
Lustre Windows Client High Level Design

Sun Microsystems

April 8, 2008

Developed by:

OSR Open Systems Resources, Inc.

105 Route 101A, Suite 19

Amherst, New Hampshire 03031-2277

(603) 595-6500 (603) 595-6503

 Lustre Windows Client HLDD 2

© 2008 OSR Open Systems Resources, Inc.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in

any form or by any means -- graphic, electronic, or mechanical, including photocopying, recording, taping,

or information storage and retrieval systems -- without written permission of OSR Open Systems

Resources, Inc., 105 Route 101A Suite 19, Amherst, New Hampshire 03031, (603) 595-6500

OSR, the traditional OSR Logo, the new OSR logo, “OSR Open Systems Resources, Inc.”, and “The NT

Insider” are trademarks of OSR Open Systems Resources, Inc. All other trademarks mentioned herein are

the property of their owners.

Printed in the United States of America

Document Identifier: PR088-02

LIMITED WARRANTY

OSR Open Systems Resources, Inc. (OSR) expressly disclaims any warranty for the information presented

herein. This material is presented “as is” without warranty of any kind, either express or implied,

including, without limitation, the implied warranties of merchantability or fitness for a particular purpose.

The entire risk arising from the use of this material remains with you. OSR’s entire liability and your

exclusive remedy shall not exceed the price paid for this material. In no event shall OSR or its suppliers be

liable for any damages whatsoever (including, without limitation, damages for loss of business profit,

business interruption, loss of business information, or any other pecuniary loss) arising out of the use or

inability to use this information, even if OSR has been advised of the possibility of such damages. Because

some states/jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental

damages, the above limitation may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS

This material is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government

is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Right in Technical Data and Computer

Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer

Software--Restricted Rights 48 CFR 52.227-19, as applicable. Manufacturer is OSR Open Systems

Resources, Inc. Amherst, New Hampshire 03031.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 3

Revision History

Revision Date Author Description

V0.1 1 March, 2008 WAM
Initial Internal

Draft

V0.2 8 March 2008 WAM
Internal Draft

Review

V0.8 10 March 2008 WAM

Draft Version for

Final Internal

Review

V0.9 11 March 2008 WAM
Draft Version to

Sun

V0.91 25 March 2008 WAM
Update with Sun

Feedback

V1.0 8 April 2008 WAM
Update with Sun

Feedback

Documents used in the preparation of this specification

 Untitled Document “Non-compatible issues between gcc and VC”

 Patchfree Lustre client Tiger Porting DLD, dated April 20, 2006.

 Patch free Lustre client in tiger, Dated February 7, 2006.

 Windows Lustre Client File System Design, Version 0.4 dated July 2005.

 Design and Implementation of XNU port of Lustre Client File System, dated February 1, 2005.

 Miscellaneous Windows Driver Kit documentation and help files

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 4

Table Of Contents

1 Introduction __ 6

2 Architectural Model ___ 8

3 Windows Lustre Client Design __ 11

3.1 FS_LOOKUP __ 11

3.2 FS_RELEASE ___ 12

3.3 FS_CREATE __ 12

3.4 FS_ACCESS ___ 12

3.5 FS_GET_ATTRIBUTES ___ 13

3.6 FS_SET_LENGTH ___ 13

3.7 FS_READ and FS_WRITE ___ 13

3.8 FS_READ_DIRECTORY3 ___ 14

3.9 FS_UPDATE_SHARE_ACCESS and FS_REMOVE_SHARE_ACCESS _______ 14

3.10 FS_GET_NAME2 ___ 15

4 Potential Issue Discussion ___ 16

4.1 Security ___ 16

4.2 Windows File System Semantics ___ 16

4.3 FSDK Extensions ___ 18

4.4 Locking ___ 18

4.5 Virtual Memory Differences __ 19

4.6 Third Party Product Interactions __ 19

5 Feedback/Discussion __ 21

5.1 Performance Goals __ 21

5.2 User Mode Service Usage __ 21

5.3 Management Tools __ 21

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 5

5.4 Existing Internal API Usage __ 22

5.5 Cache Invalidation __ 22

5.6 Security/ACL Support ___ 22

5.7 Sharing Modes ___ 22

5.8 Short Names ___ 22

5.9 Directory Query Operations __ 22

5.10 Links ___ 23

5.11 Byte Range Locking ___ 23

5.12 Oplocks ___ 23

5.13 Quota Support ___ 23

5.14 NLS/Codepage Support __ 23

5.15 Read-ahead __ 23

5.16 Directory Change Notification __ 23

5.17 FS_LOOKUP_PATH __ 24

5.18 FS Handle ___ 24

5.19 FS_SET_LENGTH __ 24

5.20 FS_READ/FS_WRITE __ 24

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 6

1 Introduction

The primary purpose in creating this document is to create a basic working model for constructing a native

Lustre Client for the Windows OS environment. While it will describe some of the key issues in that

development, the primary focus here is to establish the conceptual framework for this work in order to

foster clear understanding and discussions between the Lustre development team and the Windows Client

design/implementation team. This communications can be complicated because the terminology employed

in discussing similar concepts is often different.

