping between xattr name and xattr objid) can
be used. This mechanism can be made more efficient by storing all the xattrs in single
object instead of xattr per object thus reducing the overhead to some extent.

3

3 EXTERNAL FUNCTIONAL SPECIFICATIONS

2.2.5 Lustre and in-dnode EAs:

Lustre will interface with DMU through fsfilt. udmu_object_[get/set]_xattr() functions
will be implemented to interfacing Lustre with uDMU. This set of uDMU functions
will call the underlying dmu_[get/set]_xattr()

2.2.6 ZPL Compatibility:

The current operations on vnodes (struct vnodeops) doesn’tcontain an API which can
be easily modified for ZPL compatibility for in-dnode EAs. A subsequent entry for
new vnode functions for extended attributes needs to be added to file vnode operations
template.

3 External Functional specifications

3.1 Prototypes

3.1.1 Common libnvpair APIs:

Function to allocate a nvlist, this nvlist stores the EAs in memory.nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
Function to lookup the nvpair :nvlist_lookup_common(nvlist_t nvl, const char *name, data_type_t type, unit_t *nelem, void *data)
Unpack the buf read from the disk to nvlist:int nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
Pack nvlist to memoryint nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, int kmflag)

4

3.2 Layering of APIs 3 EXTERNAL FUNCTIONAL SPECIFICATIONS

3.1.2 Lustre:

New fsfilt Functions:int fsfilt_udmu_set_md(struct inode *inode, void *handle, void *lmm, int lmm_size, const char *name)int fsfilt_udmu_get_md(struct inode *inode, void *lmm, int lmm_size, const char *name)
New uDMU Functions:int udmu_object_set_xattr(udmu_objset_t *uos, dmu_buf_t *db, void *buf, int buf_size, const char *name);int udmu_object_get_xattr(udmu_objset_t *uos, dmu_buf_t *db, void *buf, int buf_size, const char *name);
Functions to be added to ZFS/DMU code:int zfs_set_xattr(objset_t *os, dnode_t * dn, void *buf, int buf_size, const char *name);int zfs_get_xattr(objset_t *os, dnode_t * dn, void *buf, int buf_size, const char *name);
3.2 Layering of APIs

3.2.1 Lustre:fsfilt_dmu_set_md() -->udmu_object_set_xattr -->dmu_set_xattr()fsfilt_dmu_get_md() -->udmu_object_get_xattr() -->dmu_get_xattr()
3.2.2 ZPL:fop_set_xattr() -->zfs_set_xattr() -->dmu_set_xattr()fop_get_xattr() -->zfs_get_xattr() -->dmu_get_xattr

5

5 USE-CASE SCENARIOS

4 High Level Logic

These two functions are wrappers for interfacing Lustre fsfilt method with the dmu
methods for extended attributes handling.udmu_object_set_attr()udmu_object_get_attr()
Set/Get functions for EAs.dmu_set_xattr() {IF dn_xattr existsRead the packed list from the buffer.ELSE Allocate nvlist dn_xattr.nvlist_unpack[dn_xattr, ...];IF space available in bonus buffernvlist_add_nvpair(dn_xattr, nvpair);ELSE Return ENOSPCStore size of nvlist in znode_physnvlist_pack[dn_xattr, ...];Change the bonuslen.Write the packed nvlist to dnode;}dmu_get_xattr() {IF dn_xattr existsRead the packed list from the buffer.ELSE Allocate nvlist dn_xattr.nvlist_unpack[dn_xattr, ...];nvlist_lookup_common(dn_xattr, name, ...);Return.}
5 Use-Case Scenarios

5.1 Normal use cases

1. Lustre reads the LOV extended attribute data from the object.

2. Lustre OSD (MDT/OST) stores LOV EA data to the object.

6

5.2 Scalability use cases 6 STATE MANAGEMENT

5.2 Scalability use cases

Fast access to LOV EAs is critical hence implementation of EAs in dnode should scale
for reading LOV EAs.

6 State management

6.1 Locking

The race condition between threads trying to update EAs in same dnode is handled by
a new lock added to dnode_t.struct dnode {...krwlock_t dn_xattr_rwlock;...}
The reader/writer lock will be used for better concurrency than mutex.

6.2 Cache Usage

N/A

6.3 Recovery

N/A

6.4 Disk state changes

The vacant space after bonus buffer and the space increased by bug #14113 Large
dnodes will be used for EAs.

|<———————————”bonus” buffer —————————————————
—>|

|<———- znode ——————>|<-AV_SCANSTAMPS-><———– EAs ————
—->|

7

7 TEST PLAN

7 Test plan

• Performance test for measuring the performance of IO.

• Sanity Test for ensuring the data written and read from dnodeis the same.

8

