Platform independent proc interface

Author: WangDi & Komal

05/07/2008

1 Introduction

This document describes how to implement a platform indépenproc interface for
Lustre. The basic idea is that the platform-independent preee will be maintained in
kernel base which is similar as linux proc tree(called paatens tree in this HLD). The
tree will only be accessed by Ictl params command with ioctl.

2 Requirements

e The parameters tree must be platform-independent, anthsasiprocfs in linux.
Each entry is associated with a name, a value and correspbfutetions for
read/write. And any related platform-independent stuffugtl only in libcfs
module.

e The parameters tree is used by both lustre and Inet, so itdbeumplemented
in libcfs.

e The usertools could extract the data from the parametexsiith binary format,
instead of a blob of text currently.

3 FUNCTIONAL SPECIFICATION

3 Functional specification

3.1 General Description

In the new implementation, Ictl provides several APIs foessing the parameter tree,
described in 3.2. The name list in the request (Ictl getfsmiams) will be expanded
by glob in these API, then sent to kernel parameters treelbaimgide libcfs module
by ioctl interface (might use socket when this parameteesis in user space). In the
handler, the params request will be handled by the callb&klstre/Inet registered in
the tree.

3.2 APIforlctl 3 FUNCTIONAL SPECIFICATION

3.2 API forlctl

These APIs are used by Ictl to get/set value to the paramtegers

3.2.1 Read and Write

int params_read(char *path, int path_len, struct list_head *value_list,
int offset, int opt_flag);

int params_write(char *path, int path_len, struct list_head *value_list,
int offset, int opt_flag);

void params_value_free(struct list_head *value_list)

e parameters

— path: the path of the entry in the tree.
— path_len: the length for the path.

value_list: the entry value list for set/get.

offset: offset for read/write.

opt_flag: indicates which option is set.
e Return

— Read, >= 0 the read length, < 0 error.
— Write, >= 0 the written length, < O error.

e Description
— Read/Write APIs will be used by Ictl get/set_params to s¢wglue of the

parameters tree. params_value_free is used to free tlo¢ fiatams_entry.

3.2.2 List

int params_list(char *path_pattern, struct list_entry **list_entry);
void params_list_free(struct list_entry *list_entry);
struct list_entry

{
char *le_name; /* Note: here the le_name is the whole path name for the entry */
int le_name_len;
struct list_entry *le_next;
int le_mode; /*indicate whether it is entry dir or entryx*/
3

3.3 API for parameters tree 3 FUNCTIONAL SPECIFICATION

e parameters

— path_pattern: The path_pattern of the list. It may inclustese wild card
characters, for example obdfilter.*OSC.stats.

— list_entries: the list of matched entries in params_liste Tist being freed
in params_list_free.

e Return
— =0 success, <0 error.
e Description

— These APl is used to get or free the lists of the entries.

3.3 API for parameters tree

Lctl uses ioctl to access the parameters tree. In the keasd, lihe ioctl handler will
be in libcfs module. Then both Inet and lustre need to regitseown handler in
libcfs_ioctl to handle the parameters tree ioctl command.

int libcfs_iocontrol(unsigned int cmd, void *arg);

e parameters

— cmd: the ioctl command.
— arg: buffer containing the input.

e Description
— The APl is used to handle ioctl request.
e Return

— =0 success, <0 error.

3.4 Parameters tree in kernel base

As discussed, the parameters tree will be maintained irekbase, which functionality
is similar as procfs in linux kernel but we intend to make #tfdrm independent unlike
procfs which is linux kernel specific. The entries can be ddideted/lookup in the
similar way as its done with procfs interface.

3.4 Parameters tree in kernel base

3 FUNCTIONAL SPECIFIONT|

3.4.1 params tree structure

There will be a unique lustre_params_root (structure dugtarams_entry) for each
server node. Each entry is associated with a name, a value@desponding read/write
callback just like procfs in the linux kernel. The structigalso similar as a proc entry.

structure lustre_params_entry {
struct lustre_params_entry
struct lustre_params_entry
struct lustre_params_entry
lustre_params_read_t
lustre_params_write_t
atomic_t
char
int
rv_sem
__u32
void
int

_u32

};

xlpe_subdir; /#*point to its first children */
*lpe_next; /*point to its sibling, the end of this
*1lpe_parent;

lpe_cb_read;

lpe_cb_write;

lpe_refcount;
*1pe_name;

lpe_name_len;
lpe_rw_sem;

lpe_version;