The goal in creating this document is to provide the basic conceptual framework that will be used to guide

the Windows Lustre Client implementation project. Key requirements for this project include:

 A native Windows Lustre Client that will appear to normal Windows applications as if it were a

“typical” local file system (e.g., behaviors similar to those of FAT or NTFS file systems on

Windows.)

 Support for Windows Server 2008 and Windows Vista, both 32 bit and 64 bit (x64) versions.

 Support for exporting the Lustre file system to other systems via the CIFS and NFS native

Microsoft implementations.

 Emphasis on optimizing performance of the overall system. In the actual design, the emphasis is

on making trade-offs that will provide generally better performance. We anticipate that actual

implementation will require actual performance optimization (ergo, performance studies followed

by detailed optimization) but the goal here is to avoid major architectural changes in performing

that optimization.

 Moderate initial development time. An important goal for the project is to be able to deliver a

Windows Lustre Client implementation in a reasonable time frame. Thus, an important goal for

the design is to attempt to consider the final version, but also to look for intermediate milestones

that can be used to provide earlier versions with restricted functionality and/or performance

guarantees.

The design as set forth in this document is one that OSR believes will provide a solid base upon which to

implement the Lustre for Windows Client. There are a number of variables that make this project more

challenging than a “port” or other typical project and as such we expect that this design and the resulting

implementation will likely change over its actual lifetime to accommodate the needs of the actual project.

However, this document should serve as a basis for discussion for both concepts and issues.

Current Status: At the present time, this document is a draft document. The purpose of this document is

to provide a basis of ongoing discussion with Sun Microsystems about the final design of the resulting

product. It is provided to Sun for comment and feedback.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 7

The goal here then is to ensure that all parties have reached a basic understanding of the proposed system;

as a high level design document the goal of this document is to provide a basic road map for the

implementation team. It is not a goal of this document to constitute a detailed design document – thus, it

does not contain pseudo code, data structure descriptions or in-depth discussions of implementation level

issues. Discussions of specific items contrary to this goal are included simply to address concerns raised by

Sun during the review of this document.

Except as necessary to provide a conceptual framework, we have not tried to reiterate the contents of the

other Lustre documents that were provided to OSR.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 8

2 Architectural Model

Lustre was originally designed and developed to be a highly scalable cluster file system in which

information is maintained in a distributed fashion across multiple machines. In this way, the logical

structure of the name space is maintained independently from the physical storage of the information.

Further, this technique allows Lustre to “mix and match” systems to allow optimization of specific types of

storage based upon the needs of the cluster in which it is being used.

Within Lustre, there are a number of important components:

 Meta Data Server (MDS) – these matinain Lustre meta-data information, including the structure

of the name space, security information and actual data location information.

 Object Storage Servers (OSS) – these are responsible for managing the actual storage and

retrieval of data. Typically this would be a native file system for the target storage device (e.g.,

NTFS.)

 Object Storage Target (OST) – these are responsible for managing the storage of file level data

across one or more OSS. Thus (for example) a single logical file might be implemented by storing

data on multiple distinct servers.

 Client – this is the component that allows access from the native system (in our case Windows) to

the Lustre servers.

Since our goal is to construct a native Windows client for Lustre, we focus on the behavior of the system

from the client perspective. Thus, when an application is running on a system in which the Windows

Lustre Client is deployed, it will see an additional name space (likely an available drive letter, but this

could also be displayed as mount point, or logical name, inside an existing file system – from the Client

perspective these are indistinguishable.)

The Windows Lustre Client will interact with the MDS components to display the name space to

applications. While the Windows Lustre Client may cache temporary namespace information, the actual

namespace is maintained by the various MDS components. Actual file activity is managed by the OSTs

and OSS components and the Windows Lustre Client must interact with them to perform actual I/O

operation. We note that, particularly in the case of Windows, I/O activity to a file is relatively rare when

compared to actual directory enumeration and basic information gathering activities.

