
1

Eric Mei

Lustre Group, Sun Microsystems

Controlled Server Shutdown

2

CSS Overview
➢Server:

➢ Initiated by every 'umount', before setting device read-only.
➢ Send parallel notifications to all connected clients.
➢ Wait a limited time for clients finish syncing data.
➢ When disconnecting a client, keep its record in last_rcvd.
➢ Proceed to rest of shutdown.

➢Client (after got server notification):
➢ Block all new forming RPCs.
➢ Cancel all locks of corresponding namespace.
➢ Wait for all inflight RPCs to drain.
➢ Wait for replay-queue to drain.
➢ Send a DISCONNECT to notify server.
➢ Wait for recovery.

2

3

A little more details
➢CSS is tentative only, we don't try too hard, don't wait for too long.

➢ Server:
➢ Ignore clients which is not in fully connected status.
➢ Stop accepting new CONNECT once CSS started.
➢ Do not evict clients who can't finish syncing.

➢ Client:
➢ If any RPC timeout happens, the client will simply abort syncing

and enter recovery.
➢ If can't finish syncing in time, abort syncing.

➢If client detected server upgrading (to incompatible RPC wire format), and we
have RPCs to replay / resend, do a self-evict (maybe not necessary?).

3

4

Client Details (1)
➢Some locks can't be cancelled

➢ Grouplock (Flock too??).
➢ Cached data protected by the lock won't be flushed automatically.
➢ For RPC compatibility, this is fine.
➢ For Data safety, less optimal.
➢ Solution: do an fdatasync to flush data once only?
➢ Except for mmap, processes can be blocked before dirtying pages

➢Small issue of draining RPC
➢ Waiting for imp_inflight to be 0
➢ PING itself will increase imp_inflight
➢ Better to refcount threads beyond RPC blocking mutex
➢ Once clients outside critical region all RPCs are finished sending
➢ Flushing all pending RPCs and waiting for commit will clean client

4

5

Client Details (2)
➢Cleanup everything
➢Blocking new RPCs forming

➢ Must be done before RPC is formed.
➢ Ideally to block all obd_api / md_api to freeze new calls to the

target being upgraded.
➢ Problems:

➢ But some of them may be used during syncing, so blocking
must be selective (Need more thinking??)

➢ In 1.8, some MDC functions are exported to llite directly.
HEAD should have no such problem.

➢ Result: the block checking is called in many places, hard to
maintain.

5

6

Open Recovery (1)
➢Currently Open Recovery

➢ Open-create involves disk transaction on MDT.
➢ Open-exist associated with a fake transno.
➢ Open RPC remains in client ptlrpc-level replay-queue until closed.
➢ Disadvantage:

➢ Code is complex and continually broken (Andreas)
➢ Evicted client may still think it has open files and continue

doing I/O until got error in close.
➢ Create problem regards to capability renewal.
➢ Specifically for CSS: require open RPC conversion in case

of MDS upgrade.

6

7

Open Recovery (2)
➢Open reconstruction (proposed by Nico)

➢ Client maintain a list of open file data (FID, mode, etc.)
➢ Transno:

➢ Open-exist don't owns a fake transno, thus won't go into replay
queue.

➢ Open-create RPC still enters replay-queue, but removed after
create transaction committed.

➢ In either case, proper info goes to open file data list.
➢ In case of recovery:

➢ RPC replay for uncommitted transactions (including create)
➢ Recover open state by reconstruct open-exist RPCs based on
open file data (open-by-FID).
➢ RPC resend of unreplied transactions (including open-create)
➢ VBR delays orphan recovery until recovery is finished

7

8

Open Recovery (3)
➢Recovery order

➢ Recover open at first, to avoid later replay of unlink removes the object.
➢ Special treatment of unlink replay is needed – VBR does this already.

➢Open recovery wrt other transaction
➢ Create: when recover an open, the open-create transaction must have

been committed, so the object must have been created already.
➢ Unlink: if unlink transaction has been committed, the object should be in

orphan list; otherwise still exist.
➢ Setattr-permission: That's why MDT must bypass permission checking

during open recovery.
➢No RPC conversion would be needed

➢ After a successful syncing, client replay queue will be empty.

8

9

Open Recovery (4)

➢ Alternative (proposed by Alex)
➢ Implement open in terms of LDLM locks.
➢ Single recovery mechanism:

➢ On-disk transactions: RPC replay
➢ In-core state: reconstruction / recover locks

➢ Eliminate the special “open recovery” phase in recovery
➢ We always need locks anyways for layout and attributes
➢ Looks better, but perhaps requires more changes?
➢ Can be implemented separately from CSS work

9

1010

THANK YOU

Eric Mei
Lustre Group, Sun Microsystems