1lpe_data; / The argument for the read and write c
lpe_mode; /* dir, file or symbol_link, and also th
lpe_magic; /* Make sure the structure is valid */

typedef int (lustre_params_read_t)(char *page, charartsoff t off, int count, int

*eof, void *data);

typedefint (lustre_params_write_t)(structfile *file, @ohar ___user *buffer, unsigned

long count, void *data);

The structure of the params tree is shown in the figure below:

3.4 Parameters tree in kernel base 3 FUNCTIONAL SPECIFICATI

1“"'..'1111|IJE_.':'::§|.|. :
L] Booh W

o (ke

J&I: i 5 -

3.4.2 API for the parameters tree

There are two groups of API associated with the tree.
Updating API:

int params_add_entry(struct lustre_params_entry *lpe, char *name,
lustre_params_read_t *read_cb,
lustre_params_write_t *write_cb, void * data);

int params_delete_entry(struct lustre_params_entry *lpe, char *name);

struct params_entry *params_lookup_entry(struct lustre_params_entry *lpe, char *name);

e parameters

— Ipe: the parent for add/delete/lookup.

— name: the name of the added/deleted/lookup entry. In dedatey, if the
name is NULL, it means it will delete the whole subtree underlpe.

— read_cbh: the read callback for accessing the value attdohbd entry.
— write_cb: the write callback for accessing the value atadio the entry.
— data: the parameters put to the Ipe_data.

e Return

5 LOGIC SPECIFICATION

— Read, >= 0 the read length, < 0 error.
— Write. >= 0 the written length, < 0 error.

— lookup, if it can find the entry according to the name, if it qzot find,
return NULL.

e Description

— These 3 APIs will be used to add/delete/lookup the entrygdérnel based
params tree.

4 Use cases

1. Set/get/list params tree parameters

(a) Lctl set/get_params calls parameters Ictl API to gepaeameters.

(b) Inkernel side, the ioctl request will be directed to flomodule. And libcfs
will call the lustre or Inet handler (registered in libcfs dude) to handle the
request.

2. Add/remove params tree entry

(a) OBD calls Iprocfs API to add/delete the entry of the tree.

(b) In Iprocfs code, params updating API will be called to /aedete entry of
the tree.

3. Another important use case is the race between obd clg@aupms remove)
and params accessing (lookup/read/write), which will Isewd§sed in section 6
State management.

5 Logic specification

5.1 lctlinterface
5.1.1 Interface structure

Because it requires to output the data with binary formateiad of a blob of string.
So the following structure will be used to communicate betmparameters tree and
Ictl command.

struct params_value_entry {
enum params_value_type pve_type;
_u32 pve_name_len;

5.1 lctlinterface 5 LOGIC SPECIFICATION

char *pve_name;

__u32 pve_value_len;

char *pve_value;

char* pve_value[0]; /*could be buffer pointer or just interger depends on pv_type

};

When reading or listing entries, params kernel tree wilkjragthe multi entries to the
output buffer, then Ictl will unpack the entry from the buffe

5.1.2 lctl utility

Current Ictl implements set/get_params interface baseskwearal posix system calls
like open, read, write, glob and close. All of them are basedogal linux procfs.
Since we need to achieve platform independence, thesepimets dependency APls
need to be replaced. The Ictl will implement get/set paransdiy the APIs defined in
Section 3.1. Inside these APlIs, they will use ioctl inteefém direct the correspondent
parameters request to libcfs API.

e From the input provided by user, the path name and the optietnsill be seper-
ated.

e Call params_list to get the matched entry lists accordiegtith name.

e Call params_read/write to set/get the values of each snifithe list.

int jt_lcfg_getparam(int argc, char **argv)
{
/* Analyze and retrieve the parameters from argc and argv */
/* Retrieve all the list matched the list_path pattern */
rc = params_list(list_path, &le);
le_list = le;
while (le) {
param_read(le->le_name, le->le_name_len, op_buf, op_buf_len,
opt_flag);
/*show resultx*/
le = le->le_next;
}
/* free the params list */
params_list_free(le);
return 0;

5.1 lctlinterface 5 LOGIC SPECIFICATION

5.1.3 read/write/list params for Ictl

Since the path parameters in read/write_params is the pa#tbf the entry without

wildcard characters, so we just need simply pack the cooredgnt parameters, and
then call ioctl. Note: Here, obd_ioctl_data will still beadsto here to pack the ioctl
request, but the defination should be moved to libcfs.