The basic model that we are proposing for the Windows Lustre Client would utilize the OSR File Systems

Development Kit (FSDK) along with a custom developed File Systems Driver and Windows Service. This

basic architecture will allow a Windows native implementation to be developed in a reasonable timeframe

and yet provide a solid base for further improving performance and balancing implementation via the

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 9

service (which can often be easier) and the kernel driver (which is typically higher performance, but

certainly far more demanding of correctness.)

The function of the service is to perform potentially complex operations for which there is an existing

portable implementation (and for which performance is not a primary issue.) Operations we would

normally consider to be an important part of this layer would include:

- Mapping Windows security credentials to Lustre security credentials

- Establishing connections with the Lustre services (the handles can be presented to the kernel

component for further use, for example. The kernel service must properly convert them to file

objects for further use.)

- Interactions with Lustre services. One advantage of this implementation model is that it allows

leveraging the existing Lustre libraries in user mode (which has portability tools and libraries such

as cygwin that would not apply to the kernel mode development environment.)

- Standard user/kernel communications using an inverted IOCTL service model (e.g., the service

calls the driver, the driver suspends the I/O operation until needed.) This would include defining

and handling the usual error conditions that can arise in this scenario: no threads available to

service a kernel request, no kernel requests waiting for threads, allocation failures, timeouts

(generally, the response time should be bounded. That bound can be configuration specified, but

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 10

without this the system will “hang” and this typically frustrates and annoys users,) and service

terminations.

- Shared memory management; because it is quite likely that some shared data structures will be

managed between the kernel driver and user mode service, it will be important to define how that

is to be achieved. Because this creates a potential vulnerability in the OS, the kernel side

component must be carefully written to validate all data access and handle potential error

conditions carefully.
1

Note that the interface between the kernel component and user components would be private. One

important reason for this is that as the Windows Lustre Client implementation evolves, we would expect

critical services to be moved into the kernel because of their need for performance.

With respect to Windows and performance in general, the two key areas are I/O performance and directory

enumeration. The FSDK library will provide a certain amount of caching for the directory enumeration and

supports an invalidation interface so that the cached contents of a directory can be purged as necessary.

One disadvantage of this is that purging is for the entire cache (there is no selective update, for example.)

Thus, in a high latency environment, it is likely to be useful for a secondary cache. This cache can be

maintained in the service (where, presumably it may be able to process incremental updates to information

in the name space, or at a minimum initiate a refresh of the directory while it is being actively used) and

then shared with the kernel driver (presumably via the shared memory interface.)

1
 The important issue here is that whatever this shared format, it cannot safely contain data pointers – it can

contain structures that are self defining but data points are by their nature not safe. Thus, for example, if

directory contents are shared between the two components, the fields of the structure (e.g., length) should

be capture and then used, rather than use in-place to avoid the risk of them changing during the operation.

In addition, we strongly suggest that the interface between these two components be tightly restricted, such

that the ACL on the device object only allows the distinguished account used to run the service be granted

access. While this does not guarantee no compromise, it does create a barrier to such compromise being

trivially achieved.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 11

3 Windows Lustre Client Design

In approaching the Lustre design, we have decided to approach this from the perspective of key FSDK

operations that would be implemented as part of this project. While this is certainly not the only possible

means of analyzing this, we have taken this approach to attempt to make “bridging the gap” between the

FSDK environment (and Windows) and the Lustre implementations on other platforms easier to understand

and to map.

In doing this, we have considered the following key FSDK operations:

 FS_LOOKUP

 FS_RELEASE

 FS_CREATE

 FS_ACCESS

 FS_GET_ATTRIBUTES

 FS_SET_LENGTH

 FS_READ

 FS_WRITE

 FS_READ_DIRECTORY3

 FS_UPDATE_SHARE_ACCESS

 FS_REMOVE_SHARE_ACCESS

 FS_GET_NAME2

We note that this list of functions is not exhaustive and the final implementation would be expected to

implement several other functions as well. However, our goal in picking out these functions was to explore

some of the basic issues that we expect to observe in their implementation.

3.1 FS_LOOKUP

The purpose of the FS_LOOKUP operation is to take an existing, known handle and a new name

component and determine if, based upon this information, a new object can be identified. Traditionally,

this would imply that a file is being “looked up” in a directory. From the perspective of implementation,

we would expect this to behave similar to existing lookup implementations for Lustre, as the logical model

for implementation here is comparable (e.g., we would use something similar to the ll_lookup_it function

that is in the Lustre lite implementation.)

In addition to the basic lookup, we would suggest that using the full path lookup scheme (a variant of

FS_LOOKUP) also be employed. This would allow using something akin to the directory cache (dcache)

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 12

for optimizing lookups of this type. While the FSDK does maintain a single entry cache (the last item

looked up on this system,) it is not intended to replace a more scalable cache such as a traditional dcache

scheme.

An open question for implementation would be how much of the interaction with the Lustre server can be

done directly within the kernel driver component; from an implementation standpoint this can be split

between the kernel driver and user mode service as necessary.

The FSDK model then allows the file system implementation to return a handle to the FSDK for

subsequent operations. What we would suggest is using an extensible table scheme (e.g., similar to the

object handle table used in Windows for generating handles) with some sort of arbitrary granularity. The

low order bits inside that granularity can then be used to disambiguate handle reuse cases. While not

necessary, it is helpful if these really are handles and not pointers to memory blocks. In addition, using

these handles allows for easy communications between the kernel mode driver and user mode service, since

they will also want to use a handle based scheme rather than an address based scheme.

3.2 FS_RELEASE

Handles in the FSDK environment are not reference counted by the FSD (Windows Lustre Client.) The

FSDK does maintain reference counts and calls this function when a handle is no longer needed by the

FSDK. From an implementation perspective, this normally means that the handle in question can be

reused; with the presence of a dcache, it might be useful to maintain a reference to this handle (to avoid

reconstructing state) as necessary.

Implementation caution: because the lookup versus release process can be done in a deserialized fashion, it

is important that any calls from the FSD to the FSDK be properly serialized by the FSD itself (ergo, if the

FSD performs an OwPurgeCache call, the FSDK may actually release the handle during that upcall. The

FSD needs to be able to handle this case, as it is not protected against by the FSDK.)

3.3 FS_CREATE

The create operation within the FSDK actually corresponds to the creation of a new object – typically a file

or directory. From an implementation standpoint it would be similar to the Lustre lite function ll_create_it.

3.4 FS_ACCESS

This function is used to perform a security check on the object in question. We would anticipate that this

would be implemented by mapping the current entity (Windows SID based) into its Lustre analog. The

access can then be verified (typically by actually opening the object in question.) We note that this is not

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 13

the same as sharing control, but is rather the security check. It is also responsible for enforcing any

attributes of the file, including the read-only attribute.

Note that this operation is always performed in the context of the originating thread. Thus, the security

check can be done against the current thread security credentials. A trivial implementation (which may be

sufficient for Lustre, in fact) would be to only process the read-only bit and defer the access check to

opening the relevant object.

3.5 FS_GET_ATTRIBUTES

Given a handle to an already opened object, this retrieves the attributes of that object. This includes the

various sizes, timestamps, attributes and link count of the target object. The information provided here is

used by the FSDK to respond to a plethora of different operations and is normally cached (e.g., it is

important that this be invalidated if the data associated with the file is invalidated.)

We would expect this to be equivalent to the normal Getattr implementation in the existing Lustre client

codebase.

3.6 FS_SET_LENGTH

The Windows VM system provides a guarantee that paging write operations will never extend the size of

the file. To honor this, they will always set the length of the file prior to the paging I/O (as well as protect

against truncation during their paging I/O operation.) The purpose of this function is for the FSDK to

ensure that the length of the file is sufficient for the incoming paging I/O operation.

For the Windows Lustre Client we would expect this to be an internal only value. It does need to be

reported back properly, but need not actually represent the file size on the remote server. Thus, this would

normally be a modest implementation.

3.7 FS_READ and FS_WRITE

We would expect that these functions will likely involve considerable work throughout the course of the

project because they are typically the “performance sensitive” operations within the file. The

implementation here will need to consider that as much work as possible should be done at most once (e.g.,

you can defer opening remote objects up to this point, but should only do so once, not on each I/O

operation.) I/O sizes are typically modest in pre-Vista systems, with the maximum being 64KB for paging

I/O. User applications can submit larger I/O operations, with a net effective limit of around 32MB (the

maximum size that can be described in a single Memory Descriptor List or MDL – a form of page level

scatter/gather data structure.)

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 14

One issue that may require further thought is that Windows does perform its own read-ahead. We notice

that the Lustre lite implementation explicitly contains comments that suggest they disable this and perform

their own read-ahead. This is possible with the FSDK, but doing a separate read-ahead cache may not

make as much sense in Windows because of the heavy use of the VM integrated file data cache (and the

normal “no share” semantics on files.) Read ahead could be disabled on shared access files (which likely

don’t benefit from it anyway.)