int params_read(char *path, int path_len, char *read_buf, int buf_len, int offset)

{
struct obd_ioctl_data data = { 0 };
/* pack the parameters to data first */
rc = obd_ioctl_pack(&data, &buf, sizeof (raw));
/* open libcfs_dev_id and prepare for the following ioctl,
* libcfs_dev_id should be registerd when lctl is initialized */
rc = do_ioctl(libcfs_dev_id, LCTL_GET_PARAM, data);
if (rc == 0)
/* Success, data.out contains the output */
/* unpack the params_value_entry from the buffer */
/* Copy the output into read_buf */
else
//Failure, print the error.
return rc;
}

As for params_list, because the path may include some widdaaracters and im-
plementing wildcard characters match in kernel base woaldirefficient and com-
plicated, all the match logic would be implemented in paraisguser base) with the
help of glibc reg match lib.

int params_list(char *path_pattern, struct list_entry **le)
{

char *parent_path, look_name;

int parent_path_len;

struct fifo_entry *fifo; /*defined below */

/*locate the wildcard characters in the path_pattern */
/*Note: We can use FIFO list to implement the path wildcard match.

*The entry in the fifo list:
*Struct fifo_entry {

* char *parent;
* int path_len;
* char xleft_wildcard;

5.2 Parameters tree in kernel base 5 LOGIC SPECIFICATION

* int left_wildcard_len;
* }
*/
/*locate first wildcard character, and add it to the fifo list */
locate_wildcard(path_pattern, p_wc);
add_to_fifo_entry(path_pattern, p_wc);
do {
/*1. Get the entry from fifo_listx*/
/*2. Read the sub-dir entries according to the parent of the entry, Note: he
/*3. Check whether these sub-entries is matched with left_wildcard in the er

for (le=sub_dir_list; le; le=sub_dir->le_next) {
if (matched left_wildcard) {
if (Yentry->left_wildcard)
add_to_return_le(le, entry);
else
add_to_fifo_list(entry);
}
}
} while (lempty_fifo_enty(fifo_list));

5.2 Parameters tree in kernel base
5.2.1 General architecture

In current implementation, lustre modules use Iprocfsrfatee(in obd_class) to ac-
cess their procfs entry, where Iprocfs is implemented basdhux procfs tree struc-
ture(proc_dir_entry) and linux procfs API. But becauseapas_tree and linux procfs
has similar structure, so lustre will still use this Iproicfierface to access the params_tree,
to avoid to much code changes in lustre for new params_tadpfocfs, there should

be only APl name changes. But libcfs and Inet are below tlyisr(@bdclass), so they

will access the params_tree directly by the API describddliowing.

5.2.2 Parameters tree

1. Updating API

These APIs are used to add/delete entries by other moduiesniplementation
should be simple, and it only need add/delete the entry firdea the tree, but
the process needs to be protected by the Ipe_rw_sem in taetpar

struct lustre_params_entry * params_add_entry (struct lustre_params_entry *lpe,
char *name,

10

5.2 Parameters tree in kernel base 5 LOGIC SPECIFICATION

lustre_params_read_t *read_cb,
lustre_params_write_t *write_cb,
void * data)

/* create the child entry */
obd_alloc_ptr(lpe_child);
/* Fill lpe_child with write_cb/read_cb and data */
/* Fill the structure of lpe */
/* Here lpe_rw_lock will be used to protect the parent */
down_write(lpe->lpe_rw_sem);
/* link the lpe_child to the lpe children list
* according to the figure of params tree structure in 3.3.1 */
up_write(lpe->lpe_rw_sem);
return 0;

}

int params_remove_entry (struct lustre_params_entry *lpe, char *name)
{
/*Find child entry from lpe according to the namex/
down_write(1lpe);
lpe_child = params_lookup_child_entry(lpe, name);
/* unlink the entry from the tree */
params_remove_child(lpe_child);
up_write(lpe);
return;

}

2. Accessing API

These APIs are called to read/write/list the entries of tammeters tree. The
general process of these API

e Locate the entry according to the path.
e Call read/write callback to get/set the value of the entry.
e For list, it will pack the sub-entry name of this entry

In these processes, lookuping the entry is similar as linkh pvalk in linux
kernel. Note: in the traversing process, when lookupingctiikelren, the parent
needs to be locked, and also the ref_count of the gotten walilltbe held, then
the parent and child will be protected from being deletethéngrocess. The race
will be discussed in section 6.