We would suggest that the implementation here would likely look similar to the ll_readpage and

ll_writepage functions.

3.8 FS_READ_DIRECTORY3

Directory enumeration is a heavily used function in Windows. While the basic model for directory

enumeration is similar between Windows and UNIX systems (e.g., an iterative model) the Windows model

includes attribute information (timestamps, sizes) in the directory enumeration. These values (notably

sizes) need to be correct because applications actually rely upon them for proper behavior.

Open Question: How best to optimize this in the Lustre environment. If we must open and query the size

for each file in the directory, we can do so, but typically this becomes a rather expensive exercise. Either a

bulk stat or an augmented directory query operation would be critical to optimal performance of this very

common operation in a directory being browsed from a Windows system using the Windows Lustre

Client.
2

3.9 FS_UPDATE_SHARE_ACCESS and

FS_REMOVE_SHARE_ACCESS

Share access for a Windows system is the concept of shared mode read, write or delete access to the file.

By default, sharing is disabled but may be optionally allowed when an application opens the file. Opens

are only allowed if the share access is compatible with existing access on the file.

For the initial implementation, we would suggest that the locking be implemented in a “simple” fashion so

that the file is locked on the Windows node. In that case, the Windows Lustre Client need not implement

these functions. However, once shared file access is added, these two functions will need to be modified to

2
 The Windows Lustre Client will be presenting itself as if it were a local file system so that it can be re-

exported via CIFS. Thus, the expectations of behavior will be those of FAT or NTFS.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 15

work with the Lustre servers to coordinate the access of local processes using the file and the actual server

controlling such access.
3

3.10 FS_GET_NAME2

A Windows file may be opened using different variations of its name including:

 Short name (8.3 MS-DOS compatible)

 Long name (Win32 compatible, including POSIX compatible)

 File ID (equivalent of the “inode number” concept in a typical UNIX file system)

 Object ID (an application assigned GUID that can be used to open the object.)

In the initial implementation of the Windows Lustre client, we are proposing that it only implement long

file names. In that case, there is no requirement for this API because there is no ambiguity with respect to

the name.

We note however that to support the NFS implementation (in Services for UNIX and now natively included

in the Windows Server 2008 distribution) it is necessary to support open by file ID. If this is the case, this

function will be necessary in order to provide name information about the corresponding file (and its path.)

3
 It is not clear to us at this point which server would fill this role.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 16

4 Potential Issue Discussion

The purpose of this section is to discuss specific issues that we envision affecting the Windows Lustre

Client implementation. While we do not expect this list to be exhaustive, our goal is to identify key issues

that we have considered; ideally, this list should be updated and refined throughout the course of the

project, but at a minimum questions and issues raised during the draft design discussion and review will be

added and addressed in this section (and thus captured as part of the final design.)

4.1 Security

An important consideration in any cross-system environment is the presentation of security information;

this applies both to connections from the Windows client to the Lustre server as well as through the

Windows APIs intended for managing and presenting such security information and attributes.

First, we note that the existing Lustre model already defines that security is the responsibility of the servers

and not the client. Clients remain untrusted in this model.

Our expectation is that existing credential information (e.g., the SID of the entity issuing the operation) will

be used to construct Lustre level credentials that can be used to authenticate the specific user with the

Lustre server. An open issue (to be determined) is to define how this mapping is achieved.

Note: security at Windows kernel level is done via the Security Identifier. The expectation would be that

this SID would be mapped to some equivalent Lustre structure as administratively defined. Presumably

(using Kerberos) this would be achieved by interacting with the key distribution center to obtain a session

ticket that is then used to communicate with the Lustre service. Our assumption has been that this is either

well understood or will be defined by the existing Lustre implementation and that the code to implement

this would be achieved via a user mode component. Kernel interactions would thus consist of converting

the SID to the Lustre level credentials needed to establish the communications between the two endpoints.

The actual Lustre security controls (“ACL”) would be modified using some external tool – we do not

recommend attempting to map a foreign ACL format into the Windows ACL format. However, should that

be a goal, we would suggest that this be implemented as part of the user mode helper service and thus the

ACLs can be presented to the FSDK as needed.

4.2 Windows File System Semantics

The semantics of file systems in Windows differs somewhat from those in a typical UNIX file system. We

note that they do not differ dramatically – both support similar concepts of files, directories and I/O to and

from a “byte stream” but they do differ in a number of subtle and important ways. This includes:

 Windows file systems traditionally are “case preserving, case insensitive.” However, file systems

are allowed (and some do support) case sensitive naming semantics. This situation is complicated

by a change that Microsoft introduced in Windows XP in which the default is that all file access is

done using case insensitive behavior, regardless of what is requested by the application. This

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 17

behavior is implemented in the Windows Object Manager (not the file system driver) and is

controlled via a registry parameter. Installing certain optional products (e..g, Services for Unix)

changes this behavior and enables case sensitive behavior.
4
 Lustre comes from a heritage of case

sensitivity. In the past when porting UNIX file systems to Windows we have used the case

preserving semantics; any issues with respect to files that differ only in case are not unique to the

ported file system and already exist with NTFS (for example.) Thus, preserving existing behavior

is generally the best possible solution in this circumstance.

 Windows file systems traditionally support both a “long” and “short” file name. This is not

required of file systems, but is provided to handle application compatibility issues – notably

applications that only understand short names as well as applications that do not handle some

characters (notably spaces) in the names of files and directories. However, the long term trend in

Windows is to drop support for short file names (it is a considerable boost to performance for

NTFS when short file name support is withdrawn, for example.) Thus, our suggestion here is to

not support short file names in the Windows Lustre Client.

 UNIX directories typically do not maintain file stat information within them while NTFS and FAT

do maintain such information. Directory enumeration operations in Windows thus return the

name(s) and attributes of the files as a matter of course. This can be masked by iteratively

opening each file and obtaining the attributes of the file but is typically expensive to perform. In

such a case, this information should be cached locally whenever possible. In the alternative, a

mechanism for obtaining this information efficiently from the MDS would be highly desirable.)

 Windows file systems do not traditionally support “symbolic links”, while UNIX file systems do

support them. NTFS does support reparse points (beginning in Windows 2000) and symbolic

links (beginning in Windows Vista) using what is known as a reparse point. At the present time,

the FSDK does not provide explicit support for symbolic links (there are placeholders in the API

for them, but we have never had call to support them.) One option here is that OSR can extend the

FSDK to support symbolic links by mimicking the NTFS behavior (e.g., treat them like a specific

form of reparse point.) In that fashion, reparse point queries and sets would be translated into

symbolic link query/set operations, but only for those operations that match symbolic links. As

this is not likely core to the functionality, this could be deferred from an initial release.

4
 Ostensibly, this was due to a security concern that arises when applications default to case insensitive

behavior. In such asituation, the file the application wants to access can be “hidden” by creating a file that

differs only in case and occurs lexographically prior to the file that the application actually wishes to

access.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 18

There are a number of other specialized Windows features (e.g., ACLs and Extended Attributes) that are

either described elsewhere or are considered to be optional behavior for a Windows file system. We do not

view them as being of consequence (except ACLs, which are discussed elsewhere in this document.)

4.3 FSDK Extensions

We note that the FSDK does not currently implement a handful of features that might be useful for the

Windows Lustre Client. As such, these could be added to the FSDK as part of this project (or a logical

extension of this project) and would then become part of the supported FSDK code base (ergo, this

proposal is not for creating a customized FSDK version.) Specifically:

 Symbolic links. Windows Vista is the first version of Windows to include symbolic link support

in a base file system (NTFS.) As such, the FSDK does not implement symbolic links internally,

nor does it present them to the underlying FSD. The simplest model here would be for the FSDK

to be modified to support reparse points of the relevant type (e.g., matching the behavior of the

NTFS file system) so that applications that understand symbolic links would be able to properly

interact with them.

At the present time we do not see any other features that might be useful for the Windows Lustre Client

that are not supported in the FSDK. Note that we have not included some features that are specific to

NTFS but for which there is no analog in Lustre (e.g., transaction support.)

4.4 Locking

Lustre has a complex locking model in keeping with its goal of broad scalability. However, to keep the

Windows Lustre Client implementation simple, we would strongly suggest that the initial implementation

of this “over compensate” for locking on files. While this might risk disallowing file sharing in cases in

which it would otherwise work, it is the safest and most expedient approach to the initial implementation.

As we gain further experience with the Windows Lustre Client, it would make sense to carefully move

back from this implementation model.

Typically, a revocation would be a purge of the cached FSDK data. Normally this is done using the

function OwPurgeCache. However, OwPurgeCache is an unsafe callback (we do not know the locking

context) it will frequently fail to perform the operation immediately. In such cases, the FSDK queues a

work item to a different thread in which it is now safe for the operation to block, acquire FSDK locks, and

complete the operation. In that case the file will normally be released shortly thereafter. Thus, it may be

desirable to note in the handle context that there is an outstanding revocation so that it can be satisfied once

the release has been received. In that case, the revocation can then be satisfied and the handle discarded

immediately.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 19

This is certainly an important area in which we would expect to work with the Lustre team to better

understand the proper implementation, as clearly the lock semantics in Lustre are very specific to the Lustre

implementation and they need to be properly implemented into the Windows implementation.