struct lustre_params_entry * params_lookup_entry (char *path)

{
/*Got the name from each entry */
struct lustre_params_entry *parent;
struct lustre_params_entry *child = NULL;

11

5.2 Parameters tree in kernel base 5 LOGIC SPECIFICATION

char *lookup_name;
int lookup_name_length = 0, last_component = 0O;
parent = &lustre_params_root_entry; /*initialize the root entry */
name = path;
/* Traverse the path and locate the entry, similar as link_path_walk,*/
for (5;) {

/*Get lookup_name lookup_name_length*/

lookup_name = name;

do {
C = *namet+;
} while (c && (c !'= ?.7)); /* path format looks xxx.yyy.zzz
lookup_name_length = name - lookup_name;
if (lc)

last_component = 1;

/*lookup the name under parent */
down_read(parent->le_rw_sem) ;
/*Note: the found child should call lpe_ref_get(child)
*to hold the refcount of the childrenx/
child = lookup_entry(parent, lookup_name, lookup_name_length);
up_read(parent->le_rw_sem) ;
if (child == NULL)

break;
if (last_component)

break;
else {

lpe_ref_put(parent) ;

parent = child;

}

return child;

}

For list, it need return all the children names. Becausenoitdid output buffer

size for ioctl, it also needs the offset and eof to indicatethier where to restart
the listing and wheter listing is finished. So a dummy entrly dé added to the

params_tree to indicate the restart position of the lise dbimmy entry will be

skipped when others walking the tree.

int params_list_entry (char *path ub4 offset, int *eof, void *buf, int buflen)

{

) ==

/*Locate the entry by the path*/

parent = params_lookup_entry(path);

/*Locate the dummy entry(restart position) and restart list from that dummy
*Note: the offset here is the lustre handle of the dummy entry.
*/

12

6 STATE MANAGEMENT

/*pack the name to the buffer, until buffer is

xfull or the end of the sub-entry*/

/*Check whether it reaches the end of subdir,

*then set eof to tell the caller whether need another list */

5.2.3 Iprocfs interface

As discussed in 5.2.1, in Iprocfs, the linux procfs APl and dioc_entry need to be
replaced with params tree API and lustre_params_entry.

e create_proc_entry : replaced with params_add_entry.

e remove_proc_entry: replaced with params_remove_entry.

e proc_dir_entry: replaced with lustre_params_entry
In Iprocfs, seq_file is used to output the stats of the obd reviiavill use seq_print to

output the stats directly in kernel base. But with parane,tthe stats(lprocfs_counter
array) will be returned to Ictl, and output there.

5.2.4 seqfile

Currently, some lustre proc entries use seq_file to outputatge” values to the user
space, which can not be done in one time. In the new implertientahese seq_file
entries will be changed to params_value_entry format, atdut in “chunk” size to
Ictl one time. Since then we also need remember the offsettdé the restart position.
Because seq_file should not be changed when it is being &c;essthe index could
be used here to record the offset.

6 State management

Since the parameters tree might be accessed by severaflshaédhe same time,
Ipe_rw_sem s broughtinto protect the tree.

e Ipe_rw_sem

— when lookup, get read_lock of the parent.
— when add/delete entry, get write_lock of the parent.

13

6 STATE MANAGEMENT

Currently, Iprocfs(lctl get/set_parameters) accessdugtiue by dp->data (proc_dir_entry),
where data is usually obd_device. Then Iprocfs use gloleki(lo Iprocfs_lock) and
dp_deleted flag, which indicate whether the entry is beirigtdd. With params tree,

the global __Iprocfs_lock will be replaced by the Ipe_rwmdecally in each entry.
Here is the situation when raced is happening,

Ictl get_params osc.lustre-OST0000-aaa.stats(pA) esaleosc.lustre-OST0000-aaa(pB)

pA: Iprocfs got the entry osc by lookup in path traverse pssce

pA: It gets read_lock of osc, then lookup lustre-OSTO0008;aald its refcount.

pB: Cleanup process locate the osc entry and waiting pA seléze read_lock
of osc.

pA: Accessing the entry, release read_lock of osc.

pB:get write_lock, unlink the entry and destroy it.

Note: In this process “Ictl get_params—>Iprocfs->paramee->accessing obd_device”,
the lock could only protect those values which are validlwtid_cleanup. If some
varibles which are even changed(destoryed) before obangte for example obd_import,
special synchronisms are still needed here. But it is out@ps of this document.

14