4.5 Virtual Memory Differences

One important distinction between the Windows Virtual Memory implementations and the UNIX Virtual

Memory implementations (including Linux) is that Windows does not maintain a list of virtual mappings to

a physical page – there is no “inverted page table” from which all reference to a physical page can be

located and invalidated. As such, the invalidation model that Lustre typically uses will not work in the

Windows environment. This is a design philosophy decision on the part of Microsoft and we have

previously discussed this with Landy Wang (the person at Microsoft responsible for the Windows Virtual

Memory system)

Effectively, what this means is that when references to a file cannot be purged, the locks protecting that file

cannot be released. The FSDK provides functions that will attempt to force any outstanding memory

references on the given file to be deleted. Note that these can (and do) fail for a variety of reasons including

the use of those files for memory mapped access by applications. Memory mapped access by the cache

maanger (the Windows file system data cache) will certainly cause such purge attempts to fail, but in

addition there are other situations in which it is not possible to immediately attempt purging the cache (this

relates to issues involving observing lock hierarchy in order to avoid deadlock.) In such cases, the request

to purge is often posted and thus may occur shortly after the initial request. To handle this situation, the

Windows Lustre Client will need to request a purge on the file. Typically, this will lead to a subsequent

release of the file indicating that it is no longer in use. Absent that, the Windows Lustre Client will not be

able to release locks that it is holding against the file.

4.6 Third Party Product Interactions

A significant area of concern with respect to any Windows file systems development projects are related to

third party product interactions. This includes such common applications as anti-virus products, data

replication products, etc. While some of these will not be applicable in the Lustre environment (e.g., data

replication products,) other products are very likely to be applicable.

Note that there is no “generic” mechanism for achieving this, and that even testing against a single product

version is no guarantee that a new release of the same product will not exhibit some sort of problem or

issue. Frequently, the types of issues that arise are not the “fault” of one component, either, but are often

very scenario specific and require explicit expertise in analyzing and developing a mutually acceptable

work-around.

Our suggestion here is that Sun should consider sending a development team, along with the Windows

Lustre Client and any supporting infrastructure necessary for testing, to the Windows Filesystem Plugfests

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 20

that are held roughly twice a year by Microsoft. Note that this is a development/engineering activity and as

such is most productive when developers familiar with the code base under test are present.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 21

5 Feedback/Discussion

This section is used to capture discussions based upon the feedback and discussion from Sun. It is an

integral part of the document, but is captured here (separately) in order to ensure that they are addressed

and that there is an opportunity to discuss them before they are actively integrated into the design itself.

5.1 Performance Goals

Sun indicates a hard performance goal of 250MB/s for simultaneous read and write from separate threads.

We have no specific objection to the goal, but we note that achieving performance at this level is clearly

going to require a configuration that can support the same (after all, that is a data rate of 3Gb/s, which

would suggest that this is not achievable over a 1Gb/s Ethernet.) Thus, achieving a performance goal at

this level will require further feedback from Sun as to the configuration to be tested (not to mention how to

configure a Lustre environment that would meet this performance goal.)

We do note that achieving performance at this level will likely require performance study/analysis on the

performance platform and under the relevant load platform.

5.2 User Mode Service Usage

Our model of user mode service usage was certainly not intended to indicate it would play any role in the

I/O path. Indeed, the comments back (that it should only be part of authentication) is a perfectly reasonable

dividing line. What we did not want to do in the design was over-constrain the implementation team as it is

often necessary to balance out implementation between these two components for expedient

implementation.

In addition, another reason to use a user mode service is to provide a secure communications channel with

the kernel service. In that way, applications can speak to the server, it can perform the authentication and

then send the relevant IOCTL. In addition, this model gives “free” distributed/remote administration (this

is the standard Windows model.)

5.3 Management Tools

We would expect these to be implemented in the user mode service; administrative applications can then

call an RPC interface in the UM service to implement the actual calls. This uses existing Windows security

and will allow utilities to work either via a command line model or via other Windows like mechanisms

(e.g., MMC and shell extensions.)

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 22

5.4 Existing Internal API Usage

We also realize that there is an extensive body of code; it was beyond the scope of a high level design to

attempt to categorize them. We invite further conversation in this area, but consider this to be essential as

part of the implementation effort.

5.5 Cache Invalidation

The FSDK caches attribute information via a write-through model. Thus, the FSD implementation

(Windows Lustre Client) will always know file attributes (for example) and thus will not require any FSDK

interaction. The only thing that is write-back cached is data, and that caching is done by the Windows OS.

Thus, the design discusses that situation.

Other information may be cached by the FSDK, but the same API is used to invalidate that cache

(including directories and files.)

5.6 Security/ACL Support

We believe that this mapping should be managed by the user mode service, but we can discuss this further

with the Lustre team – precisely where the mapping is done should not materially impact the actual design.

5.7 Sharing Modes

The feedback mentions this issue, but we were unable to extract any substantive comments from the

document.

5.8 Short Names

We did not expect the Windows Lustre Client would support short names; it was mentioned because it may

create issues in the future.

5.9 Directory Query Operations

The FSDK allows the FSD to return a single query format. The FSDK then handles converting that into the

format requested by the user. In general, we suggest that any implementation support the most general

format for this information (e.g., more recent versions of Windows that use the file ID information format.)

This is not required. Our concern was that this information needs to be inexpensive to obtain from Lustre

because Windows queries directory information on a regular basis and applications rely upon it being

correct.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 23

5.10 Links

We would propose not supporting cross-volume links in the initial version.

The FSDK already detects when two links point to the same file and handles that as appropriate internally

via the handle value that is returned to the FSDK.

5.11 Byte Range Locking

IRP_MJ_CREATE is available via an FSDK call (OwGetTopLevelIrp) although we generally try to avoid

using that mechanism (the information is passed in via the various calls.)

5.12 Oplocks

We cannot envison any scenario in which oplocks would conflict with Lustre locks. We can, however,

disable oplocks if it proves to be problematic.

5.13 Quota Support

We assume this implies an orthogonal implementation of quotas and not supporting the Windows quota

model.

5.14 NLS/Codepage Support

We assume that mappings for these are otherwise defined. Names would then be mapped via library calls

that are responsible for mapping between the two.

5.15 Read-ahead

We are certainly in agreement that read-ahead will likely be essential to good performance. Optimizing

this is likely to involve modifications to the FSDK as well as performance tuning and analysis.

5.16 Directory Change Notification

In the FSDK model, directory change notification can be achieved by invalidating the entire directory

contents or (as I recall) by simply invalidating the specific file that changed. However, it sounds like the

whole directory invalidation model is consistent with what you have done in the past for Linux.

Sun Microsystems Design March 25, 2008

 Lustre Windows Client HLDD 24

5.17 FS_LOOKUP_PATH

To facilitate the behavior of file systems that can more efficiently process path-level lookup operations, the

FSDK provides a “lookup path” optimization. In this optimization, the entire path is provided to the FSD

(in this case the Windows Lustre Client) and the FSD in turn returns a handle to use for both the parent

directory and the child file (there are some special circumstances here as well, for example if the parent

directory exists but the child file does not, where the parent directory handle is returned.) In its current

implementation, the FSDK will then perform a second FS_LOOKUP call on the parent directory with the

child file name in order to confirm (once it holds the correct FSDK locks) that the handle is valid (there are

potential race conditions between the lookup and release paths and this is the manner in which they are

resolved.)

We expect that for Lustre this is likely to be a useful optimization as it can be used to implement an FSD

specific name cache (although it is not required for correctness, merely as a relatively orthogonal

performance optimization.)

5.18 FS Handle

The FSDK uses a PVOID value for the handle. We would propose use an extensible table model for

managing these handles. In keeping with Sun’s suggestion that we use the 128 bit file identifier, we would

suggest returning a location in the table to the FSDK and in turn storing the 128 bit file identifier in the

table. In that way the handles can have an extremely slow recycle time.

5.19 FS_SET_LENGTH

The purpose of the FS_SET_LENGTH function is to ensure exactly what Lustre provides – effectively a

guarantee that the size of the file will be at least a certain size. This is part of the Windows VM guarantee

that it does not perform extending write operations (it sets the size first and locks against truncates below

the level where it will write.) For Lustre this is unlikely to be a major concern (this is an issue for file

systems that do not wish to perform allocation during paging write operations.)

5.20 FS_READ/FS_WRITE

In general, Windows writes will be done in units of pages (exceptions can push it down to the size of

individual sectors, based upon the sector size reported by the device. The caveat here is that there are now

known issues with Windows platforms in which devices report large sector sizes.)

